5 Diagonalisierbarkeit

Größe: px
Ab Seite anzeigen:

Download "5 Diagonalisierbarkeit"

Transkript

1 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj f(v j ) = a 1j v a nj v n heißt Koordinatenvektor von f(v j ) bzgl. B. Die Matrix mit den Spalten a 1,..., a n heißt darstellende Matrix MB B (f) von f bzgl. B, also a a 1n MB B (f) =.. a n1... a nn Es gilt: (1) M B B : EndV M(n n, K), f M B B (f) ist ein Isomorphismus von K Vektorräumen, (2.3). Sei B = (w 1,..., w n ) eine weitere Basis von V und w j = n c ij v i, j = 1,..., n; C := (c ij ) ist dann die Übergangsmatrix von B nach B. (2) C ist invertierbar. (3) MB B (f) = C 1 MB B (f)c (Transformationsformel). Definition: a) f heißt diagonalisierbar, falls es eine Basis B von V gibt, so dass (f) eine Diagonalmatrix ist. M B B b) Eine Matrix A M(n n, K) heißt diagonalisierbar, falls es ein C GL n (K) gibt, so dass C 1 AC eine Diagonalmatrix ist. 1

2 (5.1) Bemerkung: Genau dann ist A diagonalisierbar, wenn L A diagonalisierbar ist. Beweis: Sei C GL n (K) mit C 1 AC Diagonalmatrix. Sei c 1,..., c n die Spalten von C. Dann ist B = (c 1,..., c n ) eine Basis von K n und C ist die Übergangsmatrix von K = (e 1,..., e n ) nach B. Ferner ist A = MK K(L A). Nach der Transformationsformel ist MB B (L A) = C 1 AC eine Diagonalmatrix. Existiert eine Basis B von K n, so dass M B B (L A) eine Diagonalmatrix ist, so gibt es nach der Transformationsformel eine Matrix C GL n (K), so dass M B B (L A) = C 1 M K K (L A)C = C 1 AC. Also ist A diagonalisierbar. Wir wollen nun der Frage nachgehen, wann eine lineare Abbildung f : V V diagonalisierbar ist. Genau dann ist f diagonalisierbar, wenn es eine Basis B = (w 1,..., w n ) gibt, so dass d MB B (f) = eine Diagonalmatrix ist, d.h d nn f(w 1 ) = d 11 w 1, f(w 2 ) = d 22 w 2,..., f(w n ) = d nn w n. Es gilt also: Genau dann ist f diagonalisierbar, wenn V eine Basis B = (w 1,..., w n ) hat, die aus lauter Eigenvektoren von f besteht. Auf der Diagonalen von D = MB B (f) stehen dann die Eigenwerte f (mit gewissen Vielfachheiten). (5.2) Bemerkung: Ist f diagonalisierbar, so zerfällt das charakteristische Polynom von f in ein Produkt von Linearfaktoren: x d 11 0 χ f (x) = det(xe n D) = det... = (x d 11 )... (x d nn ) 0 x d nn Von nun an sei K = C oder K = R. 2

3 (5.3) Satz: a) Seien w 1,..., w m Eigenvektoren von f zu verschiedenen Eigenwerten λ 1,..., λ m. Dann ist (w 1,..., w m ) linear unabhängig. Speziell (m = n) : Hat f n verschiedene Eigenwerte, so ist f diagonalisierbar ((w 1,..., w n ) ist eine Basis aus Eigenvektoren). b) Sind w j V (f, λ j ) aus Eigenräumen zu verschiedenen Eigenwerten λ 1,..., λ m, so folgt aus w w m = 0, dass w 1 =... = w m = 0. Beweis: Sei W = Kw Kw m. Dann ist für w = α 1 w α m w m f(w) = (α 1 λ 1 )w (α m λ m )w m W. Somit induziert f eine lineare Abbildung g : W W, g(w) := f(w), und λ 1,..., λ m sind Eigenwerte von g, also verschiedene Nullstellen von χ g. Nach 3 ist daher (x λ 1 )... (x λ m ) ein Teiler χ g (x) und Grad χ g (x) m. Wegen Grad χ g (x) = dim W folgt dim W m, also ist dim W = m und (w 1,..., w m ) ist linear unabhängig (II.2.10) b) Angenommen nicht alle w w m seien gleich 0, etwa w 1 0,..., w r 0 und w w r = 0, 1 r m. Dann wären w 1,..., w r Eigenvektoren zu verschiedenen Eigenwerten mit 1 w w r = 0, im Widerspruch zu a). Direkte Summen von Untervektorräumen: Seien W 1,..., W r Untervektorräume von V, r 2. Die Summe W W r = r von W 1,..., W r ist die Menge W W r = {w w r w j W j, j = 1,..., r} (5.4) Bemerkung: a) W W r ist ein UVR von V. b) dim(w W r ) dim W dim W r Beweis: a) Sind w = r w i, w = r w i mit w i, w i W i, so ist u i = w i + w i W i und somit w + w = r u i W W r. Ferner ist λw = r (λw i ) W W r, falls λ K. 3

4 b) Sind B 1,..., B r Basen von W 1,..., W r, so ist B 1... B r ein Erzeugendensystem von W W r also dim(w W r ) B 1... B r r B i = r dim W i. Definition: V heißt direkte Summe von W 1,..., W r wenn gilt: a) V = W W r b) Ist r w i = r u i mit u i, w i W i, so ist w i = u i, i = 1,..., r. Schreibe V = W 1... W r (= r W i ), wenn V die direkte Summe von W 1,..., W r ist. (5.5) Bemerkung: Die folgenden Aussagen sind äquivalent: a) V = W 1... W r b) V = W W r und es gilt: Aus w w r = 0 und w j W j, j = 1,..., r folgt: w 1 =... = w r = 0 c) V = W W r und W i ( W k ) = 0 für i = 1,..., r d) V = W W r und dim V = dim W dim W r Insbesondere: Sind B 1,..., B r Basen von W 1,..., W r, so ist B 1... B r eine Basis von V, falls V = W 1... W r. Beweis: a) b) Aus 0 = = w w r folgt 0 = w 1,..., 0 = w r b) c) Sei w i = w k W i w k, w i W i und w k W k k i Dann ist 0 = w w i 1 + ( w i ) + w i w r = 0 und nach Voraussetzung ist w i = 0, also auch w i = 0. c) d) Induktion nach r. r = 2 : V = W 1 + W 2 und dim V = dim W 1 + dim W 2 dim W 1 W 2 = dim W 1 +dim W 2, da nach Voraussetzung W 1 W 2 = {0}. Sei r 3 und die Aussage bewiesen für r 1: (1) dim V = dim(w W r 1 ) + dim W r dim W r (W W r 1 ) Vor. = dim(w W r 1 ) + dim W r. 4

5 Ferner gilt für V = W W r 1 nach Voraussetzung W j ( r 1 ) W k = 0 für j = 1,..., r 1 k=1 Nach Induktionsvoraussetzung ist daher dim V = dim W dim W r 1 und mit (1) folgt die Behauptung. d) c) dim W dim W r = dim V = dim( W k + W i ) = = dim W i + dim( W k ) dim(w i W k ) 5.4 dim W dim W r dim(w i W k ) Es folgt dim W i W k = 0 und W i W k = 0. c) a) Aus u u r = v v r mit u j, v j W j, j = 1,..., r folgt w i = u i v i = (v k u k ) W i ( W k ) = 0 und somit w i = 0, i = 1,..., r. (5.6) Beispiel: Sind λ 1,..., λ s K verschiedene Eigenwerte von f : V V und W i = V (f, λ i ) die zugehörigen Eigenräume, so gilt für W = W W r : W = W 1... W r, insbes. dim W = r dim W r. Beweis: Aus w w r = 0, w j W j folgt nach 5.3: w 1 =... = w r = 0. Also ist nach 5.5 W = W 1... W r. (5.7) Satz: Seien λ 1,..., λ r K die verschiedenen Eigenwerte von f : V V und W i = V (f, λ i ), W = W W r. Dann sind folgende Aussagen äquivalent: a) f ist diagonalisierbar. b) (i) χ f zerfällt in Linearfaktoren, d.h. χ f (x) = (x λ 1 ) ν1... (x λ r ) ν r mit ν 1,..., ν r N >0. (ii) Geometrische und Algebraische Vielfachheit von λ j stimmen überein für j = 1,..., r. c) V = W 5

6 d) V = W 1... W r Beweis: Nach (5.6) sind c) und d) äquivalent. a) b) (i) Wähle eine Basis B = (w 1,..., w n ) bestehend aus Eigenvektoren von f, so angeordnet, dass λ ν 1 mal λ 1 λ 2 ν 2 mal A = MB B (f) =.... λ λ. r.... ν r mal 0 λ r Dann ist χ f (x) = χ A (x) = (x λ 1 ) ν1... (x λ r ) ν r ν j = ν(χ f, λ j ) (Vielfachheit der Nullstelle λ j von χ f ). mit Grad f = n und (ii) Zeige etwa für j = 1, dass ν 1 = dim K V (f, λ 1 ) ν 1 = ν(χ f, λ 1 ) und w 1,..., w ν1 V (f, λ 1 ) sind linear unabhängig als Teil der Basis B. Es folgt dim V (f, λ 1 ) ν 1 = ν(χ f, λ 1 ) 4.8 dim V (f, λ f ) und somit gilt Gleichheit. b) c) dim V = Grad χ f (x) b) = r ν(χ f, λ i ) b) = r Nach 5.6 ist dann dim V = dim W, also V = W. dim W i c) a) W 1,..., W r hat jeweils eine Basis aus Eigenvektoren von f. Also ist die Vereinigung dieser Basesn eine Basis von V = W 1... W r, bestehend aus Eigenvektoren von f. Verfahren zur Diagonalisierung eines Endomorphismus(falls möglich). Nach (5.7) ist f genau dann diagonalisierbar, wenn (1) χ f (x) = (x λ 1 ) ν 1... (x λ r ) ν r mit λ i λ j für i j. 6

7 (2) dim V (f, λ i ) = ν i für i = 1,..., r. 1) Bestimme A = MB B(f) und χ f(x) = det(xe n A) für eine beliebige Basis B = (v 1,..., v n ) von V. Bestimme die Nullstellen von χ f in K und zerlege, wenn möglich, χ f in ein Produkt von Linearfaktoren. (Ist dies nicht möglich, so ist f nicht diagonalisierbar; Abbruch!) Man erhält χ f (x) = r (x λ i ) ν i λ i λ j für i j 2) Bestimme zu jedem Eigenwert λ i den zugehörigen Eigenraum. Dazu ist das lineare GLS (i) (λ i E n A). x 1 x n = 0 zu lösen. Die Lösungsmenge von (i) besteht dann aus den Koordinatenvektoren der Vektoren des Eigenraums V (f, λ i ) bzgl. der Basis B = (v 1,..., v n ). Speziell: Ist V = K n und B die kanonische Basis, so gilt V (f, λ i ) = Lösungsraum von (i) (i = 1,..., r) 3) Kontrolliere ob ν i = dim V (f, λ i ). Falls nein: f ist nicht diagonalisierbar. Falls ja: 4) Bestimme für jeden Eigenraum V (f, λ i ) eine Basis B i : B = B 1... B r ist dann eine Basis von V bestehend aus Eigenvektoren von f. Damit ist MB B (f) bestimmt. 5) Sei B = (w 1,..., w n ). Bestimme die Übergangsmatrix C = (c ij ) von B nach B, d.h. w j = n c ij v i, j = 1,..., n. 7

8 6) Wenn richtig gerechnet wurde, muss M B B (f) = C 1 AC gelten, d.h. CM B B (f) = A C x y + z x Rechenbeispiel: f : R 3 R 3, f y = 3x 2y + 3z = A y mit z 2x 2y + 3z z A = Also ist A = MB B(f), B = (e 1, e 2, e 3 ) t 1 1 χ f (t) = det(te 3 A) = det 3 t = t 3 t 2 t+1 = (t 1) 2 (t+1) 2 2 t 3 Die Eigenwerte von f sind somit 1 (algebraische Vielfachheit 2) und 1 (algebraische Vielfachheit 1) E 3 A = ; also ist dim V (f, 1) = 2 und V (f, 1) = Lös (x + y z = 0) mit Basis ((1, 0, 1) t, (0, 1, 1) t ) ( 1)E 3 A = Wähle x 3 = 2 : x 2 = 3, x 1 = 1 und V (f, 1) = R Damit ist B = 0, 1, 3 = (w 1, w 2, w 3 ) eine Basis vonf R 3 bestehend aus Eigenvektoren von f. MB B und C = ist die Übergangsmatrix von B = (e 1, e 2, e 3 ) nach B Probe: CMB B =

9 A C = =

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn

Diagonalisieren. Nikolai Nowaczyk  Lars Wallenborn Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Kapitel 18. Aufgaben. Verständnisfragen

Kapitel 18. Aufgaben. Verständnisfragen Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Lineare Algebra II. Sommersemester Wolfgang Ebeling

Lineare Algebra II. Sommersemester Wolfgang Ebeling Lineare Algebra II Sommersemester 2009 Wolfgang Ebeling 1 c Wolfgang Ebeling Institut für Algebraische Geometrie Leibniz Universität Hannover Postfach 6009 30060 Hannover E-mail: ebeling@mathuni-hannoverde

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Lineare Algebra II. Prof. Dr. Uwe Jannsen Sommersemester Transformation auf Dreiecksgestalt

Lineare Algebra II. Prof. Dr. Uwe Jannsen Sommersemester Transformation auf Dreiecksgestalt Lineare Algebra II Prof. Dr. Uwe Jannsen Sommersemester 2006 1 Transformation auf Dreiecksgestalt Sei K ein Körper. Definition 1.1 Zwei Matrizen A und A M n (K) heißen ähnlich (oder konjugiert), wenn es

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Sesqui- und Bilinearformen

Sesqui- und Bilinearformen Kapitel 8 Sesqui- und Bilinearformen 8.1 Sesquilinearformen Definition 8.1.1 Sei V ein reeller oder komplexer K-Vektorraum (also K = R oder C). Eine Abbildung f : V V K heißt eine Sesquilinearform wenn

Mehr

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK - 87 - MATHEMATIK II FÜR STUDIERENDE DER PHYSIK 21 Vektorräume mit Skalarprodukt Wir halten uns hier im Wesentlichen an das Buch G.Fischer : Lineare Algebra, 14. Auflage, Kap. 5. 21.1 Definition und Beispiele

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Protokoll zur Vorlesung Lineare Algebra I

Protokoll zur Vorlesung Lineare Algebra I Protokoll zur Vorlesung Lineare Algebra I Prof W Bley 21 Februar 2006 Protokoll über die 1-2Vorlesung 1 Lineare Gleichungssysteme 11 Zwei Gleichungen mit zwei Unbekannten Sei ax + by = e, cx + dy = f ein

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

x,y A = t xay v i,v j A = e i,e j t PAP

x,y A = t xay v i,v j A = e i,e j t PAP 75 Lineare Algebra II SS 2005 Teil 6 Bilinearformen 6A Kongruenz quadratischer Matrizen Sei K ein Körper, sei A M(n n, K) eine quadratische Matrix Wie wir zu Beginn von Teil 3 gesehen haben, liefert A

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume 7.1 Skalarprodukte Definition 7.1.1 Es seien V und W Vektorräume über einem Körper K.Eine Abbildung s : V W K heißt Bilinearform, wenn gilt BF1 s(v 1 + v 2,w)

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Basen von Schnitt und Summe berechnen

Basen von Schnitt und Summe berechnen Basen von Schnitt und Summe berechnen 1 / 8 Voraussetzung Es seien U 1, U 2 Untervektorräume von K n. Wir wollen Basen des Schnittes U 1 U 2 und der Summe bestimmen. U 1 + U 2 2 / 8 Bezeichnung Der Einfachheit

Mehr

Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels

Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels aktuellste Version hier Skript Lineare Algebra II Mitschrift der Vorlesung Lineare Algebra II von Prof. Dr. Arthur Bartels Jannes Bantje 19. Juli 2013 Erstellt mit L A TEX Inhaltsverzeichnis 1. Isometrien

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

Zusammenstellung von Fragen der Vordiplomsprüfung Mathe für Informatiker I (Kurs 1181)

Zusammenstellung von Fragen der Vordiplomsprüfung Mathe für Informatiker I (Kurs 1181) Zusammenstellung von Fragen der Vordiplomsprüfung Mathe für Informatiker I (Kurs 1181) Vorbemerkungen Die nachfolgenden Fragen sind eine Zusammenstellung aus ca. 26 Protokollen von Februar 1990 bis November

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

1.5 Duales Gitter und Diskriminantengruppe

1.5 Duales Gitter und Diskriminantengruppe Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

1 Alternierende Formen

1 Alternierende Formen 79 Kapitel 7 Multilineare Algebra 1 Alternierende Formen Inhalt: Alternierende Bilinearformen, äußeres (oder Dach-)produkt, Differentialformen, Zusammenhang zwischen äußerem Produkt und Vektorprodukt,

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 4

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 4 Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band, Aufl Version, Kapitel 4 Polynomalgebren Abschnitt A, Variante zu Aufg a, p 77 : Man bestimme den größten

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Algebra. Axiome der Linearen Algebra

Lineare Algebra. Axiome der Linearen Algebra Lineare Algebra Simon Fuhrmann Christian M. Meyer Axiome der Linearen Algebra Im Folgenden sei V ein beliebiger K-Vektorraum und P eine Punktmenge. V und P bilden einen affinen Raum. Seien außerdem U 1

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe Dr. Mario Helm Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Höhere Mathematik II für naturwissenschaftliche Studiengänge Sommersemester 2013 7 Lineare Algebra

Mehr

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 MAT.4 - Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 Aufgabe Sei ϕ : V V R eine symmetrische Bilinearform auf einem reellen Vektorraum V. Für die Vektoren v,...,v n V gelte ϕ(v

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr