II. Klein Gordon-Gleichung

Größe: px
Ab Seite anzeigen:

Download "II. Klein Gordon-Gleichung"

Transkript

1 II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In jedem dieser Fälle lässt sich ein solcher Wellenfunktion-basierter Formalismus sinnvoll nur auf wechselwirkungsfreie (oder kurz: freie) Teilchen anwenden in Anwesenheit von Wechselwirkungen können Teilchen im relativistischen Regime leicht erzeugt werden, oder sie können zerfallen, was mit Wellenfunktionen nicht beschrieben werden kann. Hier wird zunächst in Abschn. II.1 die freie Klein Gordon-Gleichung eingeführt, deren Lösungen in Abschn. II.2 diskutiert werden. Die physikalische Deutung einiger dieser Lösungen führt zu Schwierigkeiten, die sich am besten im Rahmen einer quantenfeldtheoretischen Beschreibung vermeiden lassen. Somit werden in Abschn. II.3 einige Elemente der zweiten Quantisierung der Klein Gordon-Wellenfunktion kurz dargestellt. II.1 Heuristische Herleitung Bekannterweise lautet die Schrödinger-Wellengleichung in Ortsdarstellung für ein nicht-relativistisches freies Teilchen mit der Masse m ψ(t, x) i 2 ψ(t, x), t 2m (II.1) mit 2 dem Laplace-Operator. Diese Gleichung folgt aus der nicht-relativistischen Energie Impuls-Beziehung E p 2 /2m, indem die Energie E bzw. der Impuls p durch den auf Wellenfunktionen wirkenden Differentialoperator i / t bzw. i ersetzt wird. Wendet man jetzt nach Schrödinger, vgl. [9], Gl. (34) (36) diese Korrespondenz auf die relativistische Energie Impuls-Relation E 2 p 2 c 2 m 2 c 4 an, so ergibt sich die Wellengleichung ) ( 2 2 t c 2 φ(t, x) m 2 c 4 φ(t, x). (II.2) Diese Gleichung wird (wechselwirkungsfreie) Klein Gordon-Gleichung genannt [10, 11]. In relativistischer Notation gilt 1 2 c 2 t i i µ µ, (II.3) mit dem d Alembert-Operator, der offenbar relativistisch kovariant ist, denn es handelt sich um einen Lorentz-Quadrat. Dann lautet die Klein Gordon-Gleichung (II.2) in kovarianter Schreibweise ( + m2 c 2 ) φ(x) 0. (II.4) 2 Dank der relativistischen Kovarianz des d Alembert-Operators ist das Verhalten dieser Gleichung unter einer Lorentz-Transformation x x völlig durch das Verhalten der Wellenfunktion φ(x) unter der Transformation bestimmt. Falls die Letztere sich gemäß φ(x) φ (x ) φ(x) transformiert, stellt die Klein Gordon-Gleichung auch eine skalare Gleichung dar. In diesem Fall ist φ(x) ein Lorentz-Skalar, entsprechend einem Teilchen mit Spin 0. Bemerkungen: Die Korrespondenz E i / t, p i lässt sich kurz als p µ i µ umschreiben. Wird dies in p µ p µ m 2 c 2 eingesetzt, so folgt Gl. (II.4) sofort. (II.5) II. Klein Gordon-Gleichung 21

2 Statt von der Beziehung E 2 p 2 c 2 + m 2 c 4 auszugehen, könnte man die Korrespondenz in die genauere Gleichung E p 2 c 2 + m 2 c 4 einsetzen, da die Energie eines Teilchens positiv sein soll. Wendet man aber den auf der rechten Seite resultierenden Differentialoperator m 2 c 4 2 c 2 auf Wellenfunktionen an, so ergeben sich Ortsableitungen der Letzteren beliebiger Ordnung, entsprechend einer nicht-lokalen Gleichung, was unbefriedigend ist. Eine Lösung φ(x) der Klein Gordon-Gleichung kann entweder reell- oder komplexwertig sein. Die Möglichkeiten werden im nächsten Abschnitt anhand der allgemeinen Lösung der Gleichung (II.4) noch diskutiert. II. Klein Gordon-Gleichung 22

3 III. Dirac-Gleichung Historisch wurde die Existenz der Lösungen der Klein Gordon-Gleichung mit negativer Energie als einen Beweis der Irrelevanz der Gleichung für Physik angesehen, bevor die Stückelberg Feynman- Interpretation und die zweite Quantisierung eingeführt wurden. Da diese damals unerwünschten Lösungen daraus folgen, dass die Klein Gordon-Gleichung (II.4) zweiter Ordnung in der Zeit t ist, wurde nach einer relativistischen Wellengleichung gesucht. Eine solche Gleichung wurde durch P. A. M. Dirac gefunden [14] und wird in Abschn. III.1 für den Fall eines freies Teilchen hergeleitet. Diese Gleichung nutzt Matrizen, deren Eigenschaften in Abschn. III.2 dargestellt sind. Schließlich befasst sich Abschn. III.3 mit den Lösungen der Gleichung sowie mit deren physikalischen Deutung. III.1 Heuristische Herleitung Die ursprüngliche Idee von Dirac bestand darin, die linke Seite der quadratischen relativistischen Energie Impuls-Beziehung p 2 m 2 c 2 0 als Produkt von zwei linearen Beiträgen zu faktorisieren p µ p µ m 2 c 2 (γ ν p ν + mc)(β λ p λ mc) wobei β λ, γ ν acht zu bestimmenden Koeffizienten sind. Dann gewährleistet das Verschwinden eines der Multiplikanden des rechten Glieds, dass die Beziehung erfüllt wird. Berechnet man das Produkt auf der rechten Seite, so ergibt sich durch Gleichsetzung der quadratischen und linearen Terme in p η µν p µ p ν β λ γ ν p λ p ν und mc(β λ γ λ )p λ 0. Die zweite Gleichung liefert β λ γ λ für λ 0,..., 3. Ersetzt man dann β λ in der ersten Gleichung, so lautet die Letztere (hier wird die Einstein sche Summenkonvention ausnahmsweise nicht verwendet!) (γ µ ) 2 (p µ ) 2 + (γ µ γ ν + γ ν γ µ )p µ p ν η µµ (p µ ) 2. µ0 µ,ν0 µ ν Der Vergleich der Koeffizienten der Bilinearformen in p 0, p 1, p 2, p 3 auf den beiden Seiten dieser Gleichung führt zu (γ 0 ) 2 +1, (γ 1 ) 2 1, (γ 2 ) 2 1, (γ 3 ) 2 1, γ µ γ ν + γ ν γ µ 0 für µ ν. (III.1) Mit Zahlen können diese Beziehungen nicht erfüllt werden die Wahlen γ 0 ±1, γ k ±i genügen ja den vier ersten Relationen, nicht aber der letzten. Um mögliche Lösungen des Systems (III.1) zu finden, soll man somit nicht nach Zahlen, sondern nach N N-Matrizen suchen. Mittels des Antikommutators zweier Matrizen {A, B} AB BA lassen sich die Beziehungen als { γ µ, γ ν} 2η µν 1 N (III.2) µ0 umschreiben, mit 1 N der N N-Identitätsmatrix und η µν den Komponenten des inversen metrischen Tensors. Die Matrizen kleinster Dimension, die den Beziehungen (III.2) genügen, sind 4 4-Matrizen. Der Fall N 1 entspricht Zahlen und wurde schon diskutiert. Für N 2 existieren ja drei linear unabhängige 2 2-Matrizen, die Pauli-Matrizen σ k, die tatsächlich miteinander antikommutieren: {σ j, σ k } 2δ jk. Die einzigen noch bleibenden linear unabhängigen Matrizen sind proportional zur Identität 1 2, die aber nicht mit den Pauli-Matrizen anitkommutiert: {1 2, σ k } 2σ k, so dass Beziehung (III.2) nicht erfüllt werden kann. III. Dirac-Gleichung 29

4 Für N 3 führt die Gleichung γ µ γ ν γ ν γ µ für µ ν zu (det γ µ )(det γ ν ) (det γ µ )(det γ ν ), d.h. eine der Determinanten muss gleich 0 sein, was vermeidet sein soll, damit das Produkt einer γ µ -Matrix mit einem nicht-verschwindenden D-komponentigen Vektor nicht Null ist. Eine mögliche Wahl, gennant Standard- oder Dirac-Darstellung, besteht aus den Matrizen ( ) ( ) γ , γ k 0 σk, (III.3) σ k 0 mit σ k für k 1, 2, 3 den üblichen Pauli-Matrizen ( ) 0 1 σ 1, σ ( 0 i i 0 ), σ 3 ( ) 1 0. (III.4) 0 1 Die Matrizen γ µ werden als Dirac-Gamma-Matrizen oder kurz Dirac-Matrizen bezeichnet. Zusammen bilden die vier Dirac-Matrizen γ µ eine Größe, die sich unter der Lorentz-Gruppe wie ein kontravarianter Vektor dessen Komponenten 4 4-Matrizen sind transformieren. Dementsprechend stellen die Beziehungen (III.2) die Komponenten einer Gleichung zwischen zwei Lorentz- Tensoren zweiter Stufe dar, wobei eine Komponente schon eine 4 4-Matrix ist. Sei a µ ein aus vier Zahlen bestehender kovarianter Vektor. Dann bezeichnet das Skalarprodukt a µ γ µ eine Lorentz-invariante 4 4-Matrix. Diese lässt sich auch kompakt in der durch Feynman eingeführten Slash-Notation als a a µ γ µ. (III.5) Die relativistische Energie Impuls-Beziehung p µ p µ m 2 c 2 0 für ein Teilchen der Masse m kann jetzt erfüllt werden, indem wir das Teilchen durch eine Größe ψ(x) beschreiben, auf das die Wirkung der Matrix γ µ p µ mc1 4 Null gibt: (γ µ p µ mc1 4 )ψ(x) 0, wobei wir im Folgenden die 4-dimensionale Identität 1 4 weglassen können. Unter Verwendung der Korrespondenz (II.5) zur Ortsdarstellung ergibt sich dann die Dirac-Gleichung (in Ortsdarstellung) ( iγ µ µ mc ) ψ(x) 0. (III.6a) Unter Verwendung der Slash-Notation lautet dies auch ( i mc ) ψ(x) 0. (III.6b) Da die Dirac-Matrizen der Dimension 4 sind, ist ψ(x) ein vierkomponentiger Spaltenvektor, der auch Dirac-Spinor oder 4-Spinor genannt wird. Unter Lorentz-Transformationen transformiert sich der Letztere aber nicht wie ein Vierervektor seine Komponenten sollten deshalb nicht mit einem Lorentz-Index µ 0, 1, 2, 3 bezeichnet werden. Die Anwesenheit der Pauli-Matrizen in den Dirac-Matrizen deutet darauf hin, dass die Dirac- Spinoren freie Teilchen mit dem Spin 1 2 beschreiben. Solche Teilchen besitzen aber nur zwei Freiheitsgrade, während ein Dirac-Spinor vier Freiheitsgrade hat. Tatsächlich werden wir im Folgenden sehen, dass ein Dirac-Spinor ein Spin- 1 2-Teilchen und sein Antiteilchen auf einmal beschreiben. Bemerkungen: Mittels des metrischen Tensors definiert man auch Matrizen γ µ. Andere Darstellungen der Dirac-Matrizen sind auch möglich, und lassen sich durch Basistransformationen im vierdimensionalen Vektorraum, auf welchen die γ µ -Matrizen wirken, erhalten. Zum Beispiel ist es manchmal bequemer, mit der folgenden sog. chiralen Darstellung zu arbeiten ( ) ( ) γ , γ k 0 σk. (III.7) σ k 0 III. Dirac-Gleichung 30

5 IV. Maxwell-Gleichungen Dieses Kapitel geht auf die relativistische Wellengleichung für ein wechselwirkungsfreies masseloses Teilchen mit Spin 1 ein. Dabei handelt es sich tatsächlich um die Maxwell-Gleichungen des freien elektromagnetischen Feldes, die in einem ersten Schritt in kovarianter Schreibweise geschrieben werden (Abschn. IV.1). Dann werden die Lösungen zu diesen Gleichungen in Abschn. IV.2 diskutiert, wobei die wichtige Rolle der Eichinvarianz offenbar wird. IV.1 Kovariante Formulierung der Elektrodynamik Die Maxwell-Gleichungen der klassischen Elektrodynamik sind (fast definitionsgemäß) Lorentzkovariant. Somit bilden das Skalarpotential Φ(t, x) und das Vektorpotential A(t, x) einen Vierervektor, das Viererpotential A(x), mit den kontravarianten Komponenten ( ) Φ(x)/c A µ (x). (IV.1) A(x) Ausgehend vom Viererpotential definiert man einen zweimal kontravarianten Lorentz-Tensor F µν (x), den elektromagnetischen Feldstärketensor, als F µν (x) µ A ν (x) ν A µ (x). (IV.2) Unter Nutzung der Beziehungen E (t, x) φ(t, r) A(t, x), B(t, x) A(t, x) (IV.3) t prüft man nach, dass die Komponenten des Feldstärketensors einfach mit den Komponenten der elektrischen und magnetischen Felder E, B verknüpft sind: F i0 i A 0 0 A i i A 0 0 A i E i c, F ij i A j j A i i A j + j A i ɛ ijk B k Diese Relationen lassen sich mithilfe der Matrixform des Feldstärketensors zusammenfassen 0 E x E y E z c c c E x F µν 0 B z B y c E y, (IV.4) B z 0 B x c E z B y B x 0 c wobei die x-abhängigkeit der Felder der Kürze halber nicht geschrieben wurde. Durch den elektromagnetischen Feldstärketensor können die Maxwell-Gleichungen in Abwesenheit äußerer Quellen durch 22 µ F µν (x) 0 ν (IV.5a) und µ F νρ (x) + ν F ρµ (x) + ρ F µν (x) 0 µ, ν, ρ. (IV.5b) ausgedrückt werden. Die Letztere entsprechend der Maxwell Thomson-Gleichung B 0 und 22 In Anwesenheit einer äußeren Ladungsdichte ρ(t, x) bzw. einer Ladungsstromdichte j(t, x) bilden die beiden einen Viererstrom mit kontravarianten Komponenten j µ (ρc, j) T und die Maxwell-Gleichung wird µf µν µ 0j ν. IV. Maxwell-Gleichungen 42

6 der Maxwell Faraday-Gleichung E + B/ t 0 enthält keine Dynamik und folgt sofort aus der Antisymmetrie des Feldstärketensors (IV.2). Dagegen bestimmt Gl. (IV.5a) die Dynamik der elektrischen und magnetischen Felder die ν 0-Komponente entspricht der Maxwell Gauß-Gleichung E 0, während die räumlichen Komponenten die Maxwell Ampère-Gleichung B + c 2 E / t 0 darstellen. Mit Gl. (IV.2) ergibt sich µ F µν (x) µ µ A ν (x) µ ν A µ (x) A ν (x) ν[ µ A µ (x) ]. Bekannterweise sind die Potentiale Φ und A, und somit A, nicht eindeutig definiert, sondern können gemäß sogenannter Eichtransformationen A µ (x) A µ (x) A µ (x) + µ χ(x) (IV.6) mit χ(x) einer skalaren Funktion transformiert werden, ohne die physikalischen Felder E und B bzw. den elektromagnetischen Feldstärketensor F µν zu ändern. Diese Eichfreiheit kann benutzt werden, um Gleichungen zu vereinfachen. Zum Beispiel kann man erfordern, dass das Viererpotential der Lorenz-Eichung-Bedingung µ A µ (x) 0 (IV.7) genügt. Unter dieser Forderung lauten die freien Maxwell-Gleichungen (IV.5a) einfach A ν (x) 0. (IV.8) Somit sind die Maxwell-Gleichungen ziemlich ähnlich der Klein Gordon-Gleichung (II.4), für den Fall masseloser Teilchen. Da A µ (x) sich wie ein (kontravarianter) Vierervektor transformiert, handelt es sich um Teilchen mit dem Spin 1. Bemerkungen: Für massive Teilchen mit dem Spin 1, beschrieben durch ein Vektorfeld V µ (x), heißt die relativistische Wellengleichung ( + m2 c 2 ) V µ (x) 0 (IV.9) 2 Proca-Gleichung, wobei m die Teilchenmasse bezeichnet. Wegen des Massenterms besitzt aber das Vektorfeld V µ (x) keine Eichfreiheit mehr. Die Lorenz-Eichung-Bedingung (IV.7) bestimmt noch nicht das Viererpotential eindeutig. Es gibt noch eine Eichfreiheit um einen Vierergradienten µ χ(x) mit χ(x) Lösung von χ(x) 0. In Abwesenheit äußerer Quellen kann diese Freiheit benutzt werden, um die temporale Weyl-Eichung- Bedingung A 0 (x) 0 (IV.10) zu erfordern. Dann wird die Lorenz-Eichung äquivalent zur Coulomb-Eichung A(t, x) 0. (IV.11) IV. Maxwell-Gleichungen 43

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

II.2 Lösung der freien Klein Gordon-Gleichung

II.2 Lösung der freien Klein Gordon-Gleichung II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Lorentz- und Poincaré-Gruppe und SL(2,C)

Lorentz- und Poincaré-Gruppe und SL(2,C) Lorentz- und Poincaré-Gruppe und SL(2,C) Alexander Baade Andreas Müllers Christian Wuttke 24.01.2005 Inhaltsverzeichnis 1 Wiederholung der Grundlagen 2 2 Die SL(2,C) und die eigentlichen orthochronen Lorentz-Gruppe

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Majorana-Felder. Niels Benedikter AG 2 Elementarteilchenphysik 29. September 2008

Majorana-Felder. Niels Benedikter AG 2 Elementarteilchenphysik 29. September 2008 Majorana-Felder Niels Benedikter AG 2 Elementarteilchenphysik 29. September 2008 Quarks & Geladene Leptonen: Fermionen, beschrieben durch Dirac-Gleichung für Spinoren mit vier inneren Freiheitsgraden (bzw.

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

Elektromagnetische Felder

Elektromagnetische Felder Heino Henke Elektromagnetische Felder Theorie und Anwendung 3., erweiterte Auflage Mit 212 Abbildungen und 7 Tabellen * J Springer Inhaltsverzeichnis Zur Bedeutung der elektromagnetischen Theorie 1 1.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Seminar Mathematische Physik vom 12.1.2010 Markus Penz

Seminar Mathematische Physik vom 12.1.2010 Markus Penz Kaluza-Klein Theorie Seminar Mathematische Physik vom 12.1.2010 Markus Penz Zusammenfassung. Mit besonderem Augenmerk auf die Beiträge von Kaluza und Klein soll der nicht von Erfolg gekrönte Weg zur Vereinheitlichung

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Mathematische Physik: Vektoranalysis und Differentialgeometrie

Mathematische Physik: Vektoranalysis und Differentialgeometrie Mathematische Physik: Vektoranalysis und Differentialgeometrie September 2006 April 2007 Markus Penz Stichwörter. Mannigfaltigkeit, Karte, Atlas, Tangentialraum, Tangentialbündel, Dualraum (Kovektorraum),

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Prüfungsfragen zum Diplom/Master in Theoretischer Physik

Prüfungsfragen zum Diplom/Master in Theoretischer Physik Prüfungsfragen zum Diplom/Master in Theoretischer Physik von Mike Georg Bernhardt 5. Oktober 009 Dies ist eine Zusammenstellung von Fragen, die in Diplom- und Masterprüfungen zur Theoretischen Physik häufig

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

1.5 Duales Gitter und Diskriminantengruppe

1.5 Duales Gitter und Diskriminantengruppe Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Dienstag Daniel Jost Datum 21/08/2012 Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Feldgleichungen der Magnetostatik.....................

Mehr

Klein-Gordon-Gleichung. Klein-Gordon-Gleichung für Spin-0-Teilchen. Dirac-Gleichung. Dirac-Gleichung für Spin-1/2-Teilchen. h 2.

Klein-Gordon-Gleichung. Klein-Gordon-Gleichung für Spin-0-Teilchen. Dirac-Gleichung. Dirac-Gleichung für Spin-1/2-Teilchen. h 2. Klein-Gordon-Gleichung für Spin-0-Teilchen ψ h - Wie erhält man die zeitunabhängige Schrödingergleichung ih H? S ψ ------- ψ M - Ausgangspunkt ist nicht-relativistischen Energie-Impuls-Beziehung E p (

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr