Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren"

Transkript

1 Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren biol Prof. Dr. Erich Walter Farkas farkas 1 / 45

2 1 Ein einführendes Beispiel 2 2 / 45

3 Ein einführendes Beispiel Wir betrachten die Spiegelung eines beliebigen Punktes P = (x 1; x 2) an der x 1-Achse einer Ebene. Der Punkt P geht dabei in den Bildpunkt P = (u 1; u 2) über. Die Transformationsgleichungen können wir unmittelbar aus dem Bild ablesen: u 1 = x 1 u 1 = 1 x 1 + x 2 oder u 2 = x 2 u 2 = x 1 1 x 2 Wir bringen diese Gleichung noch in die Matrizenform: ( ) ( ) ( ) u1 1 x1 = 1 u 2 x 2 3 / 45

4 Ein einführendes Beispiel x 2 P = (x 1 ; x 2 ) x x 1 u P = (x 1 ; x 2 ) Der Vektor x ist dabei der Ortsvektor des Punktes P, der Vektor u der Ortsvektor des zugehörigen Bildpunktes P. Jetzt interessieren wir uns ausschliesslich für alle diejenigen (vom Nullvektor verschiedenen) Ortsvektoren, die bei dieser Spiegelung in einen Vektor gleicher Richtung oder Gegenrichtung übergehen. 4 / 45

5 Ein einführendes Beispiel Diese (noch unbekannten) Vektoren genügen also der Bedingung u = λx und somit der folgenden Matrizengleichung: Ax = λx = λex oder (A λe)x = Dabei ist E die 2-reihige Einheitsmatrix. Die als charakteristische Matrix von A bezeichnete Matrix A λe besitzt die folgende Gestalt: A λe = ( 1 1 ) ( 1 λ 1 ) = ( 1 λ 1 λ Die Matrizengleichung lautet daher in ausführlicher Schreibweise: ( ) ( ) ( ) 1 λ x1 = 1 λ x 2 ) 5 / 45

6 Ein einführendes Beispiel Dieses homogene lineare Gleichungssystem mit den beiden unbekannten Koordinaten x 1 und x 2 enthält noch einen (ebenfalls unbekannten) Parameter λ und ist bekanntlich nur dann nicht-trivial lösbar, wenn die Koeffizientendeterminante verschwindet, d.h. det(a λe) = 1 λ 1 λ = gilt. Hieraus erhalten wir die sog. charakteristische Gleichung der Matrix A: det(a λe) = (1 λ)( 1 λ) = Die Lösungen dieser Gleichung heißen Eigenwerte der Matrix A. Sie lauten hier also: λ 1 = 1, λ 2 = 1 Zu diesen Eigenwerten gehören bestimmte Ortsvektoren, die in diesem Zusammenhang als Eigenvektoren der Matrix A bezeichnet werden. 6 / 45

7 Ein einführendes Beispiel Man erhält sie, indem man in das homogene lineare Gleichungssystem für den Parameter λ den jeweiligen Eigenwert einsetzt und anschliessend das Gleichungssystem löst. Mit der Bestimmung dieser Eigenvektoren wollen wir uns jetzt näher befassen. Eigenvektoren zum Eigenwert λ 1 = 1 Einsetzen des ersten Eigenwertes λ 1 = 1 liefert das homogene lineare Gleichungssystem x 1 + x 2 = x 1 2 x 2 = Dieses System reduziert sich auf die eine Gleichung mit der Lösung x 2 =. 2x 2 = 7 / 45

8 Da die erste Unbekannte x 1 in dieser Gleichung nicht auftritt, dürfen wir über x 1 frei verfügen und setzen daher x 1 = α. Das Gleichungssystem besitzt damit die von dem reellen Parameter α abhängige Lösung x 1 = ( α ) ( 1 = α ) α R Der zum Eigenwert λ 1 = 1 gehörige Eigenvektor ist somit bis auf einen beliebigen konstanten Faktor α eindeutig bestimmt. Wir wählen α = 1 und erhalten den normierten Eigenvektor ( ) 1 x 1 = Alle weiteren zum Eigenwert λ 1 = 1 gehörenden Eigenvektoren sind dann ein Vielfaches (α-faches) des normierten Eigenvektors x 1 (α ). In der Praxis beschränkt man sich daher auf die Angabe dieses Eigenvektors und betrachtet x 1 als den zum Eigenwert λ 1 = 1 gehörenden Eigenvektor. 8 / 45

9 Ein einführendes Beispiel Geometrische Deutung: Die zum Eigenwert λ 1 = 1 gehörenden Eigenvektoren sind die Ortsvektoren der auf der x 1-Achse liegenden Punkte, die bei der Spiegelung an dieser Achse in sich selbst übergehen (ausgenommen ist der Nullpunkt). x 1 = ( α ) Spiegelung an der ũ 1 = x 1 Achse ( α ) = x 1 x 2 P = P = (α; ) u 1 = x 1 x 1 9 / 45

10 Ein einführendes Beispiel Eigenvektoren zum Eigenwert λ 2 = 1 Wir setzen jetzt den zweiten Eigenwert λ 2 = 1 in die Gleichung ein und erhalten das homogene lineare Gleichungssystem 2 x 1 + x 2 = x 1 + x 2 = Dieses System reduziert sich auf die eine Gleichung 2x 1 = mit der Lösung x 1 =. Die zweite Unbekannte tritt in dieser Gleichung nicht auf, darf daher frei gewählt werden. Wir setzen x 2 = β und erhalten für das Gleichungssystem die von dem reellen Parameter β abhängige Lösung x 2 = ( β ) = β ( 1 ) β R. 1 / 45

11 Ein einführendes Beispiel Wiederum ist der Eigenvektor bis auf einen beliebigen konstanten Faktor β eindeutig bestimmt. Wir wählen β = 1 und erhalten so den normierten Eigenvektor ( ) x 2 = 1 Alle weiteren zum Eigenwert λ 2 = 1 gehörenden Eigenvektoren sind dann ein Vielfaches (β-faches) dieses normierten Eigenvektors x 2 (β ). 11 / 45

12 Ein einführendes Beispiel Geometrische Deutung: Die zum Eigenwert λ 2 = 1 gehörenden Eigenvektoren sind die Ortsvektoren der auf der x 2-Achse liegenden Punkte, die bei der Spiegelung an der x 1-Achse in den jeweiligen Gegenvektor übergehen. x 2 = ( β ) Spiegelung an der u 2 = x 1 Achse ( β ) = x 2 x 2 x 2 P = (; β) x 1 u 2 = x 2 P = (; β) 12 / 45

13 Ein einführendes Beispiel Fazit Die Eigenvektoren der Transformationsmatrix A sind in diesem Beispiel diejenigen (vom Nullvektor verschiedenen) Ortsvektoren, die bei der Spiegelung an der x 1-Achse entweder in sich selbst oder in den entsprechenden Gegenvektor übergehen. Die beiden Eigenwerte haben folgende geometrische Bedeutung: λ 1 = 1: Richtung und Länge des Ortsvektor bleiben bei der Spiegelung erhalten (Punkte auf der x 1-Achse mit Ausnahme des Nullpunktes) λ 2 = 1: Richtungsumkehr des Ortsvektor bei der Spiegelung (Punkte auf der x 2-Achse mit Ausnahme des Nullpunktes) Die Spiegelung an der x 1-Achse haben wir in eindeutiger Weise durch die 2-reihige Transformationsmatrix ( ) 1 A = 1 beschreiben können. 13 / 45

14 Ein einführendes Beispiel Die Eigenwerte und Eigenvektoren dieser Matrix lieferten uns dabei diejenigen Ortsvektoren, die bei dieser Spiegelung entweder unverändert bleiben oder aber eine Richtungsumkehr erfuhren. Man nennt allgemein ein Problem dieser Art ein Matrixeigenwertproblem. Die Aufgabe besteht dann darin, die Eigenwerte und Eigenvektoren der vorgegebenen (quadratischen) Matrix A zu bestimmen. 14 / 45

15 A sei eine 2-reihige Matrix. Wir ordnen dann jedem Vektor x der Ebene durch die Abbildungsgleichung (Transformationsgleichung) y = Ax in eindeutiger Weise einen Bildvektor y der Gleichen Ebene zu. Wie in unserem einführenden Beispiel können wir wiederum den Vektor x als den Ortsvektor eines (ebenen) Punktes P auffassen, der bei dieser Transformation in den Ortsvektor y = Ax des zugeordneten Bildpunktes P übergeführt wird. 15 / 45

16 Unsere Problemstellung lautet jetzt wie folgt: gibt es bestimmte Richtungen, die sich von den anderen Richtungen dadurch unterscheiden, daß der Urbildvektor x und der zugehörige Bildvektor y = Ax in eine gemeinsame Linie (Gerade) fallen? Für eine solche bevozugte Richtung muß also gelten: fällt der Urbildvektor x in diese Richtung, so liegt auch der Bildvektor y = Ax in dieser Richtung. x 2 y = Ax x x 1 16 / 45

17 Die Richtung selbst ist dabei durch Angabe des in diese Richtung fallenden Urbildvektors x eindeutig festgelegt. Für solche bevorzugten Richtungen muss also gelten, dass der Bildvektor y = Ax ein Vielfaches (λ-faches) des Urbildvektors x darstellt: y = Ax = λx Die (noch unbekannten) bevorzugten Richtungen bzw. die in diese Richtungen fallenden Urbildvektoren genügen somit der Matrizengleichung y = Ax = λx = λex oder (A λe)x = Durch diese Gleichung wird das sog. Matrixeigenwertproblem beschrieben. Die Matrix A λe ist die sog. charakteristische Matrix von A. In ausführlicher Schreibweise lautet die Matrizengleichung wie folgt: ( ) ( ) ( ) a11 λ a 12 x1 = a 22 λ. a 21 x 2 17 / 45

18 Nicht-triviale Lösungen, d.h. vom Nullvektor verschiedene Lösungen treten jedoch nur dann auf, wenn die Koeffizientendeterminante des homogenen linearen Gleichungssystem verschwindet. Dies führt zu der folgenden charakteristischen Gleichung mit dem unbekannten Parameter λ: det(a λe) = a11 λ a12 a 22 λ = a 21 Die 2-reihige Determinante det(a λe) wird dabei als charakteristisches Polynom p(λ) der Matrix A bezeichnet. Die Lösungen der charakteristischen Gleichung heissen Eigenwerte, die zugehörigen (vom Nullvektor verschiedenen) Lösungsvektoren Eigenvektoren der Matrix A. 18 / 45

19 Die Eigenwerte der Matrix A werden aus der charakteristischen Gleichung berechnet, sind also die Nullstellen des charakteristischen Polynoms p(λ): p(λ) = det(a λe) = a11 λ a12 a 22 λ a 21 = (a 11 λ)(a 22 λ) a 12a 21 = λ 2 (a 11 + a }{{ 22 )λ + (a } 11a 22 a 12a 21 ) = }{{} Sp(A) det A Die Koeffizienten dieser quadratischen Gleichung haben dabei folgende Bedeutung: der erste Koeffizient ist die mit einem Minuszeichen versehene sog. Spur der Matrix A, definiert durch die Gleichung Sp(A) = a 11 + a 22 (Summe der Hauptdiagonalelemente). Der zweite Koeffizient ist die Koeffizientendeterminante det A = a 11a 22 a 12a / 45

20 Sind λ 1 und λ 2 die beiden Eigenwerte, d.h. die beiden Lösungen der charakteristischen Gleichung, so können wir das charakteristische Polynom auch in der Produktform p(λ) = λ 2 Sp(A) λ + det A p(λ) = (λ λ 1)(λ λ 2) = λ 2 (λ 1 + λ 2)λ + λ 1λ 2 darstellen (Zerlegung in Linearfaktoren). Durch einen Vergleich der Koeffizienten in den beiden Gleichungen erhalten wir dann zwei wichtige Beziehungen zwischen der Spur and der Determinante von A einerseits und den beiden Eigenwerten λ 1 und λ 2 der Matrix A andererseits: Sp(A) = λ 1 + λ 2 det A = λ 1λ 2 2 / 45

21 Durch die Matrizengleichung (A λe)x = wird ein zweidimensionales Eigenwertproblem beschrieben. Dabei bedeuten: A : E : λ : x : A λe : 2-reihige (reelle order komplexe) Matrix 2-reihige Einheitsmatrix Eigenwert der Matrix A Eigenvektor der Matrix A zum Eigenwert λ Charakteristische Matrix von A 21 / 45

22 Bestimmung der Eigenwerte und Eigenvektoren Die Eigenwerte und Eigenvektoren der Matrix A lassen sich dann schrittweise wie folgt berechnen: 1 Die Eigenwerte sind die Lösungen der charakteristischen Gleichung det(a λe) = (quadratische Gleichung mit den beiden Lösungen λ 1 und λ 2). 2 Der zum Eigenwert λ i gehörige Eigenvektor x i ergibt sich als Lösungsvektor des homogenen linearen Gleichungssystems (A λ i E)x i = Er wird üblicherweise in der normierten Form angegeben. 22 / 45

23 Eigenschaften der Eigenwerte Eigenschaften der Eigenwerte 1 Die Spur der Matrix A ist gleich der Summe der beiden Eigenwerte: Sp(A) = λ 1 + λ 2 2 Die Determinante von A ist gleich dem Produkt der beiden Eigenwerte: det(a) = λ 1λ 2 Anmerkungen Sind die beiden Eigenwerte voreinander verschieden, so sind die zugehörigen Eigenvektoren linear unabhängig. Zu einem doppelten (zweifachen) Eigenwert gehören mindestens ein, höchstens aber zwei, linear unabhängige Eigenvektoren. 23 / 45

24 Beispiel ( 2 5 Wir berechnen die Eigenwerte der 2-reihigen Matrix A = 1 4 Sie sind die Lösungen der folgenden charakteristischen Gleichung: det(a λe) = 2 λ λ = ( 2 λ)(4 λ) + 5 = λ 2 2λ 3 =. ). Die Eigenwerte lauten demnach: λ 1 = 1, λ 2 = / 45

25 Der zum Eigenwert λ 1 gehörende Eigenvektor wird aus dem homogenen linearen Gleichungssystem ( ) ( ) ( ) 1 5 x1 (A + 1E)x = oder = 1 5 bestimmt. In ausführlicher Schreibweise lautet dieses System wie folgt: x 1 5x 2 = x 1 + 5x 2 = Dieses Gleichungssystem reduziert sich auf die eine Gleichung x 1 + 5x 2 =. x 2 25 / 45

26 Eine bei der beiden Unbekannten ist somit frei wählbar. Wir entscheiden uns für x 2 und setzen daher x 2 = α (α R). Die vom reellen Parameter α abhängige Lösung lautet dann x 1 = 5α, x 2 = α. Den Lösungsvektor (Eigenvektor) x 1 = wollen wir noch normieren: ( 5α α ) ( 5 = α 1 x 1 = 1 26 ( 5 1 ) ) 26 / 45

27 Analog lässt sich der zum Eigenwert λ 2 = 3 gehörende Eigenvektor aus dem homogenen linearen Gleichungssystem ( ) ( ) 5 5 x1 (A 3E)x = oder 1 1 bestimmen. Dieses Gleichungssystem lautet in ausführlicher Schreibweise wie folgt: Es reduziert sich auf eine Gleichung 5x 1 5x 2 = x 1 + x 2 = x 1 + x 2 = die aber noch zwei unbekannte Grössen enthält. x 2 27 / 45

28 Wir können daher eine der beiden Unbekannten frei wählen und entscheiden uns dabei für x 2, d.h. wir setzen x 2 = β (β R). Die vom reellen Parameter β abhängige Lösung ist dann x 1 = β, x 2 = β. Der gesuchte Eigenvektor lautet somit x 2 = oder (in der normierten Form) ( β β x 2 = β ) = β ( 1 1 ( 1 1 Die normierten Eigenvektoren x 1 und x 2 der Matrix A sind dabei linear unabhängig, da sie zu verschiedenen Eigenwerten gehören. ) ) 28 / 45

29 Durch die Transformationsmatrix ( cos(φ) sin(φ) sin(φ) cos(φ) wird die Drehung eines ebenen x 1, x 2-Koordinatensystems um den Winkel φ um den Nullpunkt beschrieben. Für welche Drehwinkel erhalten wir reelle Eigenwerte ( < φ < 36 )? Lösung Die Eigenwerte berechnen sich aus der charakteristischen Gleichung det(a λe) = cos(φ) λ sin(φ) sin(φ) cos(φ) λ ) = (cos(φ) λ)(cos(φ) λ) + sin(φ) 2 = λ 2 2 cos(φ) λ + 1 = 29 / 45

30 Sie lauten: λ 1/2 = cos(φ) ± cos 2 (φ) 1 Reelle Werte sind demnach nur möglich, wenn die Bedingung cos 2 (φ) 1 und damit cos 2 (φ) 1 erfüllt ist. Andererseits gilt stets cos 2 (φ) 1. Beide Bedingungen zusammen(!) führen dann auf die Gleichung cos 2 (φ) = 1 die im Intervall < φ < 36 genau eine Lösung besitzt, nämlich φ = 18 oder (im Bogenmass) φ = π. Dieser Wert entspricht einer Drehung des Koordinatensystems um 18 im Gegenuhrzeigersinn. Zum Winkel φ = π gehört der doppelte Eigenwert λ 1/2 = cos(π) = 1. 3 / 45

31 Die zugehörigen (linear unabhängigen) Eigenvektoren lassen sich dann aus dem homogenen linearen Gleichungssystem ( ) ( ) ( ) x1 (A + 1E)x = oder = bestimmen (in der Matrix A wurde φ = π gesetzt). Dieses Gleichungssystem lautet in ausführlicher Schreibweise x 1 + x 2 = x 1 + x 2 = und reduziert sich auf die eine Gleichung x 1 + x 2 = x 2 31 / 45

32 Die Unbekannten x 1 und x 2 sind somit beide frei wählbar. Wir setzen daher x 1 = α und x 2 = β (α, β R). Damit erhalten wir von zwei Parametern abhängigen Lösungsvektor (Eigenvektor) ( ) α x = β und daraus für α = 1, β = bzw. α =, β = 1 die beiden linear unabhängigen (und bereits normierten) Eigenvektoren ( ) ( ) 1 x 1 = und x 2 = 1 32 / 45

33 Der allgemeine Lösungsvektor x ist dann als Linearkombination dieser (orthonormierten) Eigenvektoren x 1 und x 2 darstellbar: ( ) ( ) ( ) 1 α x = α x 1 + β x 2 = α + β = 1 β Er beschreibt den Ortsvektor des Punktes P = (α; β) und geht bei der Drehung um 18 in den Gegenvektor ( ) ( ) ( ) 1 α α u = Ax = = = x 1 β β über. Der zweifache Eigenwert λ 1/2 = 1 bewirkt also lediglich eine Richtungsumkehr des Ortsvektor x (Punktspiegelung am Koordinatenursprung, der Nullpunkt selbst muss wiederum ausgenommen werden). 33 / 45

34 Analoge Betrachtungen führen bei einer n-reihigen Matrix A auf das n-dimensionale Eigenwertproblem Ax = λx oder (A λe)x = Die Lösung dieser Aufgabe, d.h. die Bestimmung der Eigenwerte und der zugehörigen Eigenvektoren, erfolgt dann ähnlich wie bei einer 2-reihigen Matrix. Durch die Matrizengleichung (A λe)x = wird ein n-dimensionales Eigenwertproblem beschrieben. Dabei bedeuten: A : E : λ : x : A λe : n-reihige (reelle order komplexe) Matrix n-reihige Einheitsmatrix Eigenwert der Matrix A Eigenvektor der Matrix A zum Eigenwert λ Charakteristische Matrix von A 34 / 45

35 Bestimmung der Eigenwerte und Eigenvektoren Die Eigenwerte und Eigenvektoren der Matrix A lassen sich dann schrittweise wie folgt berechnen: 1 Die Eigenwerte sind die Lösungen der charakteristischen Gleichung det(a λe) = (algebraische Gleichung der Ordnung n mit den Lösungen λ 1, λ 2,...,λ n). 2 Der zum Eigenwert λ i gehörige Eigenvektor x i ergibt sich als Lösungsvektor des homogenen linearen Gleichungssystems (A λ i E)x i = (i = 1, 2,..., n) Er wird üblicherweise in der normierten Form angegeben. Bei einem mehrfachen Eigenwert können auch mehrere Eigenvektoren auftreten, siehe weiter unten. 35 / 45

36 Eigenschaften der Eigenwerte 1 Die Spur der Matrix A ist gleich der Summe aller Eigenwerte: Sp(A) = λ 1 + λ λ n 2 Die Determinante von A ist gleich dem Produkt aller Eigenwerte: det(a) = λ 1λ 2...λ n 3 Sind alle Eigenwerte voneinander verschieden, so gehört zu jedem Eigenwert genau ein linear unabhängiger Eigenvektor, der bis auf einen (beliebigen) konstanten Faktor eindeutig bestimmt ist. Die n Eigenvektoren werden üblich normiert und sind linear unabhängig. 4 Tritt ein Eigenwert dagegen k-fach auf, so gehören hierzu mindestens ein, höchstens aber k linear unabhängige Eigenvektoren. 5 Die zu verschiedenen Eigenwerten gehörenden Eigenvektoren sind immer linear unabhängig. 36 / 45

37 Anmerkungen Die Eigenwerte der Matrix A sind die Nullstellen des charakteristischen Polynoms p(λ) = det(a λe). Eine n-reihige Matrix A ist genau dann regulär, wenn sämtliche Eigenwerte von Null verschieden sind. Ist λ i ein Eigenwert der regulären Matrix A, so ist der Kehrwert 1/λ i ein Eigenwert der inversen Matrix A 1. Beim Auftreten mehrfacher Eigenwerte kann also die Gesamtzahl linear unabhängiger Eigenvektoren kleiner sein als n. 37 / 45

38 Beispiel Welche Eigenwerte und Eigenvektoren besitzt die 3-reihige Matrix 1 1 3? 3 Lösung: Die Eigenwerte sind die Lösungen der charakteristischen Gleichung 1 λ 1 3 λ 3 λ = Sie lauten λ 1 =, λ 2 = 1, λ 3 = 3. Wir bestimmen jetzt die zugehörigen Eigenvektoren. 38 / 45

39 Eigenvektoren zu λ 1 = Der Eigenvektor genügt dem homogenen linearen Gleichungssystem 1 x 1 (A E)x = oder 1 3 x 2 = 3 x 3 In ausführlicher Schreibweise: x 1 = x 1 + 3x 2 = 3x 2 = Die Lösung lautet x 1 =, x 2 =, x 3 = α. 39 / 45

40 Dabei ist α eine willkürliche Konstante (da x 3 in den Gleichungen nicht auftritt, können wir über diese Unbekannte frei verfügen und setzen daher x 3 = α). Der zum Eigenwert λ 1 = gehörende Eigenvektor lautet somit: x 1 = α = α 1 α Er ist bis auf den konstanten Faktor α eindeutig bestimmt. Durch Normierung erhalten wir schliesslich den gesuchten Eigenvektor x 1 = 1 4 / 45

41 Eigenvektor zu λ 2=1 Das homogene lineare Gleichungssystem lautet jetzt: x 1 (A 1E)x = oder 1 2 x x 3 In ausführlicher Schreibweise: x 1 + 2x 2 = 3x 2 x 3 = = Da dieses System drei Unbekannte, aber nur zwei Gleichungen besitzt, kann eine der unbekannten Grössen frei gewählt werden. Wir entscheiden uns für die Unbekannte x 2 und setzen x 2 = β (β R). Das Gleichungssystem wird dann gelöst durch x 1 = 2β, x 2 = β, x 3 = 3β. 41 / 45

42 Damit lautet der zum Eigenwert λ 2 = 1 gehörende Eigenvektor wie folgt: 2β 2 x 2 = β 3β = β 1 3 β Er ist bis auf den konstanten Faktor β eindeutig bestimmt. Durch Normierung folgt schliesslich: x 2 = β / 45

43 Eigenvektor zu λ 3=3 Diesmal erhalten wir das homogene lineare Gleichungssystem 2 x 1 (A 3E)x = oder 1 x 2 = 3 3 x 3 In ausführlicher Schreibweise: 2x 1 = x 1 = 3x 2 3x 3 = Die Lösung lautet: x 1 =, x 2 = γ, x 3 = γ. 43 / 45

44 Dabei ist γ eine willkürliche Konstante. Der zum Eigenwert λ 3 = 3 gehörende Eigenvektor ist damit bis auf den konstanten Faktor γ eindeutig bestimmt. Er lautet: x 3 = γ γ oder in der üblichen normierten Form: x 3 = 1 2 = γ / 45

45 Die drei Eigenvektoren sind - wie erwartet - linear unabhängig, da die aus ihnen gebildete 3-reihige Matrix 2 A = wegen regulär ist. det A = = 2 45 / 45

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

2.4 Die Länge von Vektoren

2.4 Die Länge von Vektoren .4 Die Länge von Vektoren 59 Wir können dies auch so sagen: Wir identifizieren (,1)-Spaltenmatrizen mit Vektoren (oder Punkten) aus R, das heißt die Menge R und R 1 werden miteinander identifiziert. Einen

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

Dreiecke, Geraden, Lineare Gleichungssysteme

Dreiecke, Geraden, Lineare Gleichungssysteme Dreiecke, Geraden, Lineare Gleichungssysteme Jörn Loviscach Versionsstand: 18. April 2009, 19:46 1 Cosinussatz Mit Hilfe des Skalarprodukts kann man den Cosinussatz [law of cosines] zeigen. Seien a und

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

5.2 Charakteristisches Polynom und Eigenräume

5.2 Charakteristisches Polynom und Eigenräume 5 Charakteristisches Polynom und Eigenräume Wie bestimmt man die Eigenwerte und Eigenräume einer Matrix? Den ersten Schritt beschreibt der folgende einfache Satz : Die Eigenwerte einer Matrix A aus K (

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen Teschl/Teschl.3,. Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr