KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

Größe: px
Ab Seite anzeigen:

Download "KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG"

Transkript

1 KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung und ggf. auf die Rückseite. Wenn der Platz nicht ausreicht, bitten Sie die Aufsicht um zusätzliches Aufgabenpapier. Verwenden Sie immer für jede Aufgabe ein separates Blatt. Vermerken Sie auf jedem Blatt Ihren Namen und Ihre Matrikelnummer. Einziges erlaubtes Hilfsmittel ist ein von Ihnen selbst beidseitig handbeschriebenes DIN A4-Blatt. Wir wünschen viel Erfolg!

2 Aufgabe (8 Punkte) In R 3 seien die folgenden Vektoren gegeben: u := 2 0 2, u 2 :=, w := 2 0, w 2 := Es seien U := Lin(u, u 2 ) und W := Lin(w, w 2 ). Bestimmen Sie eine Basis des Unterraums U W Lösung. Ein Vektor v R 3 liegt genau dann in U W, wenn es Skalare α, α 2, β, β 2 R gibt, so dass v = α u + α 2 u 2 = β w + β 2 w 2 gilt. Wir müssen also das lineare Gleichungssystem 2α + α 2 β + 7β 2 = 0 α 2 + 2β β 2 = 0 2α + α 2 + 4β 2 = 0 in α, α 2, β, β 2 lösen. Anwendung des Eliminationsverfahrens auf die zugehörige Matrix liefert: Setzt man β 2 =, so erhält man den Vektor (, 5, 3, 2 )t, der den Lösungsraum erzeugt. Der Durchschnitt U W hat also den Basisvektor 2 u 5u 2 = ( 4, 5, 4) t.

3 Aufgabe 2 (0 Punkte) (a) Berechnen Sie die Determinanten der folgenden reellen quadratischen Matrizen: 5 A := (5 Punkte). (b) Zeigen Sie, dass die Matrix D = B := A E 3 C := A 4 A (5 Punkte) invertierbar ist. Bestimmen Sie alle Eigenwerte und Basen der zugehörigen Eigenräume von D und von D. (Hinweis: Die Berechnung von D können Sie durch ein geeignetes Argument vermeiden.) Lösung. (a) Man berechnet direkt det(a) = 0 und det(b) = 9. Damit erhält man det(c) = det(a 4 A 3 ) = det ( A 3 (A E 3 ) ) = det(a) 3 det(b) = = (b) Es ist det(d) = 4 0, also ist D invertierbar. Da D bereits obere Dreicksgestalt hat, sind die Eigenwerte gerade die Diagonaleinträge und 2. Wir bestimmen die Eigenräume: Der Eigenraum von D zum Eigenwert ist U = Kern(D E 4 ) = Kern = Lin( (, 0, 0, 0) t). Der Eigenraum von D zum Eigenwert 2 ist U 2 = Kern(D 2E 4 ) = Kern = Lin( (9, 5,, 0) t, (0, 0, 0, ) t) Zu D stellen wir folgende allgemeine Überlegung an: Ist λ R ein Eigenwert von D mit Eigenvektor v, so gilt nach Definition Dv = λv. Da D invertierbar ist, muss λ 0 sein, und es folgt D v = λ v. Die Umkehrung gilt ebenso. Die Zuordnung λ gibt also eine Bijektion zwischen λ den Eigenwerten von D und D, und die Eigenräume bleiben dieselben. Damit ist gezeigt, dass D die Eigenwerte und hat, mit jeweils den gleichen Eigenräumen, d.h. zum Eigenwert von 2 D gehört der Eigenraum U und zum Eigenwert von 2 D gehört der Eigenraum U 2.

4 Aufgabe 3 Sei (G,, e) eine Gruppe mit mindestens zwei Elementen, und sei g G, g e. (a) Betrachten Sie die Abbildung (8 Punkte) (3 Punkte) λ g : { G G h g h. Beweisen oder widerlegen Sie die folgenden Aussagen: Die Abbildung λ g ist (i) injektiv. (ii) surjektiv. (iii) ein Gruppenhomomorphismus. (b) Sei nun G endlich (d.h. G habe nur endlich viele Elemente). Zeigen Sie, dass es m, n N gibt mit m n und g m = g n. Folgern Sie, dass es ein k N gibt mit g k = e. (Dabei ist g n := g g für alle n N.) (3 Punkte) } {{ } n-mal (c) Sei G endlich. Zeigen Sie, dass es sogar ein k N gibt, so dass h k = e für alle h G gleichzeitig gilt. (2 Punkte) Lösung. (a) Die Abbildung λ g ist injektiv, denn sind h, h 2 G mit λ g (h ) = λ g (h 2 ), so folgt g h = g h 2 und nach Multiplikation mit g von links h = h 2. Sie ist auch surjektiv, denn für jedes h G gilt h = g (g h) = λ g (g h). Die Abbildung λ g ist jedoch kein Gruppenhomomorphismus: Denn wäre λ g ein Gruppenhomomorphismus, so müsste λ g (e) = e gelten. Es gilt jedoch λ g (e) = g e = g und g e nach Voraussetzung. (Wenn man auf den Trick mit dem neutralen Element nicht kommt, kann man auch direkt ansetzen: Wäre λ g ein Gruppenhomomorphismus, dann müsste für alle h, h 2 G die Gleichheit λ g (h h 2 ) = λ g (h ) λ g (h 2 ) gelten. Dies ist äquivalent zu g h h 2 = g h g h 2. Durch Multiplikation mit g von links und h 2 von rechts folgt daraus h = h g. Somit folgt g = e, ein Widerspruch.) (b) Wäre g m g n für alle m, n N, so wäre die Teilmenge { g n ; n N } von G unendlich, ein Widerspruch. Seien also m n N mit g m = g n und es gelte ohne Einschränkung m > n. Setze k := m n. Durch Multiplikation der Gleichheit g m = g n mit g n := g g } {{ folgt g } k = e. n-mal (c) Sei G = {g,..., g n }. Nach (b) gibt es zu jedem i {,..., n} ein m i N mit g m i i = e. Setze k := m m n. Dann gilt für alle i {,..., n}: g k i = g k i = (g m i i ) k m i = e k m i = e.

5 Aufgabe 4 (0 Punkte) Erinnerung: Eine lineare Abbildung ϕ: R 3 R 3 heißt eine Spiegelung, wenn sie ϕ 2 = id R 3 erfüllt. Sei E = (e, e 2, e 3 ) die Standardbasis von R 3 und sei eine lineare Abbildungen ϕ durch die folgende darstellende Matrix gegeben: Mat E E(ϕ) = (a) Zeigen Sie, dass ϕ eine Spiegelung ist. ( Punkt) (b) Bestimmen Sie eine Basis B von Kern(ϕ id R 3) sowie eine Basis B 2 von Kern(ϕ + id R 3). (3 Punkte) (c) Zeigen Sie, dass B = (B, B 2 ) eine Basis von R 3 ist. (2 Punkte) (d) Geben Sie die darstellende Matrix Mat B B(ϕ) an. (4 Punkte) Lösung. Sei A := Mat E E(ϕ). (a) Man rechnet nach, dass A 2 = E 3 gilt und ϕ somit eine Spiegelung ist. (b) Wir lösen das lineare Gleichungssystem und bestimmen damit die Basis B = ( (, 0, ) t, (4, 3, 0) t) von Kern(ϕ id R 3). Analog lösen wir das Gleichungssystem und erhalten die Basis B 2 = ( (2,, 0) t) von Kern(ϕ + id R 3) (c) Erste Möglichkeit: Die beiden Basen B, B 2 sind Basen der Eigenräume zu zwei verschiedenen Eigenwerten. Damit besteht die Familie (B, B 2 ) aus drei linear unabhängigen Vektoren, die somit eine Basis von R 3 bilden. Zweite Möglichkeit: Die Matrix hat die Determinante 0 0. Damit besteht die Familie B = (B, B 2 ) aus drei linear unabhängigen Vektoren, die somit eine Basis von R 3 bilden. (d) Erste Möglichkeit: Die Basen B und B 2 sind jeweils Basen der Eigenräume zu den Eigenwerten und. Da diese zusammen eine Basis von R 3 bilden, hat die transformierte Matrix Mat B B(ϕ) die Diagonalgestalt

6 Zweite Möglichkeit: Es gilt Ihre Inverse berechnet sich zu und man erhält TE B = TB E = Mat B B(ϕ) = TB E Mat E E(ϕ) TE B =

7 Aufgabe 5 (6 Punkte) Sei K ein Körper und V ein K-Vektorraum. Sei n N, n 2, und sei ϕ: V V ein Endomorphismus von V, der ϕ n = ϕ erfüllt. Zeigen Sie, dass (a) Kern(ϕ) Bild(ϕ) = {0} und (b) Kern(ϕ) + Bild(ϕ) = V gelten. Lösung. (a) Sei v Kern(ϕ) Bild(ϕ) = {0}. Dann gilt also ϕ(v) = 0 und es gibt w V mit ϕ(w) = v. Wegen n 2 folgt nun v = ϕ(w) = ϕ n (w) = ϕ n (ϕ(w)) = ϕ n (v) = ϕ n 2 (ϕ(v)) = ϕ n 2 (0) = 0. (b) Die Inklusion ( ) ist klar. Für die umgekehrte Inklusion ( ), sei v V gegeben. Wegen ϕ n = ϕ gilt ϕ(v ϕ n (v)) = 0, also v ϕ n (v) Kern(ϕ). Wegen n 2 gilt außerdem ϕ n (v) = ϕ(ϕ n 2 (v)) Bild(ϕ). Insgesamt gilt also v = v ϕ n (v) + ϕ n (v). } {{ } } {{ } Kern(ϕ) Bildϕ

8 Aufgabe 6 (8 Punkte) Sei K ein Körper, und seien m, n N. Seien V und W zwei K-Vektorräume mit dim(v ) = n und dim(w ) = m. (a) Zeigen Sie: Der Vektorraum Hom K (V, W ) aller linearen Abbildungen V W hat die Dimension mn. (2 Punkte) (b) Sei f End K (V ) mit dim ( Kern(f) ) = d. Zeigen Sie, dass W = { f g ; g End K (V ) } (6 Punkte) ein (n 2 nd)-dimensionaler Unterraum von End K (V ) ist. (Hinweis: Betrachten Sie zur Bestimmung der Dimension die lineare Abbildung ϕ f : End K (V ) End K (V ), g f g.) Lösung. (a) Erste Möglichkeit: Nach Wahl von Basen für V und W entsprechen die linearen Abbildungen V W genau ihren darstellenden Matrizen, d.h. man man hat einen Vektorraumisomorphismus Hom K (V, W ) = Mat m n (K). Es genügt also zu zeigen, dass der K-Vektorraum Mat m n (K) die Dimension mn hat. Das ist aber klar, denn eine Basis von Mat m n (K) ist durch die Elementarmatrizen E ij = (δ ik δ jl ) k=,...,m,l=,...,n gegeben (d.h. E ij hat an der Stelle (i, j) den Eintrag, sonst 0), und es gibt offenbar mn verschiedene Elementarmatrizen. Zweite Möglichkeit: Sei (v,..., v n ) eine Basis von V und (w,..., w m ) eine Basis von W. Für jedes i {,..., n}, j {,..., m}, definiere nach dem Prinzip der linearen Ausdehnung eine Abbildung f ij : V W durch f ij (v i ) = w j und f ij (v k ) = 0 für alle k i. Zeige nun, dass die mn verschiedenen linearen Abbildungen f ij eine Basis von Hom K (V, W ) bilden. (b) Der Unterraum W ist gerade Bild(ϕ f ). Nach der Dimensionsformel für lineare Abbildungen und Teil (a) gilt dim ( Kern(ϕ f ) ) + dim ( Bild(ϕ f ) ) = dim(end K (V )) = m 2. Wir bestimmen dim ( Kern(ϕ f ): Der Unterraum Kern(ϕ f ) besteht genau aus den Endomorphismen g : V V für die f g = 0 gilt. Dies ist genau dann der Fall, wenn Bild(g) Kern(f) gilt. Damit gilt also Kern(ϕ f ) = Hom K (V, Kern(f)). Mit dim ( Kern(f) ) = d und Teilaufgabe (a) folgt dim ( Kern(ϕ f ) = md und damit dim(w ) = m 2 md, wie behauptet.

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Kapitel IV. Lineare Abbildungen Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Wir wollen nun die Abbildungen F : V W zwischen Vektorräumen V und W untersuchen,

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

1 Wiederholung LA. 1.1 Vektorräume

1 Wiederholung LA. 1.1 Vektorräume 1 Wiederholung LA 1.1 Vektorräume Definition der Vektorräume über einem Körper K (siehe Fischer). Beispiele für Vektorräume sind: Der Vektorraum der Parallelverschiebungen des Anschauungsraumes. M(m n,

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Koordinaten und darstellende Matrizen

Koordinaten und darstellende Matrizen Koordinaten und darstellende Matrizen Olivier Sète 23 Juli 200 Inhaltsverzeichnis Koordinatenabbildung 5 Definition und Eigenschaften 5 2 Beispiele 6 2 Matrixdarstellung eines Vektorraumhomomorphismus

Mehr

Lineare Algebra Weihnachtszettel Musterlösungen

Lineare Algebra Weihnachtszettel Musterlösungen Lineare Algebra Weihnachtszettel Musterlösungen Januar 009 Die folgenden Musterlösungen sind weitgehend so aufgeschrieben, wie wir dies beim Bearbeiten von Übungsaufgaben erwarten. Kleinere Differenzen

Mehr

34 Lineare Abbildungen

34 Lineare Abbildungen 34 Lineare Abbildungen 34 Motivation Wir haben wichtige Eigenschaften von Vektorräumen kennen gelernt Damit ist es sinnvoll zu untersuchen, wie Abbildungen zwischen Vektorräumen aussehen können Die wichtigsten

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 8

Technische Universität München Zentrum Mathematik. Übungsblatt 8 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 8 Hausaufgaben Aufgabe 8. Sei K ein Körper und V ein K-Vektorraum weiter

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung

Mehr

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik Mathematik II (für Informatiker, ET und IK) Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Inhalt 7 Lineare Algebra 7 Lineare Algebra II Oliver Ernst (Numerische Mathematik) Mathematik

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

2 Durchschnitt und Verbindungsraum

2 Durchschnitt und Verbindungsraum 2 Durchschnitt und Verbindungsraum Seien X und Y nicht leere affine Unterräume des R n (21) Satz: a) Ist X Y, so ist T(X) T(Y ) b) Ist X Y φ so ist X Y ein affiner Raum mit Richtungsvektorraum T(X) T(Y

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler Lineare Gleichungen Lineare Gleichungssysteme Lineare Algebra Ein Trainingsheft für Schüler Manuelle Lösungen ohne Rechnerhilfen und (hier) ohne Determinanten Datei Nr. 600 Stand 8. September 04 FRIEDRICH

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Gegeben seien die Ebene E : 4x + x + 8 =, der Punkt P = ( und die Gerade H : x(λ = (4,, + λ(,,, λ R. (a Bestimmen Sie eine Gerade durch den Punkt P, die senkrecht

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus Betriebsanleitung für gewöhnliche lineare Differentialgleichungen Prof. Dr. Dirk Ferus Version vom 30.10.2005 Inhaltsverzeichnis 1 Homogene skalare Gleichungen. 1 1.1 Einfache reelle Nullstellen.............................

Mehr

Probeklausur zur Algebra I

Probeklausur zur Algebra I Probeklausur zur Algebra I Prof. Dr. S. Bosch/C. Löh Februar 2008 Name: Matrikelnummer: ZIV-Kennung: Vorname: Studiengang: Übungsleiter: Diese Klausur besteht aus 8 Seiten (die ersten beiden Seiten sind

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend:

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend: 1.1.2 Symbolisches Rechnen Taschenrechner und mathematische Software wie Matlab arbeiten in der Regel numerisch, das heißt das Ergebnis eines Rechenausdrucks zum Beispiel der Form (1 1 4 ) 4 9 wird etwa

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Formelsammlung Mathematische Grundlagen für die Informatik

Formelsammlung Mathematische Grundlagen für die Informatik Formelsammlung Mathematische Grundlagen für die Informatik Wolfgang Führer wolfgang.fuehrer@web.de August 2007 Inhaltsverzeichnis Lineare Algebra. Vektorräume.................................... Abelsche

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Lineare Algebra Was ist das?

Lineare Algebra Was ist das? Lineare Algebra Was ist das? In diesem Kapitel... Den algebraischen Teil der linearen Algebra mit Gleichungssystemen abgleichen Matrizen und Determinanten kennen lernen Sich mit Vektoren verteidigen Einen

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte:

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte: Klausur Informatik 1 SS 08 Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte Gesamtpunkte: Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Daniel Milne-Plückebaum, post@daniel-milne.de 7. November 5 Die folgenden Übungen, Lösungen und Hilfen basieren auf der Vorlesung Diskrete Mathematik, gehalten von Marcus

Mehr

Die darstellende Matrix und die zugehörige Basis

Die darstellende Matrix und die zugehörige Basis Die darstellende Matrix und die zugehörige Basis Zu jeder linearen Abbildung f von einem endlich dimensionalen Vektorraums V in einen endlich dimensionalen Vektorraum W kann eine darstellende Matrix aufgestellt

Mehr