Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Größe: px
Ab Seite anzeigen:

Download "Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :="

Transkript

1 Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lösung: A: Wir haben A 2 = 2 4 und A k = 0 für alle k 3. Durch Rechnen und das Kriterium des Satzes im Kapitel 8.9 der Zusammenfassung findet man die Einträge der folgenden Tabelle. k dim Kern(A k ) # k k-jordanblöcke 0 0 Um die Übergangsmatrix zu bestimmen, wähle einen beliebigen Vektor v V \ Kern(L 2 A ), zum Beispiel sei Dann ist v := (0, 0, 0, 0, ) T. Av = (0, 0,, 2, 0) T A 2 v = (, 2, 4, 0, 0) T. Wähle nun ein beliebigen v 2 Kern(L 2 A ) \ Kern(L A), Av, A 2 v, zum Beispiel sei v 2 := (0,, 0, 0, 0) T.

2 Dann bilden die Vektoren v, Av, A 2 v, v 2, Av 2 eine Basis von R 5 und für die Matrix S := (A 2 v, Av, v, Av 2, v 2 ) = gilt nach Konstruktion B: Wir haben B 2 = S AS = , B3 = und B k = 0 für alle k 4. Mit Rechnen folgt k dim Kern(B k ) # k k-jordanblöcke Sei v R 5 \ Kern(L 3 B ) ein beliebiges Element, zum Beispiel sei Dann gilt v := (0, 0, 0, 0, ) T. Bv = (0, 0,, 2, 0) T B 2 v = (, 2, 4, 0, 0) T B 3 v = (8, 0, 0, 0, 0) T. Sei v 2 Kern(L B ) \ B 3 v ein beliebiges Element, zum Beispiel sei v 2 := (0,, 2, 0, 0) T. Dann bilden die Vektoren v, Bv,..., B 3 v, v 2 eine Basis von R 5 und für die Matrix S := (B 3 v, B 2 v, Bv, v, v 2 ) =

3 gilt nach Konstruktion S BS = Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der reellen Matrix A := Lösung: Das charakteristische Polynom der Matrix A ist char A (X) = X 4 X X 2 8X + 54 = (X 2) (X 3) 3. Wir betrachten nun die Eigenwerte 2 und 3 separat. Eigenwert 3. Mit B := A 3I 4 gilt Hau X 3 (A) = Kern(L 3 B) = Kern Mit B = erhalten wir und B2 = = , 0, k dim Kern(L k B ) # k k-jordanblöcke zu EW Sei v Hau X 3 (A) \ Kern(L B ) ein beliebiger Vektor, zum Beispiel sei v := ( 6, 0, 0, ) T. Dann gilt Bv = (8, 2, 2, 0) T. Sei v 2 Kern(L B ) \ Bv ein beliebiger Vektor, zum Beispiel sei v 2 := (2,, 0, 0) T 3

4 Dann bildet v, Bv, v 2 eine Basis von Hau X 3 (A). Eigenwert 2. Der Raum Hau X 2 (A) ist eindimensional und besteht aus den Eigenvektoren von A zum Eigenwert 2. Wir müssen also einen Eigenvektor zum Eigenwert 2 finden. Diesen erhält man als v 3 := (, 0, 0, 0) T. Nach der Hauptraumzerlegung ist b := (Bv, v, v 2, v 3 ) eine Basis von R 4. Nach Konstruktion hat A bezüglich b Jordansche Normalform: Mit der Matrix S := (Bv, v, v 2, v 3 ) = gilt S AS = Bestimme die Jordansche Normalform von 2 A := 2 2 über R und F 3. Lösung: Über R: Da die Matrix A symmetrisch ist, ist sie über R diagonalisierbar. Durch Berechnen des charakteristischen Polynoms oder durch direktes Raten der Eigenvektoren (,, ), (,, 0), (, 0, ) findet man die Eigenwerte 4 und mit jeweiliger geomtrischer Vielfachheit und 2. Die Matrix hat über R also die Jordansche Normalform Über F 3 besitzt A das charakteristische Polynom char A (X) = X 3 = (X ) 3 und besitzt daher genau einen Hauptraum zum Faktor (X ). Wir haben A I 3 = 4

5 und (A I 3 ) k = 0 für k 2. Aus dim Kern(A I 3 ) = 2 folgt, dass es jeweils einen Jordanblock der Grösse und 2 gibt. Somit hat die Matrix A über F 3 die Jordansche Normalform (a) Finde für jedes k =,..., 5 eine komplexe 5 5-Matrix mit Minimalpolynom (X ) k. (b) Sei B eine komplexe 5 5-Matrix mit charakteristischem Polynom (X 3) 2 (X + 5) 3 und Minimalpolynom (X 3)(X + 5) 2. Bestimme die möglichen Jordanschen Normalformen von B. Lösung: (a) Eine komplexe Matrix A hat Minimalpolynom (X ) k, wenn der einzige Eigenwert und der grösste Jordanblock ein k k-block ist. Somit finden wir folgende Beispiele: Minimalpolynom X : Minimalpolynom (X ) 2 : Minimalpolynom (X ) 3 : Minimalpolynom (X ) 4 : Minimalpolynom (X ) 5 : (b) Da B das charakteristische Polynom (X 3) 2 (X + 5) 3 besitzt, hat der Eigenwert 3 algebraische Vielfachheit 2 und der Eigenwert 5 hat algebraische Vielfachheit 3. 5

6 Der Faktor (X 3) tritt im Minimalpolynom mit der Potenz auf; der grösste Jordan-Block zum Eigenwert 3 ist also ein -Block und folglich besitzt der Eigenwert 3 auch geometrische Vielfachheit 2. Der Faktor (X + 5) tritt im Minimalpolynom mit der Potenz 2 auf; es existiert also ein Jordanblock zum Eigenwert 5 der Grösse 2 2. Aus Dimensionsgründen folgt, dass es genau einen weiteren Jordanblock der Grösse gibt. Für die Jordansche Normalform der Matrix B erhalten wir also als einzige Möglichkeit Beweise oder widerlege: (a) Je zwei n n-matrizen über K mit demselben Minimalpolynom sind ähnlich. (b) Je zwei n n-matrizen über K mit demselben Minimalpolynom und demselben charakteristischen Polynom sind ähnlich. (c) Je zwei n n-matrizen über K mit demselben charakteristischen Polynom, welches ausserdem keine mehrfachen irreduziblen Faktoren besitzt, sind ähnlich. Lösung: (a) Die komplexen Matrizen A := 0 0 und B := besitzen beide Minimalpolynom (X )(X 2). Wegen det(a) = 2 det(b) = 4 sind sie aber nicht ähnlich. (b) Die komplexen Matrizen A := und B := haben beide charakteristisches Polynom X 5 und Minimalpolynom X 3. Da sie aber unterschiedliche Jordansche Normalform haben, sind sie nicht ähnlich. 6

7 (c) Sei A eine Matrix mit einem charakteristischen Polynom, welches keine mehrfachen irreduziblen Faktoren besitzt, In der Jordanschen Normalform von A ist der Jordanblock zu jedem irreduziblen Faktor p(x) von char A (X) gleich der Begleitmatrix von p(x). Somit ist die Jordansche Normalform von A durch char A (X) eindeutig bestimmt. Insbesondere haben also zwei Matrizen von dieser Form dieselbe Jordansche Normalform, sind also ähnlich. Also gilt die Aussage. 6. Zeige: Für jede nilpotente Matrix N über K ist exp(n) ähnlich zu I n + N. Lösung: Falls N ähnlich zu einer Matrix N ist, also S NS = N ist für eine invertierbare Matrix S, dann gilt: S (I n + N)S = I n + S NS = I n + N S exp(n)s = exp(s NS) = exp(n ). Also ist auch I n + N ähnlich zu I n + N, und exp(n) ähnlich zu exp(n ). Da Ähnlichkeit eine Äquivalenzrelation ist, folgt also dass I n +N ähnlich zu exp(n) ist genau dann, wenn I n +N ähnlich zu exp(n ) ist. Es genügt daher die Aussage für eine Matrix N in Jordanscher Normalform zu zeigen. Falls die Aussage für jeden Jordanblock der Grösse j n gilt, so folgt aus der Zerlegung von N in eine Blockdiagonalmatrix mit Jordanblöcken auf den Diagonalen, dass sie auch für N gilt. Es genügt daher die Aussage für einen Jordanblock der Form N =... 0 zu zeigen. Aus der Lösung zu Aufgabe 3 der Serie 9 folgt, dass exp(n) I n = N + N N = 3! ( δi<j ), (j i)! i,j n also eine strikt obere Dreiecksmatrix ist, deren (i, i + )-te Einträge für alle i nicht verschwinden. Somit können wir das Beispiel im Kapitel 8.9 der Zusammenfassung verwenden, aus dem folgt, dass exp(n) I n ähnlich zu N ist. Es existiert daher eine Matrix S mit also mit S exp(n)s = I n + N. S (exp(n) I n )S = N, 7. Sei V der Vektorraum aller reellen Polynome vom Grad n. Betrachte die lineare Abbildung D : V V, p(x) p (X). 7

8 (a) Bestimme eine Basis B, für welche N := M BB (D) Jordansche Normalform hat. (b) Zeige, dass exp(d) : V V gleich der Abbildung ist. T : V V, p(x) p(x + ) (c) Bestimme eine Basis B mit M B B (T ) = I n+ + N. Lösung: (a) Für alle k 0 definiere e k := Xk k!. Für alle k gilt De k = e k, sowie De 0 = 0. Die Basis B := (e 0,..., e n ) hat also die gewünschte Eigenschaft. (b) Für alle k, m 0 gilt Somit ist exp(d)(x k ) = D m (X k ) = k m=0 { k! (k m)! Xk m falls k m 0 falls k < m. m! Dm (X k ) = k m=0 ( ) k X k m = (X + ) k m für alle k. Da die x k eine Basis von V bilden, ist also exp(d) = T. Alternativ kann man wie folgt vorgehen: Für jedes t R betrachte die Endomorphismen exp(td) : V V und T t : V V, p(x) p(x + t). Wir erhalten die glatten Abbildungen R End(V), Es gilt T 0 = id V t exp(td) und t T t. und für jedes Polynom p(x) V gilt d dt (T t(p(x))) = d dt (p(x + t)) = p (X + t) = D(T t (p(x))) also d dt T t = D T t. Ebenso gilt exp(0d) = id V und d exp(td) = D exp(td). dt Somit erfüllen t exp(td) und t T t die Differentialgleichung γ = D γ mit der Anfangsbedingung γ(0) = id V. Aus der Eindeutigkeit der Lösung von Differentialgleichungen erster Ordnung folgt exp(td) = T t, also exp(d) = T = T. 8

9 (c) Für alle k 0 sei p k (X) := ( ) X := X(X )... (X k + ). k k! Der Wert der Polynome p k (X) an allen natürlichen Zahlen m k stimmt mit den üblichen Binomialkoeffizienten überein: p k (m) = m(m )... (m k + ) k! = m! k!(m k)!. Für alle natürlichen Zahlen m k besagt die Pascalsche Identität ( ) ( ) ( ) m + m m = +, k k k also p k (m+) = p k (m)+p k (m). Somit stimmen die Polynome p k (X +) und p k (X) + p k (X) an den unendlich vielen Stellen m überein und es folgt p k (X + ) = p k (X) + p k (X) für alle k. Wegen p 0 (X) = gilt ausserdem p 0 (X + ) = p 0 (X). Da jedes Polynom p k (X) Grad k hat, sind zudem die Polynome {p k } linear unabhängig im Vektorraum aller reellen Polynome. Es folgt, dass B := ( p 0 (X),..., p n (X) ) eine Basis mit der gewünschten Eigenschaft ist. 8. Sei A eine komplexe n n-matrix. Zeige det exp(a) = exp(spura). Lösung: Sei S eine invertierbare Matrix, sodass S AS Jordanscher Normalform besitzt mit Jordanblöcken J,..., J k. Dann gilt det(exp(a)) = det(exp(s AS)) = k det(exp(j i )) ( k ) exp(spur(a)) = exp(spur(s AS)) = exp Spur(J i ) = i= i= k exp(spur(j i )). Es genügt daher die Aussage für einen beliebigen n n-jordanblock der Form λ J :=... λ i= mit λ C zu zeigen. 9

10 Aus Aufgabe 3 der Serie 9 folgt, dass exp(j) eine obere Dreiecksmatrix mit Einträgen exp(λ) auf den Diagonalen ist. Wir erhalten also det(exp(j)) = exp(λ) n = exp(nλ) = exp(spur(j)) und somit die Aussage der Aufgabe. Lösung 2. Sei g : R R die glatte Abbildung Wir haben t det(exp(ta)). g g(t + h) g(t) (t) = lim h 0 ( h ) det exp((t + h)a) det(exp(ta)) = lim h 0 ( h ) det exp(ta) exp(ha) det(exp(ta)) = lim det(exp(ta)) (det(exp(ha)) ) = lim det(exp(ha)) = det(exp(ta)) lim Da exp(ha) = I n + ha + O(h 2 ) ist und für jede Matrix M die Determinante det(m) ein polynomialer Ausdruck in den Einträgen von M ist, gilt Es folgt det(exp(ha)) = det(i n + ha + O(h 2 )) = det(i n + ha) + O(h 2 ). det(exp(ha)) lim = lim h 0 det(i n + ha) h Da Einträge ohne h in der Matrix I n + ha nur auf der Diagonalen stehen und eine Permutation σ S n mit n Fixpunkten gleich der Identität ist, folgt aus der Formel die Gleichung det(i n + ha) lim det(i n + ha) = σ S n sign(σ)(i n + ha) σ()... (I n + ha) nσ, ( ) = lim (+ha ) (+ha nn ) = Durch Einsetzen in den Ausdruck für g (t) erhalten wir n A ii = Spur(A). g det(exp(ha)) (t) = det(exp(ta)) lim = det(exp(ta)) Spur(A), also die Differentialgleichung g (t) = Spur(A) g(t). Mit der Anfangsbedingung g(0) = det(i n ) = folgt g(t) = exp(spur(a)t) für alle t, also insbesondere für t = die Aussage der Aufgabe. i= 0

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch Lineare Algebra D-MATH, HS 2014 Prof. Richard Pin Lösung zu Serie 20 1. (a) Bestimme alle irreduziblen Polynome vom Grad 4 in F 2 [X]. (b) Bestimme die Fatorisierung von X 6 + 1 und X 10 + 1 und X 20 +

Mehr

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie:

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie: Prof Emmanuel Kowalski Lineare Algebra II Serie 3 Sei V ein Vektorraum Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt Zeigen Sie: a Der Kern und das Bild einer Projektion

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Lineare Algebra II 12. Übungsblatt

Lineare Algebra II 12. Übungsblatt Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen.

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen. 9 Lineare Algebra (SS 009) 49 Das charakteristische Polynom sei Produkt von linearen Polynomen 49 Das charakteristische Polynom sei Potenz eines linearen Polynoms Wir betrachten nun eine Matrix A, sodass

Mehr

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010 Lösungsvorschläge zur Klausur Lineare Algebra, Herbst 200 I. Es seien n eine natürliche Zahl, M = {,..., n} N und S n die Gruppe der Permutationen der Menge M. Zeigen Sie: a) Für jedes a M ist H a := {σ

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 6. Vorlesung Michael Karow Themen heute: 1. Die geschlossene Lösungsformel für lineare DGL mit konstanten Koeffizienten. 2. Die Matrixexponentialfunktion

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0

Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0 Tutorium 3 1 Nilpotente Endomorphismen Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = Bemerkung. Sei V {}. Dann ist λ = einziger EW. Und wegen H(Φ, ) = Kern((Φ id) k ) Kern(Φ n ) = Kern() =

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix Jordansche Normalform - Beispielrechnung Dieses kurze Skript soll die jordansche Normalform erklären die auch oft als Trigonalisierung von Matrizen bezeichnet wird da man die Matrix auf eine bestimmte

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

12.3 Kommutierende Abbildungen

12.3 Kommutierende Abbildungen 12.3 Kommutierende Abbildungen Definition 12.3.1 Sei V ein endlichdimensionaler Vektorraum, und sei F eine Familie linearer Abbildungen V V mit UT = TU für alle U, T in F. Dann nennt man F eine Familie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Aufgabe 1. Welche der folgenden Abbildungen sind Sesquilinearformen oder Bilinearformen? Welche davon sind Skalarprodukte? (a) B 1 : R R R, (x, y) xy (b)

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1 Übungsblatt 1 Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors. Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie 13 Diese letzte Serie des Semesters befasst sich noch einmal mit wichtigen Themen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Vorlesung 28 If it works, it s out of date David Bowie Ein Zerlegungssatz Satz 28 Sei ϕ: V V ein trigonalisierbarer K-Endomorphismus

Mehr

Musterlösung Donnerstag - Determinanten und Eigenwerte

Musterlösung Donnerstag - Determinanten und Eigenwerte Musterlösung Donnerstag - Determinanten und Eigenwerte 6. März Aufgabe : Zum Aufwärmen () Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent,

Mehr

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 CAROLINE LASSER Inhaltsverzeichnis 1. Matrizen 2 1.1. Eliminationsverfahren (13.04.) 2 2. Euklidische Vektorräume 3 2.1. Skalarprodukte und

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Ferienkurs Lineare Algebra

Ferienkurs Lineare Algebra Ferienkurs Lineare Algebra Wintersemester 9/ Lösungen Eigenwerte und Diagonalsierbarkeit Blatt Diagonalisierbarkeit. Zeigen sie, dass für eine diagonalisierbare Matrix A folgendes gilt: det(a) = wobei

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 10 1. [Aufgabe] a) Sei V ein Unterraum eines K-Vektorraums V. Zeige, dass jede Linearform auf V eine Fortsetzung zu einer Linearform auf

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Proseminar Lineare Algebra SS10

Proseminar Lineare Algebra SS10 Proseminar Lineare Algebra SS1 Normalform von Matrizen Jordansche Normalform Philip Bauermeister Heinrich-Heine-Universität Betreuung Prof. Dr. Oleg Bogopolski 2 1 Matrizen linearer Abbildungen 1.1 Definition

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr