Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9"

Transkript

1 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert folgender Aussagen: a A B b A C c A E d E F e B E f B F g D E h B E 2. Seien A, B, C Aussagen mit folgenden Eigenschaften: A B A C ist falsch ist wahr Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a A b B c C B d A B e B C 3. Zeigen Sie mit Hilfe einer Wahrheitstafel, dass die folgende Aussage stets wahr ist: ( A B ( B A 4. Weisen Sie mit Hilfe einer Wahrheitstafel nach, dass eine Kontradiktion vorliegt: ( A B ( B C ( A B ( B C 5. Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Ist eine zusammengesetzte Aussage keine Kontradiktion, ist sie stets eine Tautologie. b Folgt eine wahre Aussage aus einer falschen Aussage, ist die zusammengesetzte Aussage stets wahr. c A ( ( A ist eine Kontradiktion. d x NA(x mit A(x = 4x = 38. e x { 2, 2}A(x mit A(x = 6x = 41.

2 Vollständige Induktion 6. Zeigen Sie mit Hilfe vollständiger Induktion, dass die folgenden Gleichungen gelten: a n (i 1 2 = 1 n (n 1 (2n 1 n 2, n N 6 b i=2 n (2i 1 2 = n(4n2 1 3 i=1 n N c n 3i 3 = 3n 3 i=1 (n n n N

3 Mengenlehre 7. Gegeben seien die Mengen: A = { a, c, e, g, i } B = { b, c, d, f, h } C = { e, f, g } D = { b, h, j } a Bestimmen Sie die Mengen A D, B C, A \ D, (B D \ C, (C A B und (C A B. b Bestimmen Sie die Grundmenge Ω, wenn gilt: A B C D = { l, m } c Bestätigen Sie die Gültigkeit der folgenden Regel von de Morgan: B D = B D 8. Gegeben seien die Mengen: A = { 1, 10 } B = { x N 1 x 10 } C = { x N 1 < x < 10 } Berechnen Sie: a A \ C b B \ (A C c B C d B C 9. Gegeben seien die Mengen A und B sowie die Grundmenge Ω, für die gilt: A\B = {a, c} B\A = {b, d, f} A B = {a, b, c, d, e, f} Ω = {a, b, c, d, e, f, g} a Skizzieren Sie zu jeder dieser Mengen ein geeignetes Venn-Diagramm. b Bestimmen Sie die Mengen A B, A B, A B, A, B und skizzieren Sie zu jeder dieser Mengen ein geeignetes Venn-Diagramm. 10. Seien A, B, C Teilmengen einer Menge Ω. Welche der Aussagen a - e sind als richtig oder falsch zu beurteilen? a A B = A B = A b A B C = B C = c B C = A B C = d A B = C C A e A B = B A

4 Surjektivität und Injektivität 11. Gegeben sind die Abbildungen: a f 1 : N R mit x f 1 (x = x x+1 b f 2 : R R mit x f 2 (x = 2x 1 c f 3 : N N mit x f 3 (x = 2x 1 Welche der Abbildungen f 1, f 2, f 3 ist surjektiv, injektiv, bijektiv? 12. Untersuchen Sie die folgenden Abbildungen auf Injektivität, Surjektivität und Bijektivität. Begründen Sie kurz Ihre Antworten. a b c d f 1 : R R x f 1 (x = (x 5 2 f 2 : R + R x f 2 (x = (x 5 2 f 3 : [5, R x f 3 (x = (x 5 2 e f 4 : R R + x f 4 (x = (x 5 2 f 5 : [5, R + x f 5 (x = (x Untersuchen Sie die folgenden Abbildungen auf Injektivität, Surjektivität und Bijektivität. Begründen Sie kurz Ihre Antworten. a f 1 : R (0, mit x f 1 (x = e x b f 2 : (0, R mit x f 2 (x = ln(x

5 Komplexe Zahlen 14. Berechnen Sie: a ( i + ( i b ( i ( i c (2 3 i ( i d i e 5+12 i 3+2 i f (1 i 2 (1 + i 3 g ( 2+i 2 2 (1+2 i+2 1 i 2 +i h (3 + 5 i ( 3 2 i i 2 + i j i 15. Bestimmen Sie die Lösungen z C der Gleichungen: a z z + 2 = 0 b z 2 + (1 2 i z (3 + i = 0

6 Matrizen und Vektoren (1 16. Gegeben seien die Matrix A und der Spaltenvektor x: ( A =, x = Berechnen Sie: a A x b x T A T c A A T d A T A e x T A T A x 17. Gegeben seien die Matrizen: A = 3 4 1, B = Bilden Sie die Matrizenprodukte A B und B A. 18. Gegeben seien die Vektoren: a = 1, b = 1, c = Berechnen Sie: a a, b, c, a + b und c b. b Den Abstand zwischen den Punkten, die durch die Ortsvektoren a und b gegeben sind. c γ 1 und γ 2, wobei γ 1 der von a und b, γ 2 der von b und c eingeschlossene Winkel ist. 19. Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Dreiecksmatrizen können symmetrisch sein. b Gegeben seien zwei Matrizen A, B R n n. Dann gilt (A B T = A T B T. c Nicht jede Teilmenge einer Menge linear abhängiger Vektoren ist linear abhängig. d Als Skalarprodukt bezeichnet man die Multiplikation eines Skalars mit einer Matrix. e Zwei Vektoren a, b R n heißen orthonormal, wenn b T a = 0 und a = b = 1 gilt.

7 Matrizen und Vektoren (2 20. Folgende Teilmengen M 1, M 2 und M 3 des R 2 seien gegeben: M 1 = {(x, y x, y R, y = x } M 2 = {(x, y x, y R, y x } M 3 = {(x, y x, y R, y x } Skizzieren Sie jede dieser drei Punktmengen und untersuchen Sie sie auf Konvexität. Begründen Sie jeweils Ihr Ergebnis. 21. Prüfen Sie, ob die folgenden Mengen bzgl. der Addition und bzgl. der skalaren Multiplikation mit einer reellen Zahl abgeschlossen sind und ob es sich um reelle Vektorräume handelt. Begründen Sie Ihre Antworten kurz. M 1 = {0} M 2 = 1 4, 1 0, M 3 = 1 1, 0 0, M 4 = x y x, y R, x y 0 x M 5 = 0 x, y R, x y = 0 y 1 0 M 6 = 2, λ 1 λ R Bestimmen Sie den Rang der folgenden Matrizen: ( A 1 =, A = Gegeben sei die Matrix B = a Berechnen Sie den Rang von B und B T. Ist B regulär oder singulär? b Sind die Spalten von B linear abhängig? Begründen Sie kurz Ihre Antwort. c Sind die Spalten von B ein Erzeugendensystem des R 4? Begründen Sie kurz Ihre Antwort.

8 Lineare Gleichungssysteme (1 24. Gegeben sei folgendes Gleichungssystem: x x 2 x x 4 = 1 3 x x x 3 = 1 4 x x x 4 = 4 a Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems. b Geben Sie den zugehörigen Nullraum an. 25. Gegeben sei das lineare Gleichungssystem x a x 2 = 0, a, b R x 3 b a Bestimmen Sie für a = 3 und b = 9 die Lösungsmenge des linearen Gleichungssystems. b Für welche Kombinationen von a, b R besitzt das lineare Gleichungssystem genau eine Lösung, keine Lösung, unendlich viele Lösungen? 26. Aus drei Rohstoffen R 1, R 2, R 3 werden drei Produkte P 1, P 2, P 3 hergestellt. Die zur Herstellung von je einer Einheit von P 1, P 2, P 3 benötigten Rohstoffmengen sind in der nachfolgenden Tabelle zusammengestellt. In der letzten Spalte sind die zur Verfügung stehenden Rohstoffmengen angegeben. P 1 P 2 P 3 vorhandene Rohstoffmengen R R R c a Wie groß muss die Menge c von Rohstoff R 3 sein, damit bei der Herstellung der drei Produkte sämtliche vorhandenen Rohstoffe aufgebraucht werden können? b Bestimmen Sie mit dem Ergebnis aus a alle möglichen Herstellungsmengen für P 1, P 2 und P 3, mit denen sämtliche Rohstoffe aufgebraucht werden. Beachten Sie dabei, dass nur nichtnegative Mengen der Produkte hergestellt werden können. c Wie lauten die Herstellungsmengen, falls vom Produkt P 1 genau 100 Einheiten hergestellt werden müssen und sämtliche Rohstoffe aufgebraucht werden sollen? 27. Gegeben sei ein inhomogenes LGS A x = b der Ordnung m n. Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Ist A eine Diagonalmatrix, ist das LGS eindeutig lösbar. b Weist das LGS mehr Gleichungen als Unbekannte auf (d.h. gilt m > n, kann es nicht eindeutig lösbar sein. c Der Nullraum entspricht dem Lösungsraum des homogenen LGS. d Es kann rg(a > rg(a, b gelten. e Gilt rg(a = rg(a, b = n, ist das LGS eindeutig lösbar.

9 Lineare Gleichungssysteme (2 28. Berechnen Sie die Inverse der folgenden Matrizen: ( 3 A = , B = Gegeben seien die Matrizen A = , M = 1 5 t t s, mit s, t R. a Bestimmen Sie die reellen Zahlen s und t, so dass M = A 1 gilt. b Lösen Sie das lineare Gleichungssystem A x = b mit b = (2, 3, 1 T. 30. Gegeben sei die Matrix A = a Prüfen Sie, ob die Matrix A orthogonal ist. b Bestimmen Sie die zu A inverse Matrix A a Für welche k R ist das Gleichungssystem x + k y = 1 k x + y = 1 unlösbar, eindeutig lösbar bzw. mehrdeutig lösbar? Geben Sie jeweils eine Begründung an. ( 1 k b Für welche k R ist die Matrix A = orthogonal, d.h. es gilt A A k 1 T = A T A = E, wobei E die Einheitsmatrix der passenden Ordnung bezeichnet. 32. Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Jede reguläre Matrix ist invertierbar. b Gegeben sei eine invertierbare Matrix A. Dann ist auch A T invertierbar und es gilt (A T 1 = A 1. c Gegeben seien zwei invertierbare Matrizen A, B R n n. Dann ist auch ihr Produkt A B invertierbar. d Ist eine quadratische Matrix A R n n invertierbar, gilt rg(a = n. e Eine orthogonale Matrix ist nicht zwingend invertierbar.

10 Determinanten 33. Gegeben sei die Matrix: A = Berechnen Sie det(a, det(a T, det(2 A und det(a Gegeben seien drei Matrizen A, B, C R 2 2 mit folgenden Eigenschaften: i A ist regulär mit det(a = 10. ii Für B gilt: det(a B = 1. iii Für C gilt: B C ist singulär, d.h. nicht invertierbar. Berechnen Sie: a det(c A b det( A B 1 c det(b C A B 1 C d det(c + C 35. Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Jede Matrix A R m n besitzt eine Determinante. b Gegeben sei eine quadratische Matrix A R 2 2, deren charakteristisches Polynom sich zu P A (λ = λ 2 6λ ergibt. Dann gilt det(a = 0. c Weist eine Matrix A R n n nicht den vollen Rang auf, gilt det(a 0. d Gegeben sei eine symmetrische Matrix A R n n mit det(a = 0. Dann ist A positiv semidefinit. e Es sei A R n n eine orthogonale Matrix. Dann gilt det(a 1 = 1.

11 Eigenwerte und Eigenvektoren 36. Gegeben sei die Matrix: A = a Bestimmen Sie alle Eigenwerte von A. b Geben Sie zu jedem Eigenwert von A alle Eigenvektoren an. c Ist die Matrix A diagonalisierbar? 37. Gegeben sei die Matrix B = a Zeigen Sie, dass für das charakteristische Polynom der Matrix B P B (λ = (5 + λ(4 + λ(5 λ gilt. b Bestimmen Sie die Eigenwerte der Matrix B. c Bestimmen Sie zum kleinsten Eigenwert alle zugehörigen Eigenvektoren. 38. Bestimmen Sie das Spektrum der Matrix ( 3 3 C = Welche der Aussagen a - e sind als wahr oder falsch zu beurteilen? a Eine quadratische Matrix A R n n ist genau dann positiv definit, wenn alle ihre Eigenwerte positiv sind. b Für eine beliebige quadratische Matrix A R n n gilt spur(a = n i=1 a ii = n i=1 λ i. Dann gilt a ii = λ i i. c Gegeben sei eine quadratische Matrix A R n n. Ist ein Eigenwert von A gleich Null, sind A selbst und A λ E singulär, wobei λ einen beliebigen Eigenwert von A darstellt. d Die Matrizen A und A T besitzen in der Regel nicht das selbe Spektrum. e Gegeben sei eine invertierbare Matrix A R n n. Dann sind alle Eigenwerte der Matrix A nichtnegativ.

12 Quadratische Formen 40. Gegeben seien die beiden quadratischen Formen: a q(x 1, x 2 = 2 x x 1 x 2 + x 2 2 b q(x 1, x 2, x 3, x 4 = 2 x x 1 x 3 + x 1 x 4 3 x 2 x 1 + x 2 x 4 2 x 3 x 1 +x 3 x x x 3 x x 4 x 1 5 x 4 x 2 + x 4 x 3 5 x 2 4 Ermitteln Sie jeweils die zugehörige symmetrische Koeffizientenmatrix A. 41. Gegeben seien die Matrizen: A = ( 1 1, B = 1 a ( b 2 2 b Für welche a, b R sind die Matrizen A, B positiv definit bzw. negativ definit? 42. Gegeben sei die Matrix A = Die Nullstellen des charakteristischen Polynoms ergeben sich zu λ 1,2 = 1, λ 3 = 4. a Geben Sie die charakteristische Gleichung P A (λ = 0 explizit an. b Bestimmen Sie die zu A gehörige quadratische Form q(x 1, x 2, x 3 = x T Ax. c Bestimmen Sie die Definitheitseigenschaft von A über ihre Hauptunterdeterminanten und über ihre Eigenwerte. d Bestimmen Sie die Spur und die Determinante von A jeweils auf zwei verschiedenen Wegen.

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung. Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 =

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 = Mathematik 2 für ET # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit Das Lernen mit Lernkarten funktioniert

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

1.Übung Mathematik I

1.Übung Mathematik I 1Übung Mathematik I 1) Ist folgende Aussage eine Implikation? ( Begründung!) (( A B) -> ( A C) ) = > (C A) 2 Onkel Dagobert wurde Geld aus seinem Geldspeicher gestohlen Er hat drei Tatverdächtige: Die

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Aufgabensammlung zur Vorlesung. Höhere Mathematik für Wirtschaftswissenschaftler Algebra

Aufgabensammlung zur Vorlesung. Höhere Mathematik für Wirtschaftswissenschaftler Algebra Aufgabensammlung zur Vorlesung Höhere Mathematik für Wirtschaftswissenschaftler Algebra Freiberg, den 3 November 0 Inhaltsverzeichnis Kapitel Lineare Algebra 5 Operationen mit Matrizen 5 Lineare Gleichungssysteme

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

x+ 2y = 2 3x+ 3y+ 3z = 0

x+ 2y = 2 3x+ 3y+ 3z = 0 Mathematik für Informatiker III WS 5/ Musterlösung zur Klausur vom 8.. Anmerkung: Für die Aufgaben bis 4 gab es 4 Punkte, zusammen mit der Zusatzaufgabe 5 konnte man 4 Punkte erreichen. Um die Klausur

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 LGS 1.1 Gegeben seien folgende erweiterte Koeffizientenmatrizen (A b) in Zeilenstufenform: Lesen Sie die Lösung des jeweiligen LGS (über ) an der Zeilenstufenform ab und geben Sie diese an. Aileen Wolf

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lineare Gleichungssysteme I

Lineare Gleichungssysteme I Lineare Gleichungssysteme I Aufgabenblatt 1 1. Lösen Sie das folgende lineare Gleichungssystem: 2. Gegeben sei folgendes Gleichungssystem: x 1 + 2x 2 x 3 + 2x 4 = 1 3x 1 + 2x 2 + 5x 3 = 1 4x 1 + 2x 2 +

Mehr

Übungen zu Lineare Algebra und Geometrie 1

Übungen zu Lineare Algebra und Geometrie 1 Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Übungen zu Lineare Algebra und Geometrie für LAK

Übungen zu Lineare Algebra und Geometrie für LAK Übungen zu Lineare Algebra und Geometrie für LAK Andreas Cap Wintersemester 2010/11 Wiederholung grundlegender Begriffe (1) Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Zusammenfassung Math1I HS2012 Mathematische Grundlagen der Informatik 1

Zusammenfassung Math1I HS2012 Mathematische Grundlagen der Informatik 1 Zusammenfassung MathI HS22 Mathematische Grundlagen der Informatik Emanuel Duss emanuel.duss@gmail.com 22. Januar 23 Mathematische Grundlagen der Informatik Inhaltsverzeichnis Inhaltsverzeichnis Aussagenlogik

Mehr