Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Größe: px
Ab Seite anzeigen:

Download "Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen"

Transkript

1 Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli : 1 [1,1]

2 Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel Vorgehen 1D Problembeschreibung UOP 2 Ableitungen Funktionen mehrerer Veränderlicher Gradient Hessian Satz von Taylor/ Taylorentwicklung Lineares und quadratisches Modell 3 Definitheit von symmetrischen quadratischen Matrizen Definition Optimalitätskriterien 2. Ordnung Kriterien für Definitheit 2: 2 [2,2]

3 Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel Vorgehen 1D Problembeschreibung UOP 2 Ableitungen Funktionen mehrerer Veränderlicher Gradient Hessian Satz von Taylor/ Taylorentwicklung Lineares und quadratisches Modell 3 Definitheit von symmetrischen quadratischen Matrizen Definition Optimalitätskriterien 2. Ordnung Kriterien für Definitheit 3: 3 [3,3]

4 Aufgabenstellung mehrdimensional Aufgabe Minimiere f (x, y) = 2x 2 + 2y 2 2x + 10y + 4 bezüglich x, y R. 4: 4 [4,4]

5 Aufgabenstellung 1-dimensional Minimiere f (x) = 2x 2 2x + 4 bezüglich x R. 5: 5 [5,5]

6 Arbeitsplan 1 Erste Ableitung bilden! 2 Erste Ableitung Null setzen, nach x auflösen! 3 Auf tatsächliche Extrema (Minima) untersuchen Vorzeichenwechsel (von + nach ) 2. Ableitung größer 0: sicher striktes Minimum kleiner 0: sicher striktes Maximum (kein Minimum!) gleich 0:? ggf. Funktionswerte berechnen 4 lokale Extremwerte miteinander vergleichen 5 Randuntersuchung: was ist mit lim x ± f (x)? 6: 6 [6,6]

7 Grenzen der Methode 7: 7 [7,8]

8 Grenzen der Methode Ableitungen müssen existieren Gleichungssysteme müssen sich lösen lassen Bedingungen sind (im allg.) entweder nicht notwendig oder nicht hinreichend! 7: 8 [7,8]

9 Problembeschreibung UOP unrestringiertes Optimierungsproblem (UOP): Minimiere f (x) bezüglich x R n. 8: 9 [9,9]

10 Nichtlineare Optimierung (NonLinear Programming) (Wdhlg) Minimiere f (x) unter h i (x) = 0 i E g i (x) 0 i I x Ω = R n f, g i, h i hinreichend glatt, C 1 (R n ) oder C 2 (R n ) E und I endliche Mengen falls E = I = : freie/unrestringierte Optimierung sonst restringierte Optimierung oder Opt. mit Nebenbed. Ziel: lokales Optimum (aber oft schon Zulässigkeit schwer!) Anw.: Optimalsteuerung, Parameterschätzung (nichtlin.), Lösung nichtlinearer Gleichungssysteme 9: 10 [10,11]

11 Nichtlineare Optimierung (NonLinear Programming) (Wdhlg) Minimiere f (x) unter h i (x) = 0 i E g i (x) 0 i I x Ω = R n Verf.: für lokal gute Konvergenz: Newton, Quasinewton,... zur Suche lokaler Mulden: Line-Search, Trust-Region, CG,... Input: Unterroutinen für Funktionswert, Gradient, (Hessematrix) Größe: einige 100 bis einige 1000 Variablen (mehr bei spez. Struktur) 9: 11 [10,11]

12 Rechnung Beispiel 1 Erste Ableitung bilden! 2 Erste Ableitung Null setzen, nach x auflösen! 3 Auf tatsächliche Extrema (Minima) untersuchen 2. Ableitung größer 0: sicher striktes Minimum kleiner 0: sicher striktes Maximum (kein Minimum!) gleich 0:? 4 lokale Extremwerte miteinander vergleichen 5 Randuntersuchung: was ist mit lim x ± f (x)? 10: 12 [12,12]

13 Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel Vorgehen 1D Problembeschreibung UOP 2 Ableitungen Funktionen mehrerer Veränderlicher Gradient Hessian Satz von Taylor/ Taylorentwicklung Lineares und quadratisches Modell 3 Definitheit von symmetrischen quadratischen Matrizen Definition Optimalitätskriterien 2. Ordnung Kriterien für Definitheit 11: 13 [13,13]

14 Partielle Ableitung Wir betrachten f (x) = f (x 1,..., x n ) kurzzeitig als nur von x i (i = 1,..., n fest) abhängig: h(x i ) = f (x 1,..., x i,..., x n ), mit x 1,..., x i 1, x i+1,..., x n fest (Parameter). h(x i ) = h x1,...,x i 1,x i+1,...,x n (x i ) Die Ableitung h (x i ) = dh(x i ) dx i nach x i genannt: wird dann partielle Ableitung von f (x) 12: 14 [14,14] [ = df (x 1,..., x i,..., x n ) dx i h x 1,...,x i 1,x i+1,...,x n (x i ) = f xi (x) ] f (x) = x i f x i ist wie f eine Funktion R n R. = f x i (x) = x i f (x)

15 Gradient = Vektor aller partiellen Ableitungen f x 1 (x) f x grad f (x) = f (x) = 2 (x). f x n (x) ( heißt Nabla bzw. Nabla-Operator) Entspricht der 1. Ableitung von f, grad f : R n R n. 13: 15 [15,15]

16 Notwendiges Optimalitätskriterium 1. Ordnung Voraussetzung: f hat in x ein lokales Minimum oder Maximum grad f ( x) existiert und ist stetig x liegt im Inneren des zulässigen Gebietes Schlussfolgerung: grad f ( x) = 0 Bezeichnung: x heißt stationärer Punkt von f, (extremwertverdächtig zusammen mit Randpunkten), falls grad f ( x) = 0 14: 16 [16,16]

17 Mehrfache partielle Ableitungen x i ( ) f (x) = 2 f (x) = ( ) f xj (x) = f x j x i x x xj,x i (x) j i Satz von Schwarz: Reihenfolge der Differentiation darf vertauscht werden, wenn beide betroffenen partiellen Ableitungen existieren und in der Nähe stetig sind: f xj,x i (x) = f xi,x j (x) f xj,...,x i (x) = f xi,...,x j (x) 15: 17 [17,17]

18 Hessian = Hesse-Matrix = 2. Ableitung f x1,x 1 (x) f x1,x 2 (x)... f x1,x n (x) f x2,x 1 (x) f x2,x 2 (x)... f x2,x n (x) H f (x) = (f xi,x j ) i,j=1...n = f xn,x1 (x) f xn,x2 (x)... f xn,xn (x) (grad f x1 (x)) T (grad f x2 (x)) T =. (grad f xn (x)) T 16: 18 [18,18]

19 1D-Variante Taylorentwicklung wenn k-te Ableitung noch stetig ist: f (x + d) = f (x) + f (x)d + f (x) d f (k) (x) d k k! + r k(d) so dass für kleine d der Rest r(d) unbedeutend klein gegenüber d k ist. k = 0: f (x + d) = f (x) + r 0 (d), r 0 (d) 0 k = 1: f (x + d) = f (x) + f (x)d + r 1 (d), r 1(d) d 0 k = 2: f (x + d) = f (x) + f (x)d f (x)d 2 + r 2 (d), r 2 (d) d : 19 [19,19]

20 n-d-variante Taylorentwicklung x, d R n, f : R n R k = 0: f (x + d) = f (x) + r 0 (d), r 0 (d) 0 k = 1: f (x + d) = f (x) + (grad f (x)) T d + r 1 (d), r 1(d) d 0 k = 2: f (x + d) = f (x) + (grad f (x)) T d d T H f (x)d + r 2 (d), r 2 (d) d : 20 [20,20]

21 Konstantes Modell f (x) c am besten in der Nähe von x, wenn c = f ( x) =: f 0, x. 19: 21 [21,21]

22 Lineares Modell Tangente/Tangentialebene f (x) a T x + b am besten in der Nähe von x, wenn b = f ( x), a = grad f ( x). Mit f 1, x (x) := f ( x) + (grad f ( x)) T (x x) (Lineares Modell von f in x) liefert Taylor in x (und d = x x) f (x) = f 1, x (x) + r 1 (x x) = f 1, x (x) + o( x x ) (o(... ) ist das Landau-Symbol: eine Funktion die uns nicht genau interessiert, aber kleiner als... ist; jedes Mal eine neue Funktion!) 20: 22 [22,22]

23 Quadratisches Modell quadratische Näherung f (x) x T Ax + a T x + b am besten in der Nähe von x, wenn b = f ( x), a = grad f ( x) und A = 1 2 H f ( x). Mit f 2, x (x) := f ( x) + (grad f ( x)) T (x x) (x x)t H f ( x)(x x) (Quadratisches Modell von f in x) liefert Taylor in x (und d = x x) f (x) = f 2, x (x) + r 2 (x x) = f 2, x (x) + o( x x 2 ) 21: 23 [23,23]

24 Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel Vorgehen 1D Problembeschreibung UOP 2 Ableitungen Funktionen mehrerer Veränderlicher Gradient Hessian Satz von Taylor/ Taylorentwicklung Lineares und quadratisches Modell 3 Definitheit von symmetrischen quadratischen Matrizen Definition Optimalitätskriterien 2. Ordnung Kriterien für Definitheit 22: 24 [24,24]

25 Fragestellung Was entspricht den Bedingungen f (x) > 0, f (x) 0, f (x) < 0, f (x) 0, f (x) = 0? Quadratisches Modell: d T H f (x)d > 0 falls d 0 d T H f (x)d 0 für alle d 23: 25 [25,25]

26 Definitheit Eine (quadratische, symmetrische) Matrix H heißt positiv definit, wenn d T Hd > 0 für alle d 0 negativ definit, wenn d T Hd < 0 für alle d 0 (d.h. wenn H positiv definit ist) 24: 26 [26,26]

27 Semidefinitheit Eine (quadratische, symmetrische) Matrix H heißt positiv semidefinit, wenn d T Hd 0 für alle d negativ semidefinit, wenn d T Hd 0 für alle d (d.h. wenn H positiv semidefinit ist) 25: 27 [27,27]

28 Indefinit Matrix H heißt indefinit, wenn H weder positiv noch negativ semidefinit ist! 26: 28 [28,28]

29 Notwendiges Optimalitätskriterium 2. Ordnung Voraussetzung: f hat in x ein lokales Minimum H f ( x) existiert und ist stetig x liegt im Inneren des zulässigen Gebietes Schlussfolgerung: H f ( x) ist positiv semidefinit 27: 29 [29,29]

30 Hinreichendes Optimalitätskriterium 2. Ordnung Voraussetzung: x liegt im Inneren des zulässigen Gebietes x ist ein stationärer Punkt: grad f ( x) = 0 H f ( x) existiert und ist stetig H f ( x) ist positiv definit Schlussfolgerung: f hat in x ein strenges/striktes lokales Minimum 28: 30 [30,30]

31 Zusammenfassung 1 Erste Ableitung (Gradient) bilden! 2 Gradient Null setzen, alle stationären Punkte berechnen! 3 Jeweils auf Minima untersuchen. Ist Hesse-Matrix: positiv definit: sicher striktes Minimum negativ definit: sicher striktes Maximum (kein Minimum) nicht positiv semidefinit (indefinit oder negativ semidefinit): kein Minimum positiv semidefinit aber nicht positiv definit :? 4 lokale Extremwerte miteinander vergleichen 5 Randuntersuchung: allgemein schwierig, praktisch oft klar 29: 31 [31,31]

32 Eigenwerte 30: 32 [32,32]

33 Determinanten von Untermatrizen 31: 33 [33,33] A ist genau dann positiv definit, wenn alle Hauptminoren (Hauptunterdeterminanten) positiv sind: k = 1... n : k = det(a i,j ) i,j=1,...,k > 0 A ist genau dann negativ definit, wenn die Hauptminoren wechselnde Vorzeichen -,+,-,... haben: k = 1... n : ( 1) k k > 0 Wenn A positiv semidefinit ist, so sind alle Hauptminoren nicht negativ: k = 1... n : k 0 Umkehrung geht nicht so (aber mit deutlich mehr Untermatrizen geht es) negativ semidefinit wieder analog

34 Kleine Matrizen ( ) a b A = b c Hauptminoren sind 1 = a, 2 = det A =: 1 > 0 a > 0: A positiv definit a < 0: A negativ definit a = 0: Widerspruch! 2 < 0: A indefinit 3 = 0: weder positiv noch negativ definit a + c = 0: auch b = 0, positiv und negativ semidefinit a + c > 0: positiv semidefinit a + c < 0: negativ semidefinit 32: 34 [34,34]

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2015 (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) =a 2 b 2 Fakultät (Faktorielle) n! =1 2 3 4 (n 1) n Intervalle Notation

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 39 Definitheit von Bilinearformen Wir möchten die symmetrischen Bilinearformen über den reellen Zahlen klassifizieren.

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

26. Höhere Ableitungen

26. Höhere Ableitungen 26. Höhere Ableitungen 331 26. Höhere Ableitungen Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räumen das Konzept der Differenzierbarkeit definieren und für

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Kritischer Punkt. Kritischer Punkt 1-1

Kritischer Punkt. Kritischer Punkt 1-1 Kritischer Punkt Für eine skalare Funktion f bezeichnet man x als kritischen Punkt, wenn grad f (x) = (0,..., 0)textt. Ist f zweimal stetig differenzierbar, so wird der Typ des kritischen Punktes, d.h.

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Kurvendiskussion für Funktionen mit einer Variablen

Kurvendiskussion für Funktionen mit einer Variablen Kurvendiskussion für Funktionen mit einer Variablen Unter der Kurvendiskussion einer Funktionsgleichung versteht man die Zusammenstellung der wichtigsten Eigenschaften ihres Bildes mit anschließender Zeichnung.

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung MATTHIAS GERDTS Einführung in die lineare und nichtlineare Optimierung Address of the Author: Matthias Gerdts Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Statische Optimierung unter Gleichungsrestriktionen (Lagrange)

Statische Optimierung unter Gleichungsrestriktionen (Lagrange) Kapitel 2 Statische Optimierung unter Gleichungsrestriktionen (Lagrange) 21 Einleitung/Ziel/Bedeutung/Übersicht Viele ökonomischen Fragestellungen bestehen im Kern zwar aus einem statischen Optimierungsproblem,

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim A Analysis, Woche 8 Partielle Ableitungen A 8. Partielle Ableitungen Wir haben vorhin Existenzkriterien für Extrema betrachtet, aber wo liegen sie genau? Anders gesagt, wie berechnet man sie? In einer

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 9. Differentialrechnung für Funktionen mehrerer Variablen Prof. Dr. Gunar Matthies Sommersemester

Mehr

Das Optimierungsverfahren mit Lagrange-Multiplikatoren. Robert Koschig (www.massmatics.de), 09/2012

Das Optimierungsverfahren mit Lagrange-Multiplikatoren. Robert Koschig (www.massmatics.de), 09/2012 Das Optimierungsverfahren mit Lagrange-Multiplikatoren Robert Koschig www.massmatics.de, 9/ Inhaltsverzeichnis Motivation. Wo taucht so etwas auf?...................................... Was ist das Problem?......................................

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 MAT.4 - Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 Aufgabe Sei ϕ : V V R eine symmetrische Bilinearform auf einem reellen Vektorraum V. Für die Vektoren v,...,v n V gelte ϕ(v

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr