Musterlösung der Klausur zur linearen Algebra II

Größe: px
Ab Seite anzeigen:

Download "Musterlösung der Klausur zur linearen Algebra II"

Transkript

1 David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben Sie Ihre Antworten in die Tabelle. Matrix Jordan-Normalform. A, Sei A M 2 (C) mit. det(a) =,. Tr(A) =. Sei A M 4 (C) mit Sei A M 5 (C) mit Sei A M 6 (C) mit {. µa = (X 2) 2,. dim E(2, A) = 2. {. χa = (X 2) 3 (X 1) 2,. µ A = (X 2)(X 1) 2. {. A 2 = 4A,. rk(a) = 3. ( 1 )

2 Begründung : 1. Da A ein Element in M 2 (C) ist und C algebraisch abgeschlossen ist, ist A trigonalisierbar und damit ähnlich zu einer der beiden Matrizen ( ) ( ) λ1 1 λ1 oder λ 2 λ 2 wobei λ 1 und λ 2 die Eigenwerte von A sind. Aus der Bedingung det(a) = folgt λ 1 λ 2 =. Damit sind λ 1 und/oder λ 2 gleich. Aus der Bedingung Tr(A) = folgt λ 1 + λ 2 =. Damit sind beide Eigenwerte von A gleich. Da A, besitzt A die Jordan-Normalform ( ) Da A ein Element in M 4 (C) ist und C algebraisch abgeschlossen ist, ist A trigonalisierbar. Die Eigenwerte von A sind die Nullstellen des Minimalpolynoms. Damit gibt es nur den Eigenwert 2. Da das Minimalpolynom von der Form (X 2) 2 ist, gibt es nur Jordanblöcke von der Größe 1 oder 2 und mindestens einen der Größe 2. Damit gibt es nur zwei Möglichkeiten, bis auf Reihenfolge der Blöcke, für die Jordan-Normalform von A, nämlich J 1 = oder J 2 = Da für J 2 der Eigenraum zum Eigenwert 2 aber 3-dimensional ist, kann man diesen Fall ausschließen. Damit ist J 1 eine Jordan-Normalform A. 3. Da A ein Element in M 5 (C) ist und C algebraisch abgeschlossen ist, ist A trigonalisierbar. Die Eigenwerte von A sind die Nullstellen von χ A. Damit hat A die beiden Eigenwerte 1 und 2, wobei die algebraische Vielfachheit des Eigenwertes 1 gleich 2 ist und dementsprechend die algebraische Vielfachheit des Eigenwertes 2 gleich 3 ist. An dem Minimalpolynom kann man ablesen, dass es nur Jordanblöcke der Größe 1 zum Eigenwert 2 gibt und mindestens ein Jordanblock der Größe 2 zum Eigenwert 1 existiert. Damit ist die Matrix eine Jordan-Normalform von A Da A ein Element in M 6 (C) ist und C algebraisch abgeschlossen ist, ist A trigonalisierbar. Aus der Gleichung A 2 = 4A folgt A 2 4A =. Damit ist das Minimalpolynom µ A ein Teiler des Polynoms X 2 4X = X (X 4). Damit kann A nur die Eigenwerte und 4 besitzen. Außerdem ist A diagonalisierbar. Aus rk(a) = 3 folgt, dass die algebraische Vielfachheit des Eigenwertes 4 genau 3 ist. Eine Jordan-Normalform von A ist damit die Matrix

3 Aufgabe 2 Wir definieren vier Bilinearformen β 1, β 2, β 3, β 4 : R 3 R 3 R durch 1 1 Mβ E 1 := 1 Mβ E 2 := Mβ E 3 := wobei E die Standardbasis von R 3 ist Mβ E 4 := Sind diese Bilinearformen symmetrisch, alternierend, nicht ausgeartet, positiv definit? Wiederholung : Sei i {1, 2, 3, 4}., (β i ist symmetrisch.) : t M E β i = M E β i. (β i ist alternierend.) : t M E β i = M E β i. (β i ist nicht ausgeartet.) : rk(m E β i ) = 3. (β i ist positiv definit.) : (x y z) Mβ E i x y z > für alle x y z R 3 \ {}. Wir tragen die Antworten in die folgende Tabelle ein. Bilinearform symmetrisch alternierend nicht ausgeartet positiv definit β 1 β 2 β 3 β 4

4 Begründung : β 1 β 1 ist positiv definit wegen : x (x y z) Mβ E 1 y = x 2 + y 2 + z 2 für alle z x y z R 3. β 2 β 3 β 4 Da mindestens eine Null auf der Diagonalen von M E β 2 steht, ist β 2 nicht positiv definit. Der Rang von M E β 3 ist 1. β 3 ist also ausgeartet und damit nicht positiv definit (Satz 21.2 aus der Vorlesung). Wir sehen, dass β 4 alternierend ist. Der Rang einer alternierenden Bilinearform ist gerade (Satz 2.12 aus der Vorlesung). β 4 ist also ausgeartet und damit nicht positiv definit. Aufgabe 3 Seien K ein Körper, n 1 eine ganze Zahl und A M n (K) eine nilpotente Matrix. Zeigen Sie, dass A n =. Da A nilpotent ist, gibt es ein < k N mit A k = und A k 1, also ist nach Definition µ A (X) = X k. Nach dem Satz von Cayley-Hamilton ist µ A ein Teiler von χ A, also gilt n = deg χ A deg µ A = k. Dann ist die Behauptung klar, denn A n = A k A n k =. Aufgabe 4 Sei n 1 eine ganze Zahl, und sei A M n (C). Zeigen Sie : (A ist ähnlich zu 2A.) = (A ist nilpotent.). Sei µ C ein Eigenwert von A mit µ = max{ λ R + λ ist Eigenwert von A}.

5 Sei v E(µ, A), das heißt Av = µv. Es folgt (2A)v = (2µ)v und somit v E(2µ, 2A), bzw. 2µ ist Eigenwert von 2A. Nach Voraussetzung sind A und 2A ähnlich zueinander. Also gilt χ A = χ 2A, insbesondere haben A und 2A die selben Eigenwerte. Es folgt 2µ ist ein Eigenwert von A. Wegen der Maximalität von µ muss gelten 2µ = 2 µ = µ. Daraus folgt µ = und somit µ =. Wegen der Maximalität von µ sind damit alle Eigenwerte von A gleich Null, somit χ A = X n und nach dem Satz von Cayley-Hamilton gilt A n =. Also ist A nilpotent. Aufgabe 5 Wir definieren die Matrix A M 4 (R) durch A := Bestimmen Sie χ A. 2. Zeigen Sie, dass A trigonalisierbar ist. 3. Bestimmen Sie eine Jordan-Normalform von A. 4. Berechnen Sie µ A. 1. Das charakteristische Polynom von A ist gegeben durch X χ A = det(x I 4 A) = det 1 X 1 2 X 1 X 2. (( )) X 1 = det (X 1) (X 2) 1 X 1 = (X 1) 3 (X 3). 2. Da das charakteristische Polynom χ A in Linearfaktoren zerfällt, ist die Matrix A trigonalisierbar. 3. Da das charakteristische Polynom die Form (X 1) 3 (X 2) besitzt, gibt es, bis auf die Reihenfolge der Blöcke, nur drei mögliche Jordan-Normalformen für A, nämlich J 1 := 1 1, J 2 := oder J 3 :=

6 Um zu entscheiden, welche Jordan-Normalform die richtige ist, kann man die Dimension des Eigenraumes zum Eigenwert 1 berechnen. Es gilt : 1 1 E(1, A) = ker(i 4 A) = ker 1 2 = < 1 >. 1 Der Eigenraum E(1, A) ist also 1-dimensional. Damit kann nur J 3 die Jordan-Normalform von A sein. Es gilt also : 1 1 A An der Jordan-Normalform von A kann man sofort ablesen, dass das Minimalpolynom die Form (X 1) 3 (X 2) besitzt und damit mit dem charakteristischen Polynom übereinstimmt. Aufgabe 6 Seien A 1, A 2 M 3 (R) zwei schiefsymmetrische Matrizen. Wir definieren eine perfekte Bilinearform β : R 6 R 6 R und eine Matrix A M 6 (R) durch ( ) ( ) Mβ E := I3 A1 und A :=, I 3 A 2 wobei E die Standardbasis von R 6 ist. Zeigen Sie, dass A selbstadjungiert bezüglich β ist. Um zu zeigen, dass A selbstadjungiert bezüglich β ist, muss man zeigen, dass A = A ad gilt. Die Adjungierte A ad von A ist durch die Gleichungen ( ) β(a v, w) = β(v, A ad w), für alle v, w V, definiert. Da β perfekt ist, ist die Adjungierte durch diese Gleichungen eindeutig bestimmt. Die Bilinearform β ist durch die Matrix Mβ E definiert, d. h. wir haben und β(a v, w) = t (A v) M E β w = t v ta M E β w β(v, A ad w) = t v M E β A ad w. Aus den Gleichungen ( ) folgt nun t A M E β = M E β Aad. Dies ist aber äquivalent zu der Gleichung A ad = (M E β ) 1 ta M E β. Mit dieser Gleichung kann man nun Aad berechnen. Es gilt : A ad = ( ) I3 1 I 3 ( ) t A 2 t A 1 ( ) I3 = I 3 ( ) ( ) I3 t A 2 I 3 t = A 1 ( ) t A 1 t A 2

7 Da A 1 und A 2 schiefsymmetrisch sind, gilt A 1 = t A 1 und A 2 = t A 2. Damit gilt A ad = A und A ist selbstadjungiert. Aufgabe 7 Wir definieren eine positiv definite symmetrische Bilinearform β : R 4 R 4 R durch 1 Mβ E := , 1 1 wobei E die Standardbasis von R 4 ist. Bestimmen Sie eine Orthonormalbasis von R 4 bezüglich β. Wir benutzen den Algorithmus von Gram-Schmidt (Satz 2.18 aus der Vorlesung), um eine Orthogonalbasis von R 4 (bezüglich β) zu bestimmen. 1. Stufe : Eine Basis wählen. Wir bemerken, dass (e 1, e 3, e 4 ) eine Orthogonalbasis von < e 1, e 3, e 4 > bezüglich β <e1,e 3,e 4 > <e 1,e 3,e 4 >: < e 1, e 3, e 4 > < e 1, e 3, e 4 > R, (v 1, v 2 ) β(v 1, v 2 ) ist. Wir betrachten also die nummerierte Basis (v 1, v 2, v 3, v 4 ) := (e 1, e 3, e 4, e 2 ) von R 4. ( β(vr, u 1 ) 2. Stufe : Die Formeln u 1 := v 1, u r := v r β(u 1, u 1 ) u 1 β(v ) r, u r 1 ) β(u r 1, u r 1 ) u r 1, r 2 benutzen. u 1 = v 1 := e 1. u 2 = v 2 := e 3, wegen v 2 := e 3 β e 1 =: v 1. u 3 = v 3 := e 4, wegen v 3 := e 4 β e 1 =: v 1 und v 3 := e 4 β e 3 =: v 2. u 4 = v 4 β(v 4, u 1 ) β(u 1, u 1 ) u 1 β(v 4, u 2 ) β(u 2, u 2 ) u 2 β(v 4, u 3 ) β(u 3, u 3 ) u 3 = e 2 β(e 2, e 1 ) β(e 1, e 1 ) e 1 β(e 2, e 3 ) β(e 3, e 3 ) e 3 β(e 2, e 4 ) β(e 4, e 4 ) e 4 = e 2 1 e e e 4 = e 2 e e 3.

8 3. Stufe : Die Normen (bezüglich β) der Vektoren u 1, u 2, u 3, u 4 berechnen. u 1 β := β(u 1, u 1 ) = β(e 1, e 1 ) = 1. u 2 β := β(u 2, u 2 ) = β(e 3, e 3 ) = 2. u 3 β := β(u 3, u 3 ) = β(e 4, e 4 ) = 1. u 4 β := β(u 4, u 4 ) = = = β(e 2 e e 3, e 2 e e 3) β(e 2, e 2 ) 2β(e 2, e 4 ) 1 2 β(e 2, e 3 ) + β(e 4, e 4 ) β(e 4, e 3 ) β(e 3, e 3 ) = Stufe : Die Orthonormalbasis angeben. 1, 1 2 1, 1, ist eine Orthonormalbasis von R 4 (bzgl. β). Aufgabe 8 Sei n 1 eine ganze Zahl. Sei A M n (R) eine symmetrische und nilpotente Matrix. Zeigen Sie : A =. a) Nach dem Spektralsatz für symmetrische reelle Matrizen (Satz aus der Vorlesung) ist A diagonalisierbar. Beziehungsweise es existiert ein T O n (R) mit λ 1 T 1 AT = t TAT =..., λ n wobei λ 1,...,λ n R.

9 b) Sei l N. Es gilt : λ l 1... λ l n = (T 1 AT) l = T 1 A } TT{{ 1 } A } TT{{ 1 } A } TT{{ 1 }...TT }{{ 1 } A T = T 1 A l T. =I n =I n =I n =I n c) Da A nilpotent ist, existiert k N mit A k =. Dann ist T 1 A k T =, und es gilt nach b) : λ k 1 = = λ k n =. d) Es folgt aus a) und c), dass T 1 AT = ist. Also A =. Bemerkungen : 1. Teil b) und c) kann man auch direkt aus der Tatsache folgern, dass nilpotente Matrizen nur den Eigenwert besitzen. 2. Die Aussage gilt nicht für beliebige Körper. Zum Beispiel ist diese Aussage falsch für C statt R. Die Matrix ( ) 1 i A := i 1 ist symmetrisch und nilpotent (wegen det(a) = Tr(A) = ) aber ungleich! Aufgabe 9 Sei n 1 eine ungerade ganze Zahl, und sei A SO n (R). Zeigen Sie, dass 1 ein Eigenwert von A ist. 1. Sei die vom Standardskalarprodukt auf R n induzierte Norm, der Absolutbetrag auf R. Für jeden Eigenwert λ R von A O n (R) gilt λ { 1, 1}. Denn für v E(λ, A) gilt : v = Av = λ v λ = 1. Sei nun A SO n (R) = O n (R) SL n (R), d.h. A O n (R) und det(a) = 1. Wir faktorisieren m χ A = (X 1) k (X + 1) l (X α i )(X α i ), wobei α i C \ R, 1 i m gilt. Nach Voraussetzung gilt i=1 m det(a) = (1) k ( 1) l α i α i = 1 }{{} i=1 >

10 Also muss l gerade sein. Da aber n = k + l + 2m ungerade ist, muss k ungerade sein. Insbesondere ist k 1 und 1 ist Eigenwert von A. 2. Nach dem Spektralsatz für Isometrien (Satz aus der Vorlesung) existiert eine Orthonormalbasis B von R n bezüglich des Standardskalarprodukts auf R n mit MA B = I r1 I r2 ( cos(ϕ 1 ) sin(ϕ 1 ) sin(ϕ 1 ) cos(ϕ 1 ) )... ( cos(ϕk ) sin(ϕ k ) sin(ϕ k ) cos(ϕ k ) ), wobei ϕ 1,...,ϕ k R mit < ϕ i < π für i {1,...,k}. Dann bemerken wir, dass gelten. a) n = r 1 + r 2 + 2k und b) det(a) = det(m B A ) = 1 r 1. ( 1) r 2. (cos(ϕ 1 ) 2 + sin(ϕ 1 ) 2 )..... (cos(ϕ k ) 2 + sin(ϕ k ) 2 ) = ( 1) r 2 Es folgt aus b) und det(a) = 1 (nach Definition), dass r 2 gerade ist. Aber n ist ungerade und 2k ist gerade. Dann folgt aus a), dass r 1 ungerade ist. Insbesondere ist r 1 1 und 1 ist Eigenwert von A.

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5 Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band,.Aufl. Version, Kapitel 5 Bilinear-und Sesquilinearformen Abschnitt.A, Aufg., p. 6.6. : Man bestimme die

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Der Golay-Code und das Leech-Gitter

Der Golay-Code und das Leech-Gitter Der Golay-Code und das Leech-Gitter Vortrag zum Seminar Gitter und Codes Nils Malte Pawelzik.5.5 Inhaltsverzeichnis Designs 3. Elementare Eigenschaften eines Designs und die Eindeutigkeit eines - (, 5,

Mehr

Quantenautomaten und das Cut-Point-Theorem für beschränkte erkennbare Potenzreihen

Quantenautomaten und das Cut-Point-Theorem für beschränkte erkennbare Potenzreihen Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Quantenautomaten und das Cut-Point-Theorem für beschränkte erkennbare Potenzreihen Bachelorarbeit Leipzig, September 2009

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche Lineare Algebra für Informatiker TUM Sommersemester 20 Dozent: Christian Pötzsche Janosch Maier 3. Juli 20 Herzlichen Dank an Lucas Westermann, Florian Scheibner (https://github. com/lswest/lamitschrift)

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science an der Technischen Universität Berlin Verfasser:

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Orthogonale Funktionenräume

Orthogonale Funktionenräume Orthogonale Funktionenräume Richard Küng February 27, 24 Contents Vektorräume mit Skalarprodukt 2 2 Lineare Abbildungen: Matrizen und Operatoren 8 2. Matrizen................................ 8 2.. Diagonalisieren

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

II. Ringe und Moduln für etwas Fortgeschrittene

II. Ringe und Moduln für etwas Fortgeschrittene II. Ringe und Moduln für etwas Fortgeschrittene II.1 Algebren 2.1.1 Definition/Bemerkung (Die Kategorie der R -Algebren) a) Es sei R ein Ring. Eine R -Algebra ist ein R -Modul A, der gleichzeitig ein Ring

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Mögliche Prüfungsfragen zu VO Mathematische Software

Mögliche Prüfungsfragen zu VO Mathematische Software Mögliche Prüfungsfragen zu VO Mathematische Software SS 2009 Der Prüfungsstoff umfasst alles, was in der Vorlesung vorgetragen wurde. Die folgende Liste soll Ihnen bei der Vorbereitung helfen. Bei der

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Gitter und Codes. SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer

Gitter und Codes. SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer Gitter und Codes SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer In dieser Vorlesung werden Grundlagen, schöne Beispiele und Ergebnisse der kombinatorischen und geometrischen Theorie von Gittern und einige Analoga

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr