6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

Größe: px
Ab Seite anzeigen:

Download "6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar."

Transkript

1 Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 + b 2 ) ein reelles Polynom ist. Die Nullstellen von f kommen also immer in Paaren zweier komplex-konjugierter Nullstellen, die dann zu reellen Polynomen vom Grad 2 zusammengefasst werden können. 6.3 Eigenwerte In diesem Abschnitt sei V stets ein n-dimensionaler Vektorraum, und sei T End(V ). Erinnerung: Solche linearen Abbildungen haben wir auch lineare Operatoren genannt. Definition Ein Element γ K heißt Eigenwert von T, wenn es ein v V, v 0 gibt mit T(v) = vγ. Ist γ ein Eigenwert, so heißt ein Vektor v mit T(v) = vγ ein Eigenvektor. Die Menge Eig(T, γ) := {v V : T(v) = vγ} heißt der zu γ gehörende Eigenraum. Ist γ ein Eigenwert mit zugehörigem Eigenwert γ, so ist Eig(T, γ) der Kern der linearen Abbildung T γid V. Weil γ ein Eigenwert ist, besteht der Kern nicht nur aus 0. Ist umgekehrt γ K derart, dass T γ id V nichtsingulär ist, so gilt Kern(T γ id V ) {0}, und somit ist γ ein Eigenwert, weil es dann im Kern Vektoren v 0 gibt mit T(v) = vγ. In Matrizenform: Ist B eine Basis von V, so gilt γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Häufig spricht man auch von Eigenwerten und Eigenvektoren von Matrizen T K (n,n). Sie müssen dann T als lineare Abbildungen K n K n interpretieren. Lemma Eig(T, γ) ist ein Unterraum von V. Beispiel Sei T = eine reelle Matrix, die wir mit der zugehörigen linearen Abbildung R 3 R 3 identifizieren. Die reellen Zahlen 1 und 2 sind Eigenwerte, denn T 3 1 =

2 und Eig(T, 1) = Der Eigenraum wird berechnet als Kern der durch T I = definierten linearen Abbildung. Die Zahl 2 ist ein Eigenwert, denn T 2 1 = Hier ist der Eigenraum zweidimensional: Eig(T, 2) = 2 1, Definition Sei T ein Endomorphismus auf V. Dann definieren wir die Matrix xi T B B K[x](n,n). Die Determinante dieser Matrix heißt das charakteristische Polynom von T. Notation: χ T. Eigentlich hängt das charakteristische Polynom noch von der Auswahl der Basis B ab. Das folgende Lemma zeigt, dass dies nicht der Fall ist: Lemma det(xi [T] B B ) = det(xi [T]C C ) Beweis Sei P GL(n, K) die Matrix mit P 1 T B B P = TC C. Dann gilt det(xi [T] B B ) = det(p 1 (xi [T] B B )P) = det(xi P 1 ([T] B B)P) = det(xi [T] C C ). Mit anderen Worten: Das charakteristische Polynom ist unabhängig von der konkreten Auswahl der Basis, bzgl. der T dargestellt wird, und wir können deshalb in der Tat von dem charakteristischen Polynom von T sprechen. Das gilt aber nur, wenn wir den Urbild- und den Bildbereich bzgl. derselben Basis darstellen. 99

3 Beispiel (a.) Das charakteristische Polynom der Nullabbildung auf einem n-dimensionalen Vektorraum V ist x n, das charakteristische Polynom von id V ist (x 1) n. (b.) Das charakteristische Polynom von T aus Beispiel ist det x x 4 2 = (x 2) 2 (x 1). 3 6 x + 4 (c.) Dieses Beispiel zeigt, dass charakteristische Polynome nicht notwendigerweise in Linearfaktoren zerfallen: Das charakteristische Polynom von ( ) R (2,2) ist x (Wenn wir die Abbildung als Abbildung auf C 2 auffassen, zerfällt das Polynom in (x + i)(x i).) Die Bedeutung des charakteristischen Polynoms zeigt der folgende Satz: Satz Sei T ein linearer Operator auf V. Dann ist γ K genau dann ein Eigenwert von T wenn χ T (γ) = 0 gilt. Beweis Das Element γ ist genau dann ein Eigenwert, wenn T γid V singulär ist. Das heißt aber, die Determinante einer Darstellungsmatrix von T γid V ist 0, also ist (x γ) ein Teiler des charakteristischen Polynoms. Schauen wir uns noch einmal das Beispiel (c.) an. Diese Matrix beschreibt im Anschauungsraum R 2 eine Drehung um 90 Grad nach rechts. Es ist klar, dass eine solche Drehung keinen Eigenwert hat, weil keine Richtung festgehalten wird. Deshalb kann das charakteristische Polynom keine Nullstelle haben! Lemma Sei V ein n-dimensionaler Vektrorraum, und sei T ein linearer Operator auf V. Dann gilt: (a.) gr(χ T ) = n. (b.) T hat höchstens n verschiedene Eigenwerte. Weil jede Matrix eine spezielle lineare Abbildung ist, können wir auch von Eigenvektoren und Eigenwerten von Matrizen sprechen. Wir wollen die entsprechenden Begriffe für Matrizen noch einmal zusammenstellen: Definition Sei T K (n,n). Ein γ K heißt Eigenwert, wenn es ein v K n, v 0 gibt mit Tv = vγ.das Polynom det(xi T) heißt das charakteristische Polynom von T, Bezeichnung χ T. Ein v mit Tv = vγ heißt Eigenvektor. 100

4 Das Lemma besagt für Matrizen gerade folgendes: Lemma Ähnliche Matrizen haben dieselben charakteristischen Polynome. Bemerkung ( ) Die Umkehrung dieses Lemmas gilt nicht: Die beiden Matrizen I 2 und über R haben beide das charakteristische Polynom (x ) 2, sind aber nicht ähnlich, weil die Matrix I 2 nur zu sich selbst ähnlich ist. Allgemein gilt, dass die Eigenräume, die zu Eigenwerten ähnlicher Matrizen gehören, gleiche Dimension haben müssen. Diese Dimensionen (geometrische Vielfachheiten) sind aber nicht durch das charakteristische Polynom bestimmt! Wir haben bislang nur über die Ähnlichkeit von Matrizen gesprochen. Wenn eine lineare Abbildung bzgl. zweier verschiedener Basen dargestellt wird, so sind die beiden Darstellungsmatrizen ähnlich. Nun kann es aber auch passieren, dass zwei verschiedene lineare Abbildungen bzgl. verschiedener Basen identische Darstellungsmatrizen haben. In dem Fall nennen wir die beiden linearen Abbildungen ähnlich. Wenn zwei lineare Abbildungen ähnlich sind, so sind zwei Darstellungsmatrizen ebenfalls ähnlich, unabhängig von der Auswahl der Basen. Charakteristische Polynome ähnlicher linearer Abbildungen sind gleich, deshalb sind die Eigenwerte und die Dimensionen der Eigenräume gleich. Die Eigenräume ähnlicher Matrizen sind aber nicht gleich! Definition Ist γ ein Eigenwert von T, und tritt x γ mit Vielfachheit d i im charakteristischen Polynom von T auf, so nennt man d i die algebraische Vielfachheit des Eigenwerts. Die Dimension dim Eig(T, γ) heißt die geometrische Vielfachheit. Eigenräume sind invariante Unterräume: Definition Ein Unterraum U V heißt T-invariant für einen linearen Operator T auf V falls das Bild von U unter T in U liegt, wenn also für alle v U gilt: T(v) U. Lemma Sei U ein T-invarianter Unterraum von V, dim V = n, dim U = s. Ferner sei B = (b 1,... b n ) eine Basis von V so, dass (b 1,..., b s ) eine Basis von U ist. Dann hat die Darstellungsmatrix von T bzgl. B die Gestalt ( ) S M 0 N Die Matrix S K (s,s) ist eine Darstellungsmatrix von T U. 101

5 Lemma Ist γ ein Eigenwert von T, so ist Eig(T, γ) ein T-invarianter Unterraum. Beweis Übungsaufgabe. Für spätere Verwendung notieren wir noch: Lemma Ist T ein lienarer Operator auf V, und ist v ein Eigenvektor zum Eigenwert γ, so gilt f(t)v = f(γ)v für alle f K[x]. Beweis Übungsaufgabe. Satz Sei d die algebraische Vielfachheit des Eigenwertes γ von T. Dann gilt dim Eig(T, γ) d. Beweis Sei s die geometrische Vielfachheit des Eigenwertes γ. Wir stellen T bzgl. einer Basis dar, in der die ersten s Vektoren gerade Eigenvektoren ( zum Eigenwert γ sind. Dann hat T, dargestellt bzgl. dieser Basis, die Gestalt, ) S M 0 N wobei S eine Diagonalmatrix ist, deren sämtliche Diagonaleinträge γ sind. Das charakteristische Polynom von T hat dann aber einen Faktor (x γ) s, also s d. Definition Ein linearer Operator heißt diagonalisierbar wenn es eine Basis von V gibt, die nur aus Eigenvektoren besteht. Wenn ein Operator diagonalisierbar ist, so hat er bzgl. der Basis, die aus Eigenvektoren besteht, Diagonalgestalt, d.h. alle Einträge außerhalb der Hauptdiagonale sind 0, und auf der Hauptdiagonalen stehen die Eigenwerte. Beispiel Der Operator aus Beispiel ist diagonalisierbar. Bezüglich der Basis B = ( 3 1, 2 1, 2 0 ) ist die Darstellungsmatrix D := [T] B B = Wenn B die kanonische Basis bezeichnet, so ist die Transformationsmatrix P := [id] B B =

6 und Es gilt D = P 1 TP. P 1 = Der folgende Satz gibt ein sehr schönes Kriterium für die Diagonalisierbarkeit linearer Operatoren an: Satz Sei T ein linearer Operator auf dem n-dimensionalen Vektorraum V. Dann sind die folgenden drei Bedingungen äquivalent: (i) T ist diagonalisierbar. (ii) χ T = (x γ 1 ) d1... (x γ s ) ds, wobei die γ i paarweise verschieden sind, und dim Eig(T, γ i ) = d 1 (iii) dim Eig(T, γ 1 ) dim Eig(T, γ s ) = n. Wir beweisen zunächst ein Lemma: Lemma Sei T ein linearer Operator auf V, und W 1,..., W k seien k verschiedene Eigenräume zu den verschiedenen Eigenwerten γ 1,..., γ k. Dann gilt dim(w W k ) = dim W dim W k. Mit anderen Worten: Sind die B i Basen von W i, so ist B = (B 1,... B k ) eine Basis von W := W W k. Beweis Klar ist dim(w W k ) dim W dim W k. Um Gleichheit zu zeigen müssen wir zeigen, dass die Basen der W i zusammen eine Basis von W bilden. Wir zeigen: Sind v i W i Vektoren mit v v k = 0, so gilt v 1 =... = v k = 0. Das zeigt, dass B eine Basis von W ist. Wenn v v k = 0 gilt, so gilt auch f(t)v f(t)v k = f(t)0 = 0 für jedes Polynom f K[x]. Wir wählen nun ein f i so, dass f i (γ i ) = 1 und f i (γ j ) = 0 für i j. Ein solches f i ist beispielsweise (x γ 1 ) (x γ i 1 )(x γ i+1 ) (x γ k ) (γ i γ 1 ) (γ i γ i 1 )(γ i γ i+1 ) (γ i γ k ). Dann ist f i (T) = v i wegen Lemma Beweis (Beweis von Satz ) Zur Implikation (i) (ii): Wir wissen, dass die Summe der algebraischen Vielfachheiten genau n ist, wenn das Polynom in Linearfaktoren zerfällt (sonst gilt das nicht!). Wenn der Operator diagonalisierbar ist, muss die Summe der Dimensionen der Eigenräume auch n sein. Die Aussage folgt dann aus Satz Die Implikation (ii) (iii) folgt aus i d i = n. Schließlich ist (iii) (i) eine Konsequenz von Lemma

7 Korollar Ein linearer Operator ist genau dann diagonalisierbar, wenn sein charakteristisches Polynom in Linearfaktoren zerfällt und für alle Eigenwerte die algebraische gleich der geometrischen Vielfachheit ist. Ein großer Teil der Vorlesung Lineare Algebra II befasst sich mit Verallgemeinerungen von Satz : Was geschieht, wenn das charakteristische Polynom nicht in Linearfaktoren zerfällt? Was geschieht, wenn das charakteristische Polynom zwar in Linearfaktoren zerfällt, die geometrischen aber nicht gleich den algebraischen Vielfachheien sind? Wir beschließen diesen Abschnitt mit folgendem interessanten Satz: Satz Jedes monische Polynom vom Grad n in K[x] ist charakteristisches Polynom einer geeigneten Matrix (einer geeigneten linearen Abbildung). Beweis Sei f = x n + n 1 i=0 a ix i K[x]. Dieses Polynom ist das charakteristische Polynom von a a a a n a n Zusammenfassung Sie haben gelernt, was eine Algebra ist. In K[x] kann man, ähnlich wie im Ring der ganzen Zahlen, Polynome in irreduzible Polynome zerlegen. Diese Zerlegung ist im wesentlichen eindeutig. Matrizen und lineare Abblidungen können diagonalisiert werden. Sie kennen die Definition von Eigenwerten und EIgenvektoren. Wir haben ein wichtiges Diagonalisierbarkeitskriterium angegeben. Das charakteristische Polynom ist das entscheidende Hilfsmittel, um Eigenwerte auszurechnen. 104

8 Es gibt Matrizen, die nicht diagonalisiert werden können. Sie sollten solche Matrizen angeben können. Ähnliche Matrizen haben gleiche charakteristische Polynome. Es gibt Matrizen, die nicht ähnlich sind, aber gleiche charakteristische Polynome haben. Wir haben erklärt, was invariante Unterräume sind. 105

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Sesqui- und Bilinearformen

Sesqui- und Bilinearformen Kapitel 8 Sesqui- und Bilinearformen 8.1 Sesquilinearformen Definition 8.1.1 Sei V ein reeller oder komplexer K-Vektorraum (also K = R oder C). Eine Abbildung f : V V K heißt eine Sesquilinearform wenn

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn

Diagonalisieren. Nikolai Nowaczyk  Lars Wallenborn Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Kapitel 18. Aufgaben. Verständnisfragen

Kapitel 18. Aufgaben. Verständnisfragen Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist

Mehr

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016 Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum Kapitel II Lineare Algebra und analytische Geometrie 6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum geometrischen

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr.

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr. Übungsblatt 13 Lineare Algebra I, Prof Dr Plesen, SS 2008 Aufgabe 1 (Transponierte lineare Abbildung) Sei α : V W linear Zeige: α tr ist injetiv (surjetiv) genau dann, wenn α surjetiv (injetiv) ist Ist

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Algebra II. Prof. Dr. Uwe Jannsen Sommersemester Transformation auf Dreiecksgestalt

Lineare Algebra II. Prof. Dr. Uwe Jannsen Sommersemester Transformation auf Dreiecksgestalt Lineare Algebra II Prof. Dr. Uwe Jannsen Sommersemester 2006 1 Transformation auf Dreiecksgestalt Sei K ein Körper. Definition 1.1 Zwei Matrizen A und A M n (K) heißen ähnlich (oder konjugiert), wenn es

Mehr

Musterlösung Klausur zur Linearen Algebra II

Musterlösung Klausur zur Linearen Algebra II Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe

Mehr

x,y A = t xay v i,v j A = e i,e j t PAP

x,y A = t xay v i,v j A = e i,e j t PAP 75 Lineare Algebra II SS 2005 Teil 6 Bilinearformen 6A Kongruenz quadratischer Matrizen Sei K ein Körper, sei A M(n n, K) eine quadratische Matrix Wie wir zu Beginn von Teil 3 gesehen haben, liefert A

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Lineare Algebra II. Sommersemester Wolfgang Ebeling

Lineare Algebra II. Sommersemester Wolfgang Ebeling Lineare Algebra II Sommersemester 2009 Wolfgang Ebeling 1 c Wolfgang Ebeling Institut für Algebraische Geometrie Leibniz Universität Hannover Postfach 6009 30060 Hannover E-mail: ebeling@mathuni-hannoverde

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Lineare Algebra. Axiome der Linearen Algebra

Lineare Algebra. Axiome der Linearen Algebra Lineare Algebra Simon Fuhrmann Christian M. Meyer Axiome der Linearen Algebra Im Folgenden sei V ein beliebiger K-Vektorraum und P eine Punktmenge. V und P bilden einen affinen Raum. Seien außerdem U 1

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels

Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels aktuellste Version hier Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels Jannes Bantje 19. Juli 2013 Erstellt mit L A TEX Inhaltsverzeichnis 1. Isometrien

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Teil 2 LINEARE ALGEBRA II

Teil 2 LINEARE ALGEBRA II Teil 2 LINEARE ALGEBRA II 27 Kapitel VII Euklidische und unitäre Vektorräume Wir beschäftigen uns jetzt mit Vektorräumen, die noch eine zusätzliche Struktur tragen Der Winkel zwischen Vektoren im IR 2

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Protokoll zur Vorlesung Lineare Algebra I

Protokoll zur Vorlesung Lineare Algebra I Protokoll zur Vorlesung Lineare Algebra I Prof W Bley 21 Februar 2006 Protokoll über die 1-2Vorlesung 1 Lineare Gleichungssysteme 11 Zwei Gleichungen mit zwei Unbekannten Sei ax + by = e, cx + dy = f ein

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

Rang und Inverses einer Matrix

Rang und Inverses einer Matrix Rang und Inverses einer Matrix wgnedin@math.uni-koeln.de 29. April 2014 In dieser Notiz werden Methoden und Beispiele zur Berechnung des Rangs einer Matrix sowie der Inversen einer invertierbaren Matrix

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe Dr. Mario Helm Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Höhere Mathematik II für naturwissenschaftliche Studiengänge Sommersemester 2013 7 Lineare Algebra

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Laura Hinsch November 005 Inhaltsverzeichnis 1 Einleitung 1 Algebraische Kurven 1 3 Singularitäten 3 4 Der Satz von Pascal 5 i 1 Einleitung

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr