Lineare Algebra I: Eine Landkarte

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra I: Eine Landkarte"

Transkript

1 Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1

2 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren von B linear kombinieren. 2

3 Bild F Algebra I: Unterraum-Summen Faser U, W von V U + W U W falls U W = {0}. 3

4 Bild F Algebra I: Dimensionsformel für Faser U, W von V dim U + W = dim U + dim W dim U W 4

5 Algebra I:, Kern und Bild Faser Bild F Für F : V W sind Ker F und Im F von V bzw. W. 5

6 Faser Algebra I: Durch Basis definiert Bild F Ist B Basis von V und sind F (b i ) W festgelegt, so ist F : V W eindeutig bestimmt. 6

7 Algebra I: Dimensions- und Basissatz Faser Bild F Für F : V W gilt: dim V = dim Ker F + dim Im F. 7

8 Algebra I: Faser Bild F rang F = dim Im F. 8

9 Algebra I: Faser Bild F Rechenregeln, z.b. -Produkt. 9

10 Algebra I: Darstellende Matrix Faser Bild F hängt von ab. 10

11 Algebra I: Darstellende Matrix Definition und Rechengesetz: Die darstellende Matrix M A,B einer linearen Abbildung F : V W bezüglich der A von V und B von W enthält als Spalten die Koordinaten der Bilder der Basisvektoren aus A bezüglich der Basisvektoren aus B. 11

12 Faser Algebra I: Basiswechsel Bild F Transformationsmatrix T A B = Darstellende Matrix der Identität M A,B (id). 12

13 Faser Algebra I:, Bilder & Dimension Bild F Im A =Spaltenraum A (SR(A)) Zeilenrang A = Spaltenrang A = rang A = dim SR(A) = dim ZR(A) 13

14 Algebra I: Quotientenvektorräume Faser Bild F V/ Ker F. 14

15 Algebra I: Quotientenvektorräume Bild F Faser = Menge der affinen Unterräume zu U. 15

16 Algebra I: Bild F Faser Ax = b 16

17 Algebra I: Homogene lineare Bild F Faser Ax = 0: Lös(A, 0) = KernA. 17

18 Algebra I: Inhomogene lineare Bild F Faser Lös(A, b) = Faser von A zu b. Dies ist ein zum Ker A. 18

19 Algebra I: linearer Bild F Faser Ax = b lösbar rang A = rang(a b) Ax = b eindeutig lösbar rang A = rang(a b) = # Spalten von A rang A = rang(a b) und Ker A = {0}. 19

20 Algebra I: Quadratische Bild F Faser 20

21 Algebra I: Quadratische Wenn A M(n n, ), dann sind äquivalent: Ax = b eindeutig lösbar für jedes b n rang A = n Ker A = {0} A invertierbar det A 0. 21

22 Algebra I: Bild F Faser Codes sind des n 2. 22

23 Algebra I: Bild F Faser C linearer Code C = Ker(F ) für geeignete lineare Abbildung F C = Lös(A, 0) für geeignete Matrix A 23

24 Algebra I: Die Landkarte (ohne Anspruch auf Vollständigkeit) Bild F Faser 24

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 26.11.2013 Alexander Lytchak 1 / 12 Wiederholung Ist B = (v 1,..., v n ) eine Basis eines Vektorraums V, so erhalten

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Äquivalenz von Matrizen

Äquivalenz von Matrizen Äquivalenz von Matrizen Wir befassen uns jetzt mit der Fragestellung, ob man zu einer gegebenen linearen Abbildung F : V W geeignete Basen für V und W finden kann, sodass die darstellende Matrix von F

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Basis eines Vektorraumes

Basis eines Vektorraumes Basis eines Vektorraumes Basisergänzungssatz: Ist U V ein Unterraum von V und dim V = n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden Und es gilt: Beweis:

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Satz. [x] B = die Koordinatenvektoren von x und y = F(x) bezüglich B respektive C. Dann gilt. [y] C = A[x] B. Hierbei ist

Satz. [x] B = die Koordinatenvektoren von x und y = F(x) bezüglich B respektive C. Dann gilt. [y] C = A[x] B. Hierbei ist Satz Jede lineare Abbildung F : V n W m lässt sich durch eine m n-matrix darstellen. Dazu wählt man Basen B = (b 1,..., b n ) in V und C = (c 1,..., c m ) in W. Seien x 1 y 1 [x] B =. und [y]c =. x n y

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Lineare Algebra I Lösung der Probeklausur

Lineare Algebra I Lösung der Probeklausur David Blottière Patrick Schützdeller WS 6/7 Universität Paderborn Lineare Algebra I Lösung der Probeklausur Aufgabe : M i) M ist linear unabhängig. Seien a,b,c R mit Daraus folgt : Also gilt a = b = c

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

Definition Für n, k 2 N sei. R n k := R n R n R n =(R n ) k. die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix.

Definition Für n, k 2 N sei. R n k := R n R n R n =(R n ) k. die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix. .5 Matrizen 39 / Definition.8 Für n, k 2 N sei R n k := R n R n R n =(R n ) k die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix. 40 / Bemerkung Eine (n k)-matrix hat n Zeilen und k

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

Kapitel 8. Elemente der Matrizenrechnung. 8.1 Rechenregeln

Kapitel 8. Elemente der Matrizenrechnung. 8.1 Rechenregeln Kapitel 8 Elemente der Matrizenrechnung Die Untersuchung linearer Abbildungen, so die Moral des letzten Kapitels, ist Matrizenlehre: was man mit Matrizen alles so machen kann, und welche Eigenschaften

Mehr

Übungsklausur Lineare Algebra

Übungsklausur Lineare Algebra Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Sommersemester 215 Klausur zur Mathematik I (Modul: Lineare Algebra I) 28.8.215 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana.

Lineare Algebra. 6. Übungsstunde. Steven Battilana. Lineare Algebra 6. Übungsstunde Steven attilana stevenb@student.ethz.ch November, 6 Lineare Abbildungen Eine Abbildung f : X Y heisst injektiv, falls x, x X : x x fx fx. In Worten: erschiedene Elemente

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8 D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8. Kern von A: Die Spalten der Matrix A sind Vielfache voneinander, also sind sie linear abhängig und A hat Rang. Somit hat

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 11/1 Blatt 1 7.1.1 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag 45. a) Wegen 1

Mehr

Wiederholungsklausur zur Linearen Algebra I

Wiederholungsklausur zur Linearen Algebra I Wiederholungsklausur zur Linearen Algebra I Prof. Dr. C. Löh/D. Fauser/J. Witzig 20. April 2017 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

Kapitel 7 Lineare Abbildungen und Matrizen II

Kapitel 7 Lineare Abbildungen und Matrizen II Kapitel 7 Lineare Abbildungen und Matrizen II 7.1 Weitere Rechenregeln für Matrizen Aus den bisher gelernten Regeln entnehmen wir den als Übung zu beweisenden Satz 7.1. Es gelten die folgenden Regeln.

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Donnerstag WS 2/2 4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform 4 Determinanten 4 Definition

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Rechnen mit Matrizen 2 1.1 Matrixmultiplikation............................................

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m. linear. Wir können also jeder Matrix eine lineare Abbildung zuordnen.

Lineare Abbildungen. i=0 c ix i n. K n K m. linear. Wir können also jeder Matrix eine lineare Abbildung zuordnen. Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing Musterlösung zur Klausur zur Linearen Algebra I 1 Aufgabe 1: (8 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind: Aussage wahr

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Lösung Test 1 (Nachprüfung)

Lösung Test 1 (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Test (Nachprüfung Aufgabe : a Gemäss den Algorithmen im Kap.. der Vorlesung bringen wir die

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Lineare Algebra I (Lehramt Gymnasium)

Lineare Algebra I (Lehramt Gymnasium) Lineare Algebra I (Lehramt Gymnasium) Technische Universität München, WS 2013/14 Vorlesung: Caroline Lasser (aktualisiert am 31. Januar 2014) 1 Vorspiel Mengen (15.10.): intuitiver Mengenbegriff, x M,

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Kern und Bild einer Matrix

Kern und Bild einer Matrix Kern und Bild einer Matrix. Motivation Zur theoretischen Beschreibung der Abbildungen durch Matrizen wurden Begriffe eingeführt, die eine "elegante" Formulierung erlauben. In Linearen Gleichungssystemen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr