8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

Größe: px
Ab Seite anzeigen:

Download "8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:"

Transkript

1 8. EIGENWERTTHEORIE I Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n a 0 ; a ν K}. Definition. Eine Funktion f : K K heißt eine Polynomfunktion, falls es ein Polynom P K[x] gibt mit f(a) = P (a) für alle a K. Eigenwerte und Eigenvektoren Es sei A Mat(n; K) eine quadratische Matrix. Definition. Ein Skalar λ K heißt Eigenwert von A, falls es einen Vektor 0 v K n gibt mit Av = λv. v heißt dann auch Eigenvektor von A zum Eigenwert λ. Die geometrische Deutung ist, daß für λ 0 die Gerade Kv unter der Abbildung h A : K n K n, x Ax fest bleibt. Bemerkung. Es gilt 0 ist Eigenwert von A Es gibt 0 v K n mit Av = 0 v = 0 Ker A {0} A GL(n, K). Definition. Zwei Matrizen A, B Mat(n; K) heißen ähnlich, falls es ein Element W GL(n, K) gibt mit B = W 1 AW. Schreibweise. A B. Bemerkung. (i) Ähnliche Matrizen sind insbesondere äquivalent. (ii) ist Äquivalenzrelation, d. h. A A A B B A A B, B C A C. Die Begründung erfolgt genau wie bei äquivalenten Matrizen.

2 140 Wir werden später sehen, daß ähnliche Matrizen denselben Endomorphismus bezüglich verschiedener Basen beschreiben. Definition. A Mat(n; K) heißt diagonalisierbar, falls A zu einer Diagonalmatrix ähnlich ist. Satz 8.1 A ist genau dann diagonalisierbar, wenn es eine Basis v 1,..., v n von K n gibt, die aus Eigenvektoren von A besteht. Beweis. Da v 1,..., v n eine Basis ist, ist W := (v 1,..., v n ) GL(n, K). Dann gilt mit Av i = λ i v i : und damit Es sei D := Dann ist Mit gilt AW = A(v 1,..., v n ) = (Av 1,..., Av n ) = (λ 1 v 1,..., λ n v n ) λ λ = (v 1,..., v n ) = W D } 0 0 {{ λ n } =:D W 1 AW = D. λ und W GL(n, K) mit λ n W 1 AW = D. AW = W D. W = (v 1,..., v n ) λ A(v 1,..., v n ) = (v 1,..., v n ) λ n (Av 1,..., Av n ) = (λ 1 v 1,..., λ n v n ) Av i = λ i v i ; i = 1,..., n.

3 8. EIGENWERTTHEORIE I 141 Da W invertierbar ist, sind v 1,..., v n eine Basis von K n. Das charakteristische Polynom Es sei A Mat(n; K). Definition. Die Abbildung χ A : K K; χ A (x) := det(xe A) heißt charakteristische Polynomfunktion von A. Bemerkung. Es ist x α 11 α 12 α 1n α 21 x α 22 α 2n χ A (x) = det... α n1 x α nn Entwickelt man diese Determinante entsprechend der Formel det A = sign σα 1σ(1) α nσ(n), σ S n so erhält man ein Polynom von Grad n. Man nennt dies das charakteristische Polynom von A. Definition. Für A = (α ij ) Mat(n; K) heißt Spur A := α ii die Spur von A. Lemma 8.2 Es gilt χ A (x) = x n Spur Ax n ( 1) n det A. Beweis. Wir schreiben χ A (x) = a n x n + a n 1 x n a 1 x + a 0. Nun ist a 0 = χ A (0) = det( A) = ( 1) n det A.

4 142 Um die anderen Koeffizienten zu bestimmen, geht man so vor: x α 11 α 12 α 1n α 21 x α 22 α 2n xe A =.. = γ ij(x) α n1 x α nn wobei γ ii (x) = x α ii, γ ij (x) = α ij (i j). Nun ist χ A (x) = det(γ ij (x)) = σ S n sign σγ 1σ(1) (x) γ nσ(n) (x). Ist σ id, so ist σ(i) i für mindestens zwei i. D. h. der zu σ gehörige Summand enthält x höchstens zur Potenz n 2. Also erhält man a n, a n 1 aus (x α 11 )(x α 22 ) (x α nn ) = x n x n 1 (α α nn ) + Terme niedrigerer Ordnung. Damit folgt a n = 1, a n 1 = Spur A. Lemma 8.3 Sind A, B ähnliche Matrizen (A B), so gilt χ A = χ B. Beweis. Da A B gibt es ein W GL(n, K) mit B = W 1 AW. Also gilt xe B = xe W 1 AW = xw 1 EW W 1 AW = W 1 (xe A)W. Nach dem Determinantenmultiplikationssatz folgt det(xe B) = det W 1 det(xe A) det W = det(xe A) und damit χ B (x) = χ A (x).

5 8. EIGENWERTTHEORIE I 143 Korollar 8.4 Sind A und B ähnlich, (A B), so gilt Spur A = Spur B. Bemerkung. Die Umkehrung von Lemma 8.3 gilt im allgemeinen nicht, wie das folgende Beispiel zeigt: ( ) ( ) A = B =, es gilt aber χ A (x) = det Satz 8.5 Für A Mat(n; K) sind äquivalent: (i) λ ist Eigenwert von A. ( ) x 0 = x 2, χ 0 x B (x) = det (ii) χ A (λ) = 0. λ (iii) A 0. B mit B Mat(n 1; K). Ferner gilt 0 χ A (x) = (x λ)χ B (x). ( ) x 1 = x 2. 0 x Beweis. (i) (ii): Nun ist Also gilt (i) ist äquivalent dazu, daß es ein 0 v K n gibt mit Av = λv. Av = λv Av = λev (λe A)v = 0. (iii) (ii): (i) Ker(λE A) {0} det(λe A) = 0 χ A (λ) = 0 (ii). ( ) λ Wegen A =: A 0 B folgt aus Lemma (8.3) χ A (x) = χ A (x) = det(xe A = ( ) x λ = det = (x λ) det(xe B) = (x λ)χ 0 xe B B (x), und damit χ A (λ) = 0. (i) (iii): Es sei 0 v 1 K n mit Av 1 = λv 1.

6 144 Man kann v 1 zu einer Basis v 1,..., v n von K n ergänzen. Dann ist W := (v 1,..., v n ) GL(n, K). Damit gilt AW = A(v 1,..., v n ) = (Av 1,..., Av n ) = (λv 1, Av 2,..., Av n ). Andererseits ist (e 1,..., e n ) = E = W 1 W = W 1 (v 1,..., v n ) = (W 1 v 1,..., W 1 v n ). Das heißt Damit ergibt sich W 1 (v 1 ) = e 1. W 1 AW = W 1 (λv 1, Av 2,..., Av n ) = (W 1 λv 1, W 1 Av 2,..., W 1 Av n ) λ = (λe 1, W 1 Av 2,..., W 1 Av n ) = 0. 0 B. Eigenräume Bemerkung. Die Eigenwerte von A sind also genau die Nullstellen des charakteristischen Polynoms von A. Beispiel. Es sei K = R. Die Matrix ( ) cos ϕ sin ϕ A = Mat (2, R) sin ϕ cos ϕ beschreibt eine Drehung um den Winkel ϕ. Das charakteristische Polynom ist ( ) x cos ϕ sin ϕ χ A (x) = det sin ϕ x cos ϕ = x 2 2 cos ϕx + 1. Dieses Polynom hat genau dann reelle Nullstellen, falls 4 cos 2 ϕ 4 0,

7 8. EIGENWERTTHEORIE I 145 d.h. falls ϕ = 0 oder π ist, für ϕ [0, 2π[. Im allgemeinen besitzt eine Drehung also keine Eigenwerte und Eigenräume. Über dem Grundkörper K = C besitzt dieses (wie jedes andere Polynom auch) aber stets Nullstellen. Es sei A Mat(n; K) und λ sei Eigenwert von A. Definition. Der Raum Eig(A, λ) = {v K n ; Av = λv} = Ker(A λe) heißt der Eigenraum von A zum Eigenwert λ. Lemma 8.6 λ 1,..., λ r seien verschiedene Eigenwerte von A. Dann ist die Summe eine direkte Summe. Eig(A, λ 1 ) Eig(A, λ r ) Beweis. Es ist zu zeigen: Anwenden von A m gibt: Für ein Polynom v v r = 0 mit v i Eig(A, λ i ) v 1 =... = v r = 0. und eine Matrix A Mat (n; K) setzen wir 0 = A m v A m v r = λ m 1 v λ m r v r. P (x) = a m x m + a m 1 x m a 0 P (A) = a m A m + a m 1 A m a 0 E Mat (n, K). Für jedes Polynom P K[x] gilt dann: Man wähle: 0 = P (A)(v v r ) = P (λ 1 )v P (λ r )v r. P i (x) := r (x λ j ) K[x]. j=1 j i Also ist P i (λ j ) = 0 für i j und P i (λ i ) 0. Damit gilt Daraus folgt 0 = P i (A)(v v r ) = P i (λ i ) v }{{} i. 0 v i = 0 für i = 1,..., r.

8 146 Korollar 8.7 Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig. Homomorphismen und Matrizen Es sei V ein K-Vektorraum der Dimension n. Konvention. Im folgenden verstehen wir unter einer Basis von V eine geordnete Basis, d. h. ein n-tupel B = (b 1,..., b n ). Dann besitzt jeder Vektor x V eine eindeutige Darstellung x = x 1 b x n b n. Man definiert q B : V K n ; x 1 x. x n. Es gilt q B (b i ) = e i und die Abbildung q B ist ein Isomorphismus von Vektorräumen. Sei nun C = (c 1,..., c n ) eine weitere Basis. Da sich jeder Vektor b i eindeutig durch die Vektoren c j darstellen läßt, gibt es eine Matrix A = (α ij ) Mat(n; K) mit ( ) b j = α ij c i (j = 1,..., n). Lemma 8.8 Das Diagramm K n h A K n q B q C V kommutiert, d. h. q C = h A q B.

9 8. EIGENWERTTHEORIE I 147 Beweis. Es ist für x V : x = j=1 x j b j ( ) = j=1 x j α ij c i = (x j α ij )c i. j=1 Es sei nun Dann ist x i := x = α ij x j. j=1 x ic i. Damit erhält man (h A q B )(x) = h A (q B (x)) = Aq B (x) = A. x 1 x n = n j=1 α 1jx j. n j=1 α njx j = x 1. x n = q C (x). Bemerkung. Da q B und q C Isomorphismen sind, gilt dies auch für h A, d.h. A GL(n, K). Definition. Die Matrix A = (α ij ) heißt die Übergangsmatrix des Basiswechsels. Darstellung von Homomorphismen Gegeben sei ein n-dimensionaler Vektorraum V mit einer Basis B = (b 1,..., b n ) und ein m-dimensionaler Vektorraum V mit einer Basis B = (b 1,..., b m). Ferner sei f : V V ein Homomorphismus. Dann betrachten wir das Diagramm V f V q B q B K m. K n Da q B ein Isomorphismus ist, kann man definieren ˆf := q B f q 1 B. Dann ist ˆf die lineare Abbildung, die folgendes Diagramm kommutativ macht:

10 148 q 1 B Nach Satz (5.10) gibt es genau eine Matrix mit f V V ˆf K n K m. q B M(f) := M B,B (f) Mat(m, n; K) ˆf = h M(f). Definition. Man sagt, f wird bezüglich der Basen B, B durch die Matrix M(f) = M B,B (f) dargestellt. Satz 8.9 Es seien V, V Vektorräume mit Basen B, B. Dann gilt: (i) Es gibt zu jedem Homomorphismus f Hom(V, V ) genau eine Matrix M(f) = M B,B (f) Mat(m, n; K) mit f = q 1 B h M(f) q B. (ii) Es gilt M(f) = (µ ij ) mit f(b j ) = m µ ij b i (j = 1,..., n). (iii) Die Abbildung M = M B,B : Hom K (V, V ) Mat(m, n; K) f M B,B (f) = M(f) ist ein Isomorphismus von Vektorräumen. Beweis. (i) Es gilt ˆf = q B f q 1 B, ˆf = hm(f). Damit ist ˆf, und somit auch M(f), durch f eindeutig festgelegt. (ii) Es gilt q B : V K n, q B (b j ) = e j ; j = 1,..., n q B : V K m, q B (b i) = e i ; i = 1,..., m.

11 8. EIGENWERTTHEORIE I 149 Nun gilt (q B f q 1 B )(e j) q B f(b j ). = ˆf(e j ) = M(f)e j = m µ ije i Anwendung von q 1 B von links ergibt: f(b j ) = m µ ij q 1 B (e i ) = m µ ij b i. (iii) Die Abbildung M ist nach dem bisher Gesagten bijektiv. Dies ist Homomorphismus: Da die Zuordnung ˆf M(f) linear ist, bleibt noch zu zeigen, daß die Zuordnung linear ist. Dies folgt aus f ˆf = q B f q 1 B (αf + βg) = q B (αf + βg) q 1 B = α(q B f q 1 B ) + β(q B g q 1 B ) = α ˆf + βĝ. Basiswechsel V sei ein n-dimensionaler K-Vektorraum mit Basis B = (b 1,..., b n ). Es sei C = (c 1,..., c n ) eine weitere Basis mit Übergangsmatrix A GL(n; K), d. h. b j = α ij c i. (j = 1,..., n). Ebenso sei V ein m-dimensionaler K-Vektorraum mit Basis B = (b 1,..., b m) und C = (c 1,..., c m) eine weitere Basis mit Übergangsmatrix A GL(m; K), d. h. b j = m α ijc i. (j = 1,..., m). Sei f Hom K (V, V ). Satz 8.10 Beweis. Man hat ein Diagramm: M C,C (f) = A M B,B (f)a 1.

12 150 K n f V V q q B q B C q C h MB,B K n (f) K m h A h A h MC,C (f) K m. Zunächst gilt nämlich nach Definition von M B,B (f) und M C,C (f) : Hierbei bedeutet das Symbol, daß das entsprechende Diagramm kommutiert. Dann gilt: h MB,B (f) = q B f q 1 B, h MC,C (f) = q C f q 1 C. Ferner hatten wir schon in Lemma (8.8) gesehen, daß Also gilt auch Damit folgt q C = h A q B ; q C = h A q B. h MC,C (f) = h A q B f q 1 B h 1 A }{{} = h A h M B,B (f) h A 1 = h A M B,B (f)a 1. h MB,B (f) M C,C (f) = A M B,B (f)a 1. Folgerung. Zwei Matrizen sind genau dann äquivalent, wenn sie denselben Homomorphismus bezüglich zweier verschiedener Basen beschreiben. Spezialfall. V = V. Es sei B = (b 1,..., b n ) eine Basis von V und C = (c 1,..., c n ) eine weitere Basis von V mit b j = α ij c i (j = 1,..., n), d. h. A = (α ij ) ist die Übergangsmatrix. Wir setzen für f End(V ): Korollar 8.11 M B (f) := M B,B (f). M C (f) = AM B (f)a 1.

13 8. EIGENWERTTHEORIE I 151 Folgerung. Zwei quadratische Matrizen sind genau dann ähnlich, wenn sie denselben Endomorphismus bezüglich verschiedener Basen darstellen. Beispiel. Es sei V = V = R 2. Wir betrachten die Basen B = (e 1, e 2 ) = (b 1, b 2 ) und C = (e 1 + e 2, e 1 e 2 ) = (c 1, c 2 ). Ferner sei f : V V gegeben durch f(e 1 ) = e 2, f(e 2 ) = e 1. Dann ist M B (f) = ( ) Wegen f(e 1 + e 2 ) = e 1 + e 2, f(e 1 e 2 ) = (e 1 e 2 ) d.h. f(c 1 ) = c 1, f(c 2 ) = c 2, gilt ferner M C (f) = ( ) Da folgt für die Matrix des Basiswechsels Es gilt b 1 = e 1 = 1 2 (e 1 + e 2 ) (e 1 e 2 ) = 1 2 c c 2 b 2 = e 2 = 1 2 (e 1 + e 2 ) 1 2 (e 1 e 2 ) = 1 2 c c 2, AM B (f)a 1 = A = ( 1 2 = ( ( ) ( ) 1 1, A 1 =. 1 1 ) ( ) ( ) ) ( ) 1 1 = 1 1 ( ) = M C (f). Wir können nun viele Begriffe von Matrizen auf Abbildungen übertragen. Dazu sei f : V V ein Endomorphismus. Es sei B eine Basis von V und M B (f) die darstellende Matrix bezüglich der Basis B.

14 152 Definition. (i) det f := det M B (f), (ii) (iii) Spur f := Spur M B (f), χ f := χ MB (f) = det(xe M B (f)). Bemerkung. Diese Definitionen sind unabhängig von der Wahl von B, da die Größen auf der rechten Seite für alle Elemente in einer festen Ähnlichkeitsklasse gleich sind. Definition. 0 v V heißt Eigenvektor der Abbildung f zum Eigenwert λ K, falls f(v) = λv. Bemerkung. Der Vektor v ist genau dann ein Eigenvektor von f, wenn q B (v) ein Eigenvektor von M B (f) ist. Dies folgt aus dem kommutativen Diagramm Es gilt nämlich M B (f) K n K n q B qb f V V. f(v) = λv q 1 B (M B(f)(q B (v))) = λv M B (f)(q B (v)) = λq B (v). Definition. f heißt diagonalisierbar, falls f eine Basis von Eigenvektoren besitzt. Bemerkung. f hat diese Eigenschaften genau dann, wenn M B (f) für ein (und damit für alle) Basen B diese Eigenschaften besitzt.

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren 2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 22.Vorlesung - Aus der letzten Vorlesung: Polynome K[t] (p 0, p,, p i K mit p i = 0 i > i 0 für ein i 0 = i 0 p i t i = p 0 + p t + p 2 t 2 + + p i0 t i

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

3.3 Das charakteristische Polynom

3.3 Das charakteristische Polynom LinAlg II Version 1 2. Mai 2006 c Rudolf Scharlau 209 3.3 Das charakteristische Polynom Wir setzen die im vorigen Abschnitt begonnene Untersuchung von Eigenvektoren und Eigenwerten fort und stellen den

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 24 Das Lernen und der Orgasmus finden letztlich im Kopf statt Der Satz von Cayley-Hamilton Arthur Cayley

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen.

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen. 9 Lineare Algebra (SS 009) 49 Das charakteristische Polynom sei Produkt von linearen Polynomen 49 Das charakteristische Polynom sei Potenz eines linearen Polynoms Wir betrachten nun eine Matrix A, sodass

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Aufgabe 1 Sei V ein endlich-dimensionaler K-Vektorraum, und seien f und g Endomorphismen von V mit f g = g f. Zeige: a) Sind f und g diagonalisierbar,

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Musterlösung Donnerstag - Determinanten und Eigenwerte

Musterlösung Donnerstag - Determinanten und Eigenwerte Musterlösung Donnerstag - Determinanten und Eigenwerte 6. März Aufgabe : Zum Aufwärmen () Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent,

Mehr

2.2 Eigenwerte und Eigenvektoren

2.2 Eigenwerte und Eigenvektoren 2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir

Mehr

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel II. Moduln 1 Moduln Sei R ein Ring (stets kommutativ und mit 1). 1.1 Definition. 1. Ein R-(links-)Modul ist

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

5 Minimalpolynom und charakteristisches Polynom

5 Minimalpolynom und charakteristisches Polynom 5 Minimalpolynom und charakteristisches Polynom 5.1 Lemma Sei A K n n. Dann ist λ K genau dann ein Eigenwert von A, wenn det(λe n A) = 0. 5.2 Beispiel ( ) 1 4 i) A = R 1 1 2 2 det(λe 2 A) = λ 1 4 1 λ 1

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 15. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Probeklausur: Samstag, 5.11. 10 Uhr, B6 A001 Anmeldung in den Übungsgruppen Wir hatten gesehen: =! 7 Mat(m, n; K) Hom (Mat(n,

Mehr

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus?

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Seien [F] B und [F] B die Darstellungsmatrizen von F bezüglich zweier Basen B und B. Weiter sei T die

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

8 Eigenwerte und Eigenvektoren

8 Eigenwerte und Eigenvektoren 8 Eigenwerte und Eigenvektoren In Kapitel 6 haben wir gesehen, dass für die Darstellungsmatrizen einer linearen Abbildung h bzgl der Basen B, B folgende Beziehung gilt: A(h, B, B = A B B A(h, B, B (AB

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch Aufgabe. (8 Punkte) Es sei (G, ) eine Gruppe und e G ihr neutrales Element. Für h G sei µ h : G G die Abbildung, die durch g G : µ h (g) := h g gegeben ist. a) Zeigen Sie, dass für jedes h G die Abbildung

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Wiederholungsklausur zur Linearen Algebra I

Wiederholungsklausur zur Linearen Algebra I Wiederholungsklausur zur Linearen Algebra I Prof. Dr. C. Löh/D. Fauser/J. Witzig 20. April 2017 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Vordiplomsklausur zur Linearen Algebra I

Vordiplomsklausur zur Linearen Algebra I 25.3.2002 Vordiplomsklausur zur Linearen Algebra I Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben Sie.

Mehr

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1 Übungsblatt 1 Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors. Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr