Teil II Optimierung. Peter Buchholz Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung
|
|
- Caroline Hummel
- vor 1 Jahren
- Abrufe
Transkript
1 Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann, Morlock: Operations Research Hanser 2002 (Kap. 1, 3, 4, 5.1) zu 10 und 11: Vanderbei. Linear Programming: Foundations & Extensions 4th Ed., Springer zu 11: Originalartikel zu 12: D. P. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific
2 9 Einführung, Klassifizierung und Grundlagen Sichtweise in den Kapiteln 2-8: Eingabe Ermittlung der Ausgaben zu gegebenen Eingaben je nach Struktur des Modells analytisch, numerisch, simulativ Modell Ausgabe Sichtweise in den Kapiteln 10-12: Finde Eingaben, so dass die Ausgabe optimal ist je nach Modellstruktur werden unterschiedliche Methoden zur Optimierung eingesetzt notwendige Eingabe Modell optimale Ausgabe 2
3 Minimierung/Maximierung von Funktionen Erst einmal ohne Berücksichtigung eines Zeitaspekts Abstrakt untersuchen wir Funktionen f(x): W Ziel: min x W (f(x)) oder auch max x W (f(x)) min x W (-f(x)) Annahmen über f(x) (steigende Komplexität): Kann analytisch berechnet werden + Gradienten liegen in geschlossener Form vor Kann numerisch an einem Punkts ausgewertet werden, Gradienten sind numerisch zu ermitteln Nur Zusammenhang zwischen Ein- und Ausgaben bekannt, Gradienten nur aus Differenzenquotienten approximierbar 3
4 Zulässige Bereich W definiert den Definitionsbereich, in dem ein Optimum gesucht wird In der Informatik sind diskrete Probleme von besonderem Interesse Mathematische Optimierung behandelt ursprünglich primär den kontinuierlichen Fall, nun aber auch vermehrt diskrete Probleme In vielen Problemen treten diskrete und kontinuierliche Parameter auf Auf einem Rechner wird jedes Problem diskret, trotzdem unterscheiden sich aber die Optimierungsverfahren deutlich. Diskrete Optimierung ist ein Schwerpunkt in Dortmund einige Vorlesungen zum Thema in der Informatik Hier eine Einführung, die im Wesentlichen diskrete Probleme behandelt 4
5 W n wird durch Funktionen g i (i = 1,...,p) und h j (j = 1,...,m) beschrieben, so dass für alle x gelten muss g i (x) = 0 und h j (x) 0 (Gleichungen auch darstellbar durch h j 1 (x) 0 und h (x) 0) j2 W bezeichnet man als den zulässigen Bereich In der mathematischen Optimierung wird i.d.r. davon ausgegangen, dass die Funktionen in geschlossener Form vorliegen. Man unterschiedet u.a. 1. Nach Art der Zielfunktion 2. Art der Nebenbedingungen Grundsätzlich lassen sich einige der Verfahren aber auch auf allg. Zielfunktionen (z.b. komplexe Simulationsmodelle) übertragen (was in der Vorlesung aber nicht im Mittelpunkt steht) 5
6 Klassifizierung einiger Optimierungsprobleme Charakteristik Eigenschaft Klassifizierung Anzahl Parameter eins univariat mehrere multivariat Parametertyp reelle Zahlen kontinuierlich ganze Zahlen ganzzahlig Permutationen kombinatorisch Zielfunktion lineare Funktion linear quadratische quadratisch Funktion konvex konvex allgemein nichtlinear Nebenbedingungen ohne unbeschränkt mit beschränkt 6
7 Optimalitätsbedingungen Sattelpunkt globales Minimum Beschränkung zulässiger Bereich lokale Minima x* ist globales Minimum, falls y W: f(x*) f(y) x* ist lokales Minimum, falls y (x*): f(x*) f(y) wobei (x*) W die Nachbarschaft zulässiger Punkte von x* ist N(x) = {y y W x-y } für > 0 und x W lokale Minima globales Minimum 7
8 Status der vorhandenen Lösungsverfahren: Zahlreiche unterschiedliche Methoden existieren teilweise auf spezifische Problemklassen zugeschnitten nur wenige Ansätze sind für breite Problemklassen einsetzbar oder einsetzbar wenn f nicht explizit vorliegt (z.b. bei der Simulation) Zahlreiche Techniken weisen eine recht hohe worst case Komplexität auf Einige davon sind in der Praxis trotzdem effizient einsetzbar (z.b. Simplexmethode für lineare Probleme) Andere Problemklassen sind auch praktisch schwierig/aufwändig zu lösen (z.b. viele kombinatorische Probleme) Neben Methoden zum garantierten Finden globaler Optima existieren zahlreiche Ansätze, die nur lokale Optima finden nur gute Lösungen finden (Approximation des Optimums) Neben klassischen Optimierungsverfahren werden verstärkt Heuristiken und Metaheuristiken eingesetzt oft Kombinationen aus zufallsgesteuerten Verfahren mit problemspezifischen Komponenten 8
9 Klassifizierung von Lösungsmethoden für kontinuierliche Probleme: White box-methoden: Struktur von f(x) wird zur Optimierung genutzt Gradient enthält die partiellen Ableitungen Gradient zeigt Richtung der Verbesserung der Suchrichtung Notwendige Bedingungen für ein (lokales) Optimum: Gradient = 0 oder keine Verbesserung des erreichten Funktionswertes mehr möglich, ohne W zu verlassen 9
10 Black box-methoden: keine Kenntnis über die Struktur von f(x) Auswertung von f(x) an einigen Punkten Suchrichtung aus den bekannten Funktionswerten ermitteln Deterministische Suchverfahren: systematische Suche nach dem Optimum durch Eingrenzung Stochastische Suchverfahren: zufallsgesteuerte Suche nach dem Optimum Metamodellbasierte Verfahren: Bildung eines einfachen Ersatzmodells aus bekannten Werten Bestimmung der Suchrichtung oder neuer Suchpunkte aus dem Metamodell Abbruch der Suche, wenn in einem vorgegebenem Zeitintervall keine bessere Lösung mehr gefunden wird 10
11 Lokale - globale Optimierung Optimalitätsbedingungen sichern i.d.r. nur lokale Optimalität Nur in wenigen Fällen gilt lokales Optimum globales Optimum Ansonsten oft heuristisches Vorgehen: 1. Wähle zufällig oder systematisch neuen Startpunkt 2. Führe lokale Optimierung aus 3. Falls neues lokales Optimum besser als bisherige lokale Optima, speichere Optimum 4. Falls Abbruchbedingung erfüllt, gib bestes lokales Optimum aus, sonst fahre bei 1 fort Abbruchbedingungen: Anzahl Versuche, keine Verbesserung für x Versuche, erreichter Wert besser als Schranke,. 11
12 Darüber hinaus treten in der Praxis zahlreiche Optimierungsprobleme auf, die sich nicht in die vorherige Klassifizierung einordnen lassen So kann das Optimierungsproblem von zusätzlichen Zufallseinflüssen abhängen die Optimierung als dynamischer Prozess betrachtet werden, bei dem durch Entscheidungen zu einem Zeitpunkt die Zukunft und damit zukünftige Entscheidungen beeinflusst werden (z.b. Lagerhaltung) der Wert der Zielfunktion sich mit der Zeit ändern, so dass das Optimum permanent neu ermittelt werden muss die Zielgröße mehrdimensional sein und sich nicht auf einen skalaren Resultatwert abbilden lassen 12
13 Zufallseinflüsse (stochastische Optimierung, Optimierung stochastischer Funktionen) f(x) ist ZVs f(x,u) ist eine deterministische Funktion (Aussagen über alle möglichen u gewünscht) Definition eines Optimierungsziels: Was heißt f(x)<f(y)? Oft verwendet Minimierung/Maximierung des Erwartungswertes E[f(x,u)] oder der Varianz 2 [f(x,u)] oder der Kombination aus Erwartungswert und Varianz Nebenbedingungen ZVs sein, z.b. E(h(x)) 0 Typisches Szenario bei der Optimierung von Simulationsmodellen, bei denen f oder h darüber hinaus nicht in geschlossener Form vorliegt 13
14 Dynamische Optimierung Probleme in Stufen/Schritte unterteilt (z.b. Perioden in einem Lager), nach einem Schritt sind neue Informationen bekannt (z.b. Bedarf in der Periode) können Entscheidungen getroffen werden (z.b. Bestellmenge für die nächste Periode) Periode Bestand t-1 t Bestand t+1 Bestellung Bestellung 14
15 Zeitabhängigkeit der Zielfunktion: Erweiterung der schrittweisen/stufenweisen Sichtweise Informationen treffen zu kontinuierlichen Zeitpunkten ein und sorgen für neue Parameter in der Zielfunktion und/oder den Nebenbedingungen (z.b. aktuelle Verkehrsinformationen bei der Routenplanung, Ausfall/Reparatur bei der Fertigungsplanung) Optimum muss nachgeführt werden auf Basis Berücksichtigung bereits durchgeführter Schritte Informationen über das zukünftige Verhalten Probleme enthalten oft stochastische Annahmen Anwendungsgebiet für iterative (heuristische) Verfahren 15
16 Multikriterielle Zielfunktion Mehrere Zielfunktionen: Pareto-Front Verbesserungen f j (x) (j=1,,m) Beste Lösung existiert i.d.r. nicht! x dominiert y f j (y) f j (x) für alle j ansonsten unvergleichbar Pareto-Front enthält Lösungen, die nicht dominiert werden! Auswahl der besten/passendsten Lösung weitere Informationen oder menschliche Entscheider Abbildung auf ein Kriterium durch gewichtete Summe: f(x) = j=1,,m j f j (x) (einfache Transformation oft nicht ausreichend!) 16
17 Vorlesung kann nur einen kleinen Teilbereich der Optimierung behandeln Ausgewählte Themengebiete und die Begründung für die Auswahl: Ansätze die erfolgreich für eine praktisch relevante Klasse von Problemen eingesetzt wurden Lineare Programmierung Dynamische Programmierung Einführung in die ganzzahlige und kombinatorische Optimierung Nicht behandelt werden u.a. Nichtlineare Optimierung Methoden zur Optimierung von Simulationsmodellen Inhalt der Vorlesung Mod.&Sim. im WS 17
18 Ziele: Einordnen können von Optimierungsproblemen Kennen lernen der bei der Optimierung auftretenden Probleme Kennen lernen der Struktur linearer Programme und des Simplexalgorithmus Kennen lernen grundsätzlicher Ansätze zur ganzzahligen und kombinatorischen Optimierung Einordnen der Modelle, die mit dynamischer Optimierung lösbar sind in die Klasse der Entscheidungsprobleme Übersicht über Lösungsmethoden der dynamischen Optimierung erlangen 18
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den
Teil II. Nichtlineare Optimierung
Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene
Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg
Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei
4. Dynamische Optimierung
4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger
Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII
Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................
Nichtlineare Optimierung ohne Nebenbedingungen
Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt
Optimalitätskriterien
Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen
Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298
Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations
Operations Research II
Operations Research II Einführung in die kombinatorische Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Operations Research
Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)
1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...
Optimierung. Florian Jarre Josef Stoer. Springer
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis
Optimal Control in Air Traffic Management
Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration
Inhaltsverzeichnis. TEIL I: Einführung in EXCEL
Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK
UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK Thomas Fober Experimentelle Analyse Evolutionärer Algorithmen auf dem CEC 2005 Testfunktionensatz Diplomarbeit 01.07.2006 I N T E R N E B E R I C H T E I N T
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen
Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes
Extrema von Funktionen in zwei Variablen
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
EXCEL in der Wirtschaftsmathematik
Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm
Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:
Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an
Computer Vision: Optische Flüsse
Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische
Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL
12 Synthese Eingebetteter Systeme Sommersemester 2011 16 Abbildung von Anwendungen: Optimierung mit DOL 2011/06/24 Michael Engel Informatik 12 TU Dortmund unter Verwendung von Foliensätzen von Prof. Lothar
1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung
1 Einleitung 1.1 Motivation und Zielsetzung der Untersuchung Obgleich Tourenplanungsprobleme zu den am häufigsten untersuchten Problemstellungen des Operations Research zählen, konzentriert sich der Großteil
(Lineare) stochastische Optimierung
(Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:
ENTSCHEIDUNGSUNTERSTÜTZUNG IN DER CHEMIEANLAGENPLANUNG
ENTSCHEIDUNGSUNTERSTÜTZUNG IN DER CHEMIEANLAGENPLANUNG Richard Welke, Karl-Heinz Küfer, Anton Winterfeld, Fraunhofer ITWM, Norbert Asprion, BASF SE 7. Symposium Informationstechnologien für Entwicklung
Optimierung mit Matlab
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester
Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206
Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem
Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen
Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz
Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen
Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63
1 Einleitung... 1 1.1 Optimierungstypen.............................................. 3 1.2 Motivation und Grundbegriffe der Optimierung........................... 4 1.3 Allgemeine Form des Optimierungsproblems............................
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
Nichtlineare Optimierungsprobleme mit Komplexität
Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-
Die CUTEr Testbibliothek
Die CUTEr Testbibliothek Slide 1 Motivation Softwarepakete mit vollkommen verschiedenen Anwendungsschwerpunkten Optimierung entweder nur einer von vielen Schwerpunkten oder sogar nur Nebenprodukt zur Lösung
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag
Rechnerpraktikum zur Optimierung III
TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten
Modelle, Verfahren, Software, Anwendungen
Leena Suhl»TaTeb Mellouli Optimierungssysteme Modelle, Verfahren, Software, Anwendungen 3., korrigierte und aktualisierte Auflage ^ Springer Gabler Inhaltsverzeichnis Einleitung 1 1 Optimierungssysteme
Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik
Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis
Diskrete Optimierung
Diskrete Optimierung Mi 10-12, C118, Sand Dr. Stephanie Reifferscheid Universität Tübingen, WSI 12. Oktober 2011 Dr. Stephanie Reifferscheid Diskrete Optimierung 12. Oktober 2011 1 / 17 Technisches Erreichbarkeit
Heuristiken im Kontext von Scheduling
Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35
Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.
ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische
Klausur Mathematik 2
Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-
Lösungen zu den Übungsaufgaben aus Kapitel 5
Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung
Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla
LINDO API, LINGO & What sbest! Power-Anwendungen für Optimierungsaufgaben
LINDO API, LINGO & What sbest! Power-Anwendungen für Optimierungsaufgaben Die LINDO SYSTEMS Produktfamilie Lösungen für unterschiedlichste Optimierungsprobleme. Lösungsmethoden und -algorithmen per API,
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung
Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
Einführung in Statistik und Messwertanalyse für Physiker
Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1
Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen
Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die
Modulabschlussklausur Analysis II
Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen
Jena Research Papers in Business and Economics
Jena Research Papers in Business and Economics Operations Research Begriffsklärung und Kurzübersicht Armin Scholl, Doreen Krüger 21/2007 Jenaer Schriften zur Wirtschaftswissenschaft Working and Discussion
Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13
Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester
Numerisches Programmieren
Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,
Transformation und Darstellung funktionaler Daten
Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel
Stochastische Optimierung von Gaskraftwerken, speichern und kontrakten unter Take-or-Pay-Nebenbedingungen
Stochastische Optimierung von Gaskraftwerken, speichern und kontrakten unter Take-or-Pay-Nebenbedingungen Nils Löhndorf, WU Wien David Wozabal, TU München Das Problem Ressourcenbewirtschaftung unter Unsicherheit
Produktionswirtschaft (Teil B) II. Teilbereiche der Produktionsplanung II.1 Lagerhaltung und Losgrößen
Produktionswirtschaft (Teil B) II. Teilbereiche der Produktionsplanung II.1 Lagerhaltung und Losgrößen II Teilbereiche der Produktionsplanung...2 II.1 Lagerhaltung und Losgrößen... 2 II.1.1 Einführung
Finite Differenzen und Elemente
Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse
Z = 60! 29!31! 1,1 1017.
Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der
Rapid Control Prototyping
Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem
Schranken für zulässige Lösungen
Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung
IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1
IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand
Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse
Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!
Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer
Mathematik I für Wirtschaftswissenschaftler
1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.
In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.
Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht
34 5. FINANZMATHEMATIK
34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.
Approximationsalgorithmen
Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.
Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik
Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,
Standortplanung in logistischen Netzwerken
Standortplanung in logistischen Netzwerken Das Steiner-Weber-Problem Ein Unterrichtsprojekt zur angewandten Mathematik für die 11. Jahrgangsstufe Referent: Andreas Eberl Idee Lehrplan Mathematik 11.Klasse
Simulation und Optimierung von Bike-Sharing Systemen Vollversammlung der Graduiertenschule OMaR, Oktober 2011, TU Clausthal
Simulation und Optimierung von Bike-Sharing Systemen Vollversammlung der Graduiertenschule OMaR, Oktober 2011, TU Clausthal Viola Ricker Bike-Sharing Bereitstellung von Fahrrädern als öffentliches Verkehrsmittel
Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau
Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für
Entwurf robuster Regelungen
Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler
Monte-Carlo Simulation
Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung
Einführung in die Informatik I
Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen
Optimale Steuerung/ Prozessoptimierung 1
Optimale Steuerung/ Prozessoptimierung 1 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) 2 Chemieindustrie Welche ist die optimale Betriebsstrategie, damit
Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.
Einführung in die Lineare Optimierung
Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können
Dynamische Optimierung
Motivation/Einführung: zwei mögliche Pfade 8 Dynamische Optimierung Dynamische Optimierung Sequentielle Optimierung Stufenoptimierung Für Planungsprobleme, deren Entscheidungsgrundlagen problemseitig nicht
Fehlerrechnung. Aufgaben
Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes
Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien
Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Katharina Witowski katharina.witowski@dynamore.de Übersicht Beispiel Allgemeines zum LS-OPT Viewer Visualisierung von Simulationsergebnissen
Operations Management
Operations Management Supply Chain Management und Lagerhaltungsmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter Supply Chain Management und Lagerhaltungsmanagement
Modellgestützte strategische Planung von Produktionssystemen in der Automobilindustrie
Markus Bundschuh 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Modellgestützte strategische Planung von Produktionssystemen
MA Projekt: Langfristige Kapitalmarktsimulation
MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring
x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen
5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x
Studienordnung Masterstudiengang Datenwissenschaft (Master of Science in "Data Science") vom 13. September 2002
Studienordnung Masterstudiengang Datenwissenschaft (Master of Science in "Data Science") vom 13. September 2002 Inhaltsübersicht Präambel 1 Gegenstand der Studienordnung 2 Wünschenswerte Voraussetzungen
Wirtschaftsmathematik und Statistik
Lehrplan Wirtschaftsmathematik und Statistik Akademie für Betriebs- und Unternehmensführung Ministerium für Bildung, Familie, Frauen und Kultur Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,