Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n )."

Transkript

1 Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe 2 A Mat(n n, R) ist genau dann diagonalisierbar, wenn A genau n verschiedene Eigenwerte besitzt. A Mat(n n, R) ist diagonalisierbar, falls A genau n verschiedene Eigenwerte besitzt. A Mat(n n, R) ist diagonalisierbar, falls es genau n linear unabhängige Eigenvektoren von A gibt. A Mat(n n, R) ist genau dann diagonalisierbar, wenn es genau n linear unabhängige Eigenvektoren von A gibt.

2 Aufgabe 3 Sei A Mat(n n, R) eine Matrix Eigenvektor v zum Eigenwert 5. Dann ist v auch Eigenvektor von A 2 zum Eigenwert 5. Sei A Mat(n n, R) eine Matrix Eigenvektor v zum Eigenwert 5. Dann ist v Eigenvektor von A 2 zum Eigenwert 25. Sei A Mat(n n, R) eine Matrix Eigenvektor v zum Eigenwert 5. Dann ist 5v Eigenvektor von A 2 zum Eigenwert 5. Sei A Mat(n n, R) eine Matrix Eigenvektor v zum Eigenwert 5. Dann ist 5v Eigenvektor von A 2 zum Eigenwert 25. Aufgabe 4 ( ) ist über Q diagonalisierbar. ( ) ist nicht diagonalisierbar über R. ( ) 0 ist über Q diagonalisierbar. 0 ( ) 0 ist nicht diagonalisierbar über R. 0

3 Aufgabe ist diagonalisierbar über C hat 2 nur reelle Eigenwerte. mindestens einen nicht-reellen Eigenwert. 0 0 ist invertierbar hat 2 3 verschiedene Eigenwerte. maximal zwei verschiedene Eigenwerte.

4 Aufgabe Entscheiden Sie, ob die Matrix A = den Eigenvektor v = 0 besitzt und geben 0 0 Sie den zugehörigen Eigenwert an. Falls v kein Eigenvektor von A ist, tragen Sie 000 in das Kästchen ein. 0 0 Entscheiden Sie, ob die Matrix A = den Eigenvektor v = besitzt und geben 0 Sie den zugehörigen Eigenwert an. Falls v kein Eigenvektor von A ist, tragen Sie 000 in das Kästchen ein. 0 0 Entscheiden Sie, ob die Matrix A = den Eigenvektor v = besitzt und geben Sie 0 den zugehörigen Eigenwert an. Falls v kein Eigenvektor von A ist, tragen Sie 000 in das Kästchen ein Entscheiden Sie, ob die Matrix A = den Eigenvektor v = 0 besitzt und geben 0 Sie den zugehörigen Eigenwert an. Falls v kein Eigenvektor von A ist, tragen Sie 000 in das Kästchen ein.

5 Aufgabe 7 ( ) 2 4 = ( ). Ist auch v + v 2 ein Eigenvektor? ( ) 2 4 = ( ). Ist auch v v 2 ein Eigenvektor? ( ) 2 4 = ( ). Ist auch 2v + v 2 ein Eigenvektor? ( ) 2 4 = ( ). Ist auch v 2 v ein Eigenvektor?

6 Aufgabe 8 von A ist. ( ) 2 ( ). Bestimmen Sie t so, dass v ein Eigenvektor Eigenvektor von A ist. Eigenvektor von A ist. Eigenvektor von A ist. ( ) 2 ( ) 2 ( ) 2 ( ). Bestimmen Sie t so, dass v ein ( ). Bestimmen Sie t so, dass v ein ( ). Bestimmen Sie t so, dass v ein

7 Aufgabe 9 Der Eigenraum zum Eigenwert der Matrix x = Der Eigenraum zum Eigenwert 2 der Matrix x = Der Eigenraum zum Eigenwert der Matrix y = Der Eigenraum zum Eigenwert 2 der Matrix y = ( ) 6 4 ( ) 6 4 ( ) 6 4 ( ) 6 4 ( ) x ( ) x ( ) 9 y ( ) 4 y Aufgabe 0 A Mat(2 2, C) habe 2 verschiedene Eigenwerte λ und µ. Dann ist die maximale Dimension des Eigenraums Eig(A, λ) 0 2 A Mat(2 2, C) habe 2 verschiedene Eigenwerte λ und µ. Dann ist die maximale Dimension des Eigenraums Eig(A, µ) 0 2 A Mat(2 2, C) habe den Eigenwert λ. Dann ist die maximale Dimension des Eigenraums Eig(A, λ) 0 2

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Aufgabe 1: Gleichungssystem mit Parameter ( / 12) Für welche Werte des reellen Parameters α besitzt das lineare Gleichungssystem

Aufgabe 1: Gleichungssystem mit Parameter ( / 12) Für welche Werte des reellen Parameters α besitzt das lineare Gleichungssystem 1 Hochschule München Fakultät 03 FA SS 2008 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher, Taschenrechner

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik Mathematik II (für Informatiker, ET und IK) Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Inhalt 7 Lineare Algebra 7 Lineare Algebra II Oliver Ernst (Numerische Mathematik) Mathematik

Mehr

Abtastsysteme im Zustandsraum

Abtastsysteme im Zustandsraum Abtastsysteme im Zustandsraum Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich May 11, 2006 Kontinuierliches System: ẋ(t) = Fx(t)+gu(t) y(t) = c T x(t)+du(t) : t x(t) =e F(t

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Musterlösung Klausur zur Linearen Algebra II

Musterlösung Klausur zur Linearen Algebra II Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math.

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math. Das QZ-Verfahren Bachelor-Arbeit im 1-Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Janina Gnutzmann Erstgutachter:

Mehr

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen Vorlesung, 26. Mai 2011, Inhalt Eigenwerte und Eigenvektoren Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Es sei A eine n n-matrix, x ein vom Nullvektor verschiedener Vektor und λ

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK - 87 - MATHEMATIK II FÜR STUDIERENDE DER PHYSIK 21 Vektorräume mit Skalarprodukt Wir halten uns hier im Wesentlichen an das Buch G.Fischer : Lineare Algebra, 14. Auflage, Kap. 5. 21.1 Definition und Beispiele

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Sage 3: Lineare Algebra

Sage 3: Lineare Algebra Sage 3: Lineare Algebra Wiederholung: Sequenzielle Datentypen Listen und Tupel Wiederholung zu Listen, einem wichtigen Hilfs-Datentyp für Vektoren und Matrizen; Erstellen einfacher Listen und Auslesen

Mehr

Lineare Algebra II. Prof. Dr. Dirk Ferus. Wintersemester 2001/2

Lineare Algebra II. Prof. Dr. Dirk Ferus. Wintersemester 2001/2 Lineare Algebra II Prof. Dr. Dirk Ferus Wintersemester 2001/2 22. Oktober 2004 Inhaltsverzeichnis 0 Vorbemerkungen 6 1 Eigenwerte und -vektoren 9 2 Struktursätze in unitären und Euklidischen Räumen 15

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

1. Gruppenübung zur Vorlesung Höhere Mathematik 1 Wintersemester 2009/10

1. Gruppenübung zur Vorlesung Höhere Mathematik 1 Wintersemester 2009/10 M. Boßle, P. Engel B. Krinn, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 9/ Prof. Dr. M. Stroppel Prof. Dr. A.-M. Sändig Präsenzübungen Aufgabe P. Elementares Rechnen Berechnen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum Kapitel II Lineare Algebra und analytische Geometrie 6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum geometrischen

Mehr

Lineare Algebra II. Prof. Dr. Karl-H. Neeb. Sommersemester 2003 Version 23. Februar 2004 (10:33)

Lineare Algebra II. Prof. Dr. Karl-H. Neeb. Sommersemester 2003 Version 23. Februar 2004 (10:33) Lineare Algebra II Prof. Dr. Karl-H. Neeb Sommersemester 3 Version 3. Februar 4 (:33) Inhaltsverzeichnis 7 Eigenvektoren und Eigenwerte 63 7. Eigenvektoren und Eigenwerte..............................

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Lineare Algebra. Axiome der Linearen Algebra

Lineare Algebra. Axiome der Linearen Algebra Lineare Algebra Simon Fuhrmann Christian M. Meyer Axiome der Linearen Algebra Im Folgenden sei V ein beliebiger K-Vektorraum und P eine Punktmenge. V und P bilden einen affinen Raum. Seien außerdem U 1

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus Betriebsanleitung für gewöhnliche lineare Differentialgleichungen Prof. Dr. Dirk Ferus Version vom 30.10.2005 Inhaltsverzeichnis 1 Homogene skalare Gleichungen. 1 1.1 Einfache reelle Nullstellen.............................

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen KAPITEL III Lineare Algebra 12 Matrizen und der Gauß-Algorithmus I Matrizen Definition 121 Matrizen und der R n Es seien m,n 1 zwei positive ganze Zahlen a Eine m n-matrix über R ist ein rechteckiges Schema

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

LINEARE ALGEBRA I, WS 2010/11. NOTIZEN ZUR VORLESUNG.

LINEARE ALGEBRA I, WS 2010/11. NOTIZEN ZUR VORLESUNG. LINEARE ALGEBRA I, WS 2010/11. NOTIZEN ZUR VORLESUNG. ULRICH GÖRTZ 1. Einführung, Motivation 1.1. Lineare Gleichungssysteme. LGS mit 1 Gleichung, 1 Unbestimmten; 1 Gleichung, n Unbestimmten; 2 Gleichungen,

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

Jürgen Hausen Lineare Algebra I

Jürgen Hausen Lineare Algebra I Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation

Mehr