Kurs 5. Semester Humanmedizin Strahlenphysik/Strahlenbiologie/Strahlentherapie

Größe: px
Ab Seite anzeigen:

Download "Kurs 5. Semester Humanmedizin Strahlenphysik/Strahlenbiologie/Strahlentherapie"

Transkript

1 Kurs 5. Semester Humanmedizin Strahlenphysik/Strahlenbiologie/Strahlentherapie T1. Physikalische Aspekte ionisierender Strahlung (Physikalische Grundlagen, Wechselwirkung zwischen ionisierender Strahlung und Materie, Erzeugung ionisierender Strahlung, Dosisbegriffe, Gerätekunde) T2. Molekulare und zelluläre Strahlenbiologie (Sekundärprozesse, Folgeeffekte, zelluläre Strahlenempfindlichkeit, Strahlenschäden) T3. Normalgewebe- und Tumor-Strahlenbiologie (Faktoren der Strahlenempfindlichkeit von Tumoren und Normalgeweben) T4. Medizinische und physikalische Bestrahlungsplanung (räumliche und zeitliche Dosisverteilung, therapeutische Breite, Patientendemo) T5. Strahlenrisiko / Strahlenschutz (Deterministische - / stochastische Effekte, akutes Strahlensyndrom, teratogenes, genetisches u. karzinogenes Risiko, Natürliche - / zivilisatorische Strahlenbelastung)

2 Kurs 5. Semester Humanmedizin Strahlenphysik/Strahlenbiologie/Strahlentherapie T1. Physikalische Aspekte ionisierender Strahlung Physikalische Grundlagen Wechselwirkungen ionisierender Strahlung mit Materie Dosisbegriffe Erzeugung ionisierender Strahlung Gerätekunde (Besichtigung von Bestrahlungsgeräten) ten)

3 Wirkungskette ionisierender Strahlung Ionisierende Strahlung Ionisation, Anregung Freie Radikale DNA-Schädigung Reparatur? Zeit Chromosomenaberrationen asymmetrische symmetrische Zelltod Mutation, Zelltransformation Gewebe-, Organ-, Organismus-Schäden Karzinogenese, Genetische Effekte Deterministische Effekte ("high dose effects") Stochastische Effekte ("low dose effects")

4 Physikalische Grundlagen

5 Ionisation Energiezufuhr freies Elektron z.b. durch Strahlungsteilchen (z.b. Alpha-, Beta-, Gamma-...)

6 Ionisierende Strahlung Ausbreitung von Wellen oder Teilchen im Raum Transport von Energie Unterteilung in Elektromagnetische Strahlung Licht, Handy, Mikrowelle., Röntgen-, Gammastrahlung Man kann sich die Strahlung aus einzelnen Energieportionen zusammengesetzt vorstellen Energieportionen heißen Photonen Teilchenstrahlung Photonen Elektronen Alphateilchen

7 Wechselwirkungen ionisierender Strahlung mit Materie

8 Teilchenstrahlung Alpha-Teilchen, positiv geladen Elektronen, negativ geladen Ionisiertes Atom Atom Da die Teilchen eine elektrische Ladung besitzen, können sie die Materie direkt ionisieren! Sie haben eine sehr hohe Wahrscheinlichkeit mit der Materie zu kollidieren.

9 Photonenstrahlung Elektronen, negativ geladen Photonenstrahlung, elektrisch neutral Die Photonen besitzen keine elektrische Ladung. Sie haben eine wesentlich kleinere Wahrscheinlichkeit mit der Materie zu kollidieren. Erfolgt eine Kollision, so wird ein Elektron freigesetzt, was die Materie direkt ionisiert. Weil der Großteil der Ionisationen durch das Elektron geschieht, ist Photonenstrahlung indirekt ionisierend.

10 Photonenstrahlung Kann auf 3 verschiedene Arten mit Materie in Wechselwirkung treten Photoeffekt Comptoneffekt Paarbildung

11 Photoeffekt einfallendes Photon Photoelektron Ursache Wirkung

12 Comptoneffekt Streustrahlung (geringere Energie) einfallendes Photon Wirkung Ursache Comptonelektron

13 Paarbildung E = m*c 2 E el = m e *c 2 = 511 kev daher Energie > 1 MeV einfallendes Photon Elektron Ursache Positron Wirkung

14 Schwächung chung von Photonenstrahlung Photonen werden durch Photoeffekt, Comptoneffekt Paarbildung in Materie absorbiert. Halbwertsdicke Halbwertsdicke Je dicker die zu durchdringende Materie, desto mehr Photonen werden absorbiert. Aber: Die Energie der nicht absorbierten Primärphotonen bleibt unverändert!

15 Schwächung chung von Photonenstrahlung - Schwächungsgesetz chungsgesetz - I = I 0 e μd I 0 I 0 Intensität der Photonen an der Oberfläche des Körpers I Intensität der Photonen nach Durchdringen der Materialdicke d µ - Linearer Schwächungskoeffizient µ d I Der lineare Schwächungskoeffizient chungskoeffizient ist abhängig von: Der Energie der Strahlungsteilchen Der Dichte des Materials Der Ordnungszahl des Materials

16 Schwächung chung von Photonenstrahlung - Energieabhängigkeit ngigkeit - Rel. Intensität kev 50 kev 100 kev 661 kev 1331 kev 3000 kev Tiefe in mm Schwächung chung von Photonenstrahlung in Wasser: Je größ ößer die Energie desto geringer die Schwächung chung

17 Übersicht Teilchenstrahlung, Photonenstrahlung Teilchenstrahlung Teilchenstrahlung wird kontinuierlich in Materie gebremst Teilchen bleiben schlussendlich in der Materie stecken, wenn sie vollständig abgebremst sind Photonenstrahlung Wird entweder absorbiert oder nicht Wird daher nicht kontinuierlich abgebremst Nicht absorbierte Primärphotonen haben dieselbe Energie, wie vor der Passage durch die Materie Es wird die Anzahl der Primärphotonen reduziert

18 Durchdringungsvermögen gen von Strahlung Helium-Kerne (α) Papier (Radon!!!) 20 mm Plastik 2 mm Blei 300 mm Blei Elektronen (β) Vollständige Abbremsung! Photonen (γ, Röntgen, Energie < 150 kv) Photonen (γ, Röntgen, Energie ca. 10 MV) Schwächung auf etwa 1 Millionstel!

19 Schwächung chung von Strahlung - Abstandsquadrat-Gesetz - A 1 A 1 Q A 1 A 1 A 1 s 1 s=2s 2 1 N 2 = N 1 s s Gilt, wenn Abstand > 10*Quellengröß öße

20 Dosisbegriffe

21 Quantifizierung von Strahlenwirkung - Grundlage - Ziel: - Quantifizierung der Wirkung ionisierender Strahlung Entscheidender Faktor: - Auf Materie übertragene Energie Einfallende Strahlenenergie E Austretende Strahlenenergie E - de Volumen dv mit Masse dm auf Stoff übertragene Strahlenenergie

22 Quantifizierung von Strahlenwirkung - Energiedosis - Die Dosis D ist die im Volumenelement dv mit der Masse dm durch ionisierende Strahlung deponierte Energie de D = de dm Einheit: Gray (1 Gy = 1 J/kg)

23 Problem Quantifizierung von Strahlenwirkung - Ionisationsdichte und LET - 1 Gy Alphastrahlung hat eine wesentlich höhere biologische Wirksamkeit als 1 Gy Photonenstrahlung Warum Alphastrahlung hat eine höhere Ionisationsdichte als Photonenstrahlung Quantifizierung Linearer Energietransfer LET LET = pro Wegstrecke durch ionisierende Strahlung deponierte Energie [LET] = 1 kev/µm

24 Quantifizierung von Strahlenwirkung - Relative Biologische Wirksamkeit - Biologische Wirksamkeit ist umso größer, je dichter die Ionisationen erfolgen Relative Biologische Wirksamkeit RBW RBW = D (Gy) von 60 Co-Strahlung (Referenzstrahlung) D (Gy) der untersuchten Strahlung (bei gleichem biologischen Effekt) Berücksichtigung durch Qualitätsfaktor Q Strahlenart Qualitätsfaktor LET (kev/µm) hoher LET α-strahlen schnelle n niedriger LET Rö.-Strahlen 1 2,5 60 Co-Strahlung 1 0,3 e - -Strahlung 1 0,2

25 Organdosis H T Zur Berücksichtigung der biologischen Wirkung ionisierender Strahlung dient das Produkt aus der Energiedosis D mit einem dimensionslosen Strahlungswichtungsfaktor w R, der in Rechtsverordnungen festgelegt ist. Vereinfachte Festlegung der RBW H = w D, T R R T R Einheit: Sievert (1 Sv = 1 J/kg) D T,R w R Energiedosis durch die Strahlenart R am Organ/Gewebe T Strahlungswichtungsfaktoren berücksichtigen unterschiedliche radiobiologische Wirkungen verschiedener Strahlenarten und -energien

26 Strahlungs-Wichtungsfaktoren w R Strahlung Strahlungs-Wichtungsfaktor w R Photonen 1 Elektronen, Myonen 1 Neutronen E n < 10 kev 5 E n 10 kev bis 100 kev 10 E n > 100 kev bis 2 MeV 20 E n > 2 MeV bis 20 MeV 10 E n > 20 MeV 5 Protonen E p > 2 MeV 5 α-teilchen und schwere Teilchen 20

27 Effektive Dosis Problem: Strahlensensibilität einzelner Organe und Gewebe Eine homogene Bestrahlung des gesamten Körpers mit einer bestimmten Äquivalent-Dosis H ergibt z.b (irgendwelche) Neoplasienpro 1 Mio Menschen, wobei einzelne Organe unterschiedlich betroffensind. Lunge: 120 Brust: 50 Blase: 50 Leukämien: 120

28 Effektive Dosis E E = w H = w w D, T T T T T R R T R Einheit: Sv H T w T - Organdosis - Gewebewichtungsfaktoren berücksichtigen unterschiedliche Beiträge einzelner Organe und Gewebe zum gesamten stochastischen Strahlenrisiko Quantifizierung des Risikos sowohl bei homogener als auch bei inhomogener Bestrahlung des Körpers Basis für die Definition von Grenzwerten

29 Gewebe-Wichtungsfaktoren w T Organe oder Gewebe Keimdrüsen Rotes Knochenmark Dickdarm Lunge Magen Blase Brust Leber Speiseröhre Schilddrüse Hirn Speicheldrüsen Haut Knochenoberfläche Andere Gewebe/Organe Normierte Größe Gewebewichtungsfaktoren ICRP 26 ICRP 60 ICRP Σw T = Σw T = Σw T = 1

30 Erzeugung ionisierender Strahlung

31 Quellen ionisierender Strahlung für f r die therapeutische Anwendung Radioaktiven Strahlenquellen Radioaktiven Strahlenquellen (γ-emittierende Radionuklide wie 60 Co für die Teletherapie, 192 Ir und β-strahler wie 90 Sr, 106 Ru für die Brachytherapie)

32 Radioaktivität Weder physikalisch noch chemisch zu beeinflussende Eigenschaft von Atomkernen sich unter Emission von Strahlung spontan in einen anderen Kern umzuwandeln Ursache: ungünstiges nstiges Protonen zu Neutronen Verhältnis, ungünstige nstige energetische Situation, Kern ist zu groß

33 Zerfallsarten Alpha-Zerfall: Der Kern sendet 2 Protonen und 2 Neutronen aus Beta-Zerfall: Der Kern sendet ein Elektron oder ein Positron aus Gamma-Zerfall: Der Kern sendet ein Photon aus (elektromagnetische Welle) Alpha- Strahlung Beta- Strahlung Gamma- Strahlung

34 Zerfallsgesetz Die Kernumwandlungen unterliegen statistischen Gesetzen und lassen sich durch das sogenannte Zerfallsgesetz mathematisch beschreiben. A(t) ) = A 0 exp (- t τ) = A 0 exp( - ln2 t/t ½ ) τ - Zerfallskonstante T 1/2 - Halbwertszeit Aktivität 100 % Halbwertszeit 50 % 25 % 12,5 % Zeit

35 Aktivität Aktivität A beschreibt die Stärke einer Strahlenquelle Aktivität = Mittlere Anzahl der Zerfälle / s 1 Zerfall pro s entspricht 1 Bq (Bequerel)

36 Erzeugung ionisierender Strahlung Afterloading-Ger Gerät Stahlseil (Bowdenzug) Führungschlauch Strahler Quellenantrieb Quellencontainer (Abschirmbehälter) Prinzipieller Aufbau Moderne Ausführung

37 Quellen ionisierender Strahlung für f r die therapeutische Anwendung Röntgen-Anlagen Bei Auftreffen von schnellen Elektronen auf die Anode einer Röntgenröhre wird Röntgenstrahlung R emittiert Beschleunigungsspannung Ein Elektron, beschleunigt durch eine Potentialdifferenz von 1 Volt erhält eine kinetische Energie von 1 Elektronen-Volt (1 ev), demzufolge bei 100 kv eine Energie von 100 kev U H Kathode (Heizung) - Elektronen Vakuumgefäß Elektrisches Feld Bremsstrahlung + Target (Anode) Die maximale Energie der Röntgenstrahlung R ist gleich der Energie der Elektronen Der überwiegende Teil der kinetischen Energie der Elektronen wird dabei in Wärme umgewandelt

38 Erzeugung von RöntgenstrahlungR - Bremsstrahlung - Ein energiereiches Elektron wird durch elektrische Kräfte in den Atomhüllen abgebremst. Elektron (abgebremst) Röntgenphoton (Bremsstrahlung)

39 Erzeugung von RöntgenstrahlungR - Charakteristische Strahlung - Unbesetzter Platz wird mit einem Elektron aus einer höheren Schale aufgefüllt. Röntgenphoton Dabei wird Energie in Form elektromagnetischer Strahlung frei (Photon, Röntgenquant). Elektron unbesetzte Stelle

40 Erzeugung von RöntgenstrahlungR - Resultierendes Gesamtspektrum - Summe aus charakteristischer Röntgenstrahlung und Bremsstrahlung, Wolfram-Anode, 120 kv Anzahl der Photonen (relativ) Bremsstrahlung charakteristische Röntgenstrahlung Energie in kev

41 Erzeugung ionisierender Strahlung - Röntgentherapie-Gerät -

42 Physikalisches Grundproblem der Strahlentherapie Aufgrund der leichten Erzeugbarkeit und ihrer Eigenschaften dominieren heute noch die Photonenstrahlen Allerdings muss wegen der Energieabhängigkeit der Schwächung die Photonenenergie relativ hoch sein (mehrere MeV)

43 Quellen ionisierender Strahlung für f r die therapeutische Anwendung Prinzip der RöntgenrR ntgenröhre nur bis ca. 300 kv technisch realisierbar Elektronenbeschleuniger zur Erzeugung von ultraharter Bremsstrahlung mit Energien von 4 bis 25 MV und von Elektronen von 5 bis 25 MeV

44 Konformationstherapie Vielfelder-Techniken Multiple Einstrahlrichtungen Hohe Dosis im Schnittgebiet aller Strahlenfelder

45 Erzeugung ionisierender Strahlung Elektronenbeschleuniger mit Patiententisch Wave guide Stand Gantry Collimator head Primary radiation Rotational axis Treatment couch

46 Erzeugung ionisierender Strahlung Schematischer Aufbau eines Elektronenbeschleunigers electron gun accelerating structure (wave guide) electron track target bending magnet primary collimator rf dose chamber mirror flattening filter rf modulator secondary collimator bremsstrahlung photons

47 Erzeugung ionisierender Strahlung Multileaf-Kollimator (MLC) zur Feldausblendung [Siemens Werkfoto]

Grundlagen der Strahlenphysik

Grundlagen der Strahlenphysik Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz Grundlagen der Strahlenphysik Dr.rer.nat. Jörg Harmsen Abt. für Strahlentherapie St.-Josef Hospital Bochum Klinikum der Ruhr-Universität Was ist

Mehr

Physikalische Aspekte der Strahlentherapie Physikalische Aspekte der Strahlentherapie

Physikalische Aspekte der Strahlentherapie Physikalische Aspekte der Strahlentherapie Physikalische Aspekte der Strahlentherapie Historisches 1895 Entdeckung der Röntgenstrahlen 1896 Entdeckung der Radioaktivität Wilhelm Conrad Röntgen 1845 bis 1923 Marie Curie 1867 bis 1934 Antoine Henri

Mehr

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Nikolaus Arnold 14.03.2013 01.05.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Wiederholung

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz

Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz Dosisbegriffe REFERENT: Gerd Lamprecht THEMA: Aktualisierung Fachkunde / Kenntnisse im Strahlenschutz - Zahnmedizin S. 1 Energiedosis D Maß für

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

Strahlenschutz in der Feuerwehr

Strahlenschutz in der Feuerwehr in der Feuerwehr Wiederholung der Ausbildung zum A-Einsatz Einsatzgebiete Wahrnehmung Ladung der Strahlung Energie und biologische Wirkung Grenzwerte Einsatzgrundsätze Kontamination Ausblick Strahlungsarten

Mehr

Quantifizierung der Strahlenmenge - Dosis

Quantifizierung der Strahlenmenge - Dosis h K L M h Physikalische Aspekte der Strahlentherapie Quantifizierung der Strahlenmenge - Dosis Die biologische Wirkung ionisierender Strahlung ist korreliert mit der durch ionisierende Strahlung in einem

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Inhalt der Vorlesung (Teil 1) Grundlagen der therapeutischen Anwendung ionisierender Strahlung. Inhalt der Vorlesung (Teil 1)

Inhalt der Vorlesung (Teil 1) Grundlagen der therapeutischen Anwendung ionisierender Strahlung. Inhalt der Vorlesung (Teil 1) Grundlagen der therapeutischen Anwendung ionisierender Strahlung (Teil 1: Bestrahlungsgeräte) Jürgen Salk Universitätsklinikum Ulm Klinik für Strahlentherapie Ziel der Strahlentherapie Dosisbegriffe und

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Physikalisches Institut 1 Was ist Strahlung?

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Biologische Wirkung ionisierender Strahlung

Biologische Wirkung ionisierender Strahlung Biologische Wirkung ionisierender Strahlung Bettina Dannheim Biologische Wirkung ionisierender Strahlung Natürliche und zivilisatorische Strahlenbelastung Biologische Wirkung ionisierender Strahlung Strahlenarten

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Was ist Strahlung Strahlung ist Transport

Mehr

Größen und Einheiten der Strahlenschutzmesstechnik. Dr. Hans-Jochen Foth Fachbereich Physik Technische Universität Kaiserslautern

Größen und Einheiten der Strahlenschutzmesstechnik. Dr. Hans-Jochen Foth Fachbereich Physik Technische Universität Kaiserslautern Größen und Einheiten der Strahlenschutzmesstechnik Dr. Hans-Jochen Foth Fachbereich Physik Technische Universität Kaiserslautern Inhalt: I II III SI-Einheiten Aktivität Strahlendosis a) Energiedosis b)

Mehr

Elektromagnetisches Spektrum Radioaktive Strahlung

Elektromagnetisches Spektrum Radioaktive Strahlung Umgang mit Radionukliden Elektromagnetisches Spektrum Radioaktive Strahlung Strahlung Nichtionisierende Strahlung Mikrowellen Sichtbares Licht Strahlung von Radiound Fernsehsendern UV-Licht Ionisierende

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Physik. Semester III Teil 2. Abiturwiederholung

Physik. Semester III Teil 2. Abiturwiederholung Semester III Teil 2 Selbstständige Auswertung von Experimenten zu Emissions- und Absorptionsspektren Grundlagen einer Atomvorstellung (Größe, Struktur, einfache Termschemata) und qualitative Deutungen

Mehr

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Beispiele: Radiowellen, sichtbares Licht, WLAN, Röntgenstrahlen Ausbreitungsgeschwindigkeit jeder

Mehr

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. Dosisbegriffe α β Geladene

Mehr

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. osisbegriffe Geladene Teilchen

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

FORTBILDUNG. Röntgendiagnostik. Strahlenschutz und Qualitätssicherung. Donnerstag, 13. Oktober 2016

FORTBILDUNG. Röntgendiagnostik. Strahlenschutz und Qualitätssicherung. Donnerstag, 13. Oktober 2016 0 FORTBILDUNG Röntgendiagnostik und Qualitätssicherung Donnerstag, 13. Oktober 2016 Kepler Universitätsklinikum GmbH Ausbildungszentrum am Med Campus VI Paula-Scherleitner-Weg 3 4020 Linz Thema: Physikalische

Mehr

Größen und Einheiten der Strahlenschutzmesstechnik

Größen und Einheiten der Strahlenschutzmesstechnik Strahlenschutzvorlesung Größen und Einheiten der Strahlenschutzmesstechnik Einleitung Radioaktivität Einleitung Aktivität Strahlendosis a) Energiedosis b) Ionendosis c) Kerma d) Äquivalentdosis Ortsdosis

Mehr

Strahlenphysik und Strahlenschutz. MeCuM LMU Modul I

Strahlenphysik und Strahlenschutz. MeCuM LMU Modul I Strahlenphysik und Strahlenschutz MeCuM LMU Modul I Lernziele Vorlesung Physikalische Grundlagen ionisierender Strahlungen Wechselwirkung ionisierender Strahlungen mit Materie Dosisgrößen und deren Einheiten

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

Handout. Atomaufbau: Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse. Bauteile des Atoms: positiv geladen

Handout. Atomaufbau: Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse.  Bauteile des Atoms: positiv geladen www.sustainicum.at Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse Autor Ing. Mag.rer.nat. Ewald Grohs, Bakk.rer.nat. Institution, Month 013 Handout Radioaktivität

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Atome/ Kerne: Überblick

Atome/ Kerne: Überblick Atome/ Kerne: Überblick Vorlesung 9: Atom und Kernphysik Atome: elektrisch neutral, Durchmesser ~10-10 m bestehen aus sehr kleinem Kern (d ~10-15 m) mit Z Protonen (positiv geladen) und N Neutronen (elektrisch

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Ionisierende Strahlung und Strahlenschutz

Ionisierende Strahlung und Strahlenschutz Handout zum F-Praktikum-Seminarvortrag ionisierende Strahlung und Strahlenschutz Datum: 8. November 2010 (WS10/11) Referent: Marc Hillenbrand Ionisierende Strahlung und Strahlenschutz 1.Dosisbegriffe und

Mehr

Skript zum Kurs: Strahlenphysik und Strahlenschutz in der Nuklearmedizin

Skript zum Kurs: Strahlenphysik und Strahlenschutz in der Nuklearmedizin Skript zum Kurs: Strahlenphysik und Strahlenschutz in der Nuklearmedizin 20. April 2011 2 Kapitel 1 Der radioaktive Zerfall Atome bestehen aus einem massivem Atomkern und einer Hülle aus Elektronen (e

Mehr

Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie?

Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie? Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie? Frank Zimmermann Klinik für Strahlentherapie und Radioonkologie Universitätsspital Basel Petersgraben 4 CH 4031 Basel radioonkologiebasel.ch

Mehr

Unterweisung im Strahlenschutz

Unterweisung im Strahlenschutz Unterweisung im Strahlenschutz nach 36 RöV und 38 StrSchV Grundlagen am St. Elisabeth-Hospital Bochum Verpflichtend für alle Personen, die in Strahlenschutzbereichen tätig sind 1 Unterscheidung der Strahlungsarten

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Biologische Strahlenwirkung. Dosis. Dosis. Klinikum Veterinärmedizin Klinik für Kleintiere - Chirurgie der Justus-Liebig-Universität Gießen

Biologische Strahlenwirkung. Dosis. Dosis. Klinikum Veterinärmedizin Klinik für Kleintiere - Chirurgie der Justus-Liebig-Universität Gießen Klinikum Veterinärmedizin Klinik für Kleintiere Chirurgie der JustusLiebigUniversität Gießen Biologische Strahlenwirkung Dr. Sebastian Schaub Dipl. ECVDI, FTA für Radiologie, FTA für Klein und Heimtiere

Mehr

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz Skript zum Masterpraktikum Studiengang: Radiochemie Radioaktivität und Strahlenschutz Stand: Sommersemester 2010 1 Gliederung 1. Einführung 1.1. Grundlagen zur Radioaktivität 1.2. Messgrößen der Radioaktivität

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Was ist Strahlung Strahlung ist Transport

Mehr

Strahlenschutzunterweisung Praktikum

Strahlenschutzunterweisung Praktikum Strahlenschutzunterweisung Praktikum Inhalt Grundlagen Strahlung Aktivität Dosis Strahlenexpositionen externe Bestrahlungen Inkorporation Deterministische Schäden Stochastische Schäden Schutzmaßnahmen

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Physikalische Grundlagen der Röngtenstrahlen

Physikalische Grundlagen der Röngtenstrahlen Physikalische Grundlagen der Röntgentechnik und Sonographie Physikalische Grundlagen der Röngtenstrahlen PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University

Mehr

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung Norddeutsches Seminar für Strahlenschutz Gefahren ionisierender Strahlung Ionisation Entfernen eines oder mehrerer Elektronen aus dem neutralen Atom A A + + e - Aus einem elektrisch neutralem Atom wurden

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Physikalische und strahlenbiologische Grundlagen

Physikalische und strahlenbiologische Grundlagen OncoRay National Center for Radiation Research in Oncology, Dresden Biologische Wirkung ionisierender Strahlung: Physikalische und strahlenbiologische Grundlagen Prof. Dr. Wolfgang Dörr Arten der Strahlung

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Institut für Transurane Strahlenexposition durch Emission

Institut für Transurane Strahlenexposition durch Emission JRC-ITU, Mediationsverfahren 12. Oktober 2011 1 Mediationsverfahren Eggenstein-Leopoldshafen, 12. Oktober 2011 Institut für Transurane Strahlenexposition durch Emission Joint Research Centre (JRC) Europäische

Mehr

Strahlenschutz und ionisierende Strahlung

Strahlenschutz und ionisierende Strahlung Strahlenschutz und ionisierende Strahlung 1 Die Dosis Die wichtigste Größe im Strahlenschutz ist die Dosis D: Dosis = absorbierteenergie Masse = Joule Kilogramm = 1Gray Die Dosis eine rein physikalische

Mehr

Strahlenschutz. Dosimetrie

Strahlenschutz. Dosimetrie F1 Strahlenschutz Dosimetrie Radioaktive Strahlung hinterlässt Schäden im Körpergewebe. Ziel des Strahlenschutzes ist es, die Schäden auf ein verantwortbares Niveau zu beschränken. Als quantitatives Mass

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α = δ 0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Häufigkeit der Röntgenuntersuchungen in Deutschland

Häufigkeit der Röntgenuntersuchungen in Deutschland Häufigkeit der Röntgenuntersuchungen in Deutschland Häufigkeit der Röntgenuntersuchungen in Deutschland (angegen in Untersuchungen je 1000 Einwohner) 350 aus Strahlenthemen, Januar 2003, BfS 300 250 304

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

Physik-Vorlesung. Radioaktivität.

Physik-Vorlesung. Radioaktivität. 3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Strahlenbelastung von Patient und Personal

Strahlenbelastung von Patient und Personal Zonen mit unterschiedlicher Höhenstrahlung (11 km Höhe, Dezember 2002, µsv/h) Strahlenbelastung von Patient und Personal 1 Zerfall von Atomen Es gibt stabile und zerfallende Atome. Beim Zerfall wird Strahlung

Mehr

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig:

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Drei Arten von Strahlung: Information Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Dauer der Bestrahlung Stärke der Bestrahlung

Mehr

Zelluläre und molekulare Strahlenbiologie. Akute Wirkungen und Strahlensyndrom. Langzeiteffekte, genetisches Risiko und Krebs

Zelluläre und molekulare Strahlenbiologie. Akute Wirkungen und Strahlensyndrom. Langzeiteffekte, genetisches Risiko und Krebs Biologische Strahlenwirkung und Rechtliche Folgen Dr. K. von Pückler Dip.ECVDI A. Hartmann, M. Kramer, M. Müller, J. Kiefer Clinic for Small Animals Prof. Dr. Dr. h.c. M. Kramer Justus-Liebig-University

Mehr

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I Fachkunde im Strahlenschutz Kurs September 01 Naturwissenschaftliche Grundlagen I 1 Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität - Zerfallsarten - Strahlung, Strahlungsarten

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

Kurs Juli Grundlagen I

Kurs Juli Grundlagen I Fachkunde im Strahlenschutz Kurs Juli 2010 Naturwissenschaftliche Grundlagen I Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität -Zerfallsarten fll - Strahlung, Strahlungsarten

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 07.11.2012 22.11.2012 Praxisseminar Strahlenschutz Teil 4: Messtechnik 1 1 Inhalt Wiederholung ionisierende Strahlung Prinzipien der Messtechnik

Mehr

beschleunigtes e- -, beschleunigtes e-:

beschleunigtes e- -, beschleunigtes e-: Strahlentherapie: Anwendung der schädigende Wirkung der ionisierenden Strahlungen für Zerstörung der (hauptsächtlich Tumor-) Geweben. Strahlentherapie Fragen zu besprechen: 1. Welcher Strahlungstyp soll

Mehr

Ionisierende Strahlung Einblicke in die Radioökologie. Strahlungsbestandteile. Was ist ionisierende Strahlung? Ursachen ionisierender Strahlung?

Ionisierende Strahlung Einblicke in die Radioökologie. Strahlungsbestandteile. Was ist ionisierende Strahlung? Ursachen ionisierender Strahlung? Ionisierende Einblicke in die Radioökologie Was ist ionisierende? Ursachen ionisierender? VL Grundlagen der Biophysik, SS 07 D. Wachner derk.wachner@uni-rostock.de Basis: E. Schreiber Warum Interesse für

Mehr

RADIOLOGIE Einführung, Strahlenschutz

RADIOLOGIE Einführung, Strahlenschutz RADIOLOGIE Einführung, Strahlenschutz Nándor Faluhelyi und prof. Péter Bogner Klinik für Radiologie 2018 Was bedeutet Radiologie? Eine Blutprobe ist eigentlich ein Schlüsselloch in den menschlichen Körper

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Strahlenwirkungen und Strahlenrisiko Prof. Dr. J. Breckow

Strahlenwirkungen und Strahlenrisiko Prof. Dr. J. Breckow Ausgangswissen : Ionisierende Strahlung kann Krebserkrankungen verursachen Ein einfaches Maß für die Schädlichkeit ist die im Körper/Organ/Zelle deponierte Energie Energiedosis (Gray, Gy) Es gibt verschiedene

Mehr

Strahlenschutz am Teilchenbeschleuniger

Strahlenschutz am Teilchenbeschleuniger Strahlenschutz am Teilchenbeschleuniger Am Teilchenbeschleuniger muss man sich vor allem vor Elektronen, Photonen und Neutronen schützen. Messung der Strahlung Es liegt nahe eine Größe einzuführen, die

Mehr

In einem ersten Abschnitt werden zunächst noch einmal die Grundlagen des Aufbaus der Materie wiederholt.

In einem ersten Abschnitt werden zunächst noch einmal die Grundlagen des Aufbaus der Materie wiederholt. Die heutige Vorlesung Quanten bei höchsten Energien beschäftigt sich mit Licht- und Teilchenstrahlung, wie sie entsteht, wie sie mit Materie wechselwirkt, woher sie kommt und in welchem Maße sie uns schadet.

Mehr

Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis?

Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis? Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis? 2. Informationsforum zur Stilllegung und zum Abbau des Kernkraftwerks

Mehr

Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk

Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk Allgemeine Unfallversicherungsanstalt Unfallverhütungsdienst Wer misst...... misst Mist!! Leerwertmessungen

Mehr

Quanten mit höchster Energie. Saturday Morning Physics 23. November Der Mensch unter Beschuss.

Quanten mit höchster Energie. Saturday Morning Physics 23. November Der Mensch unter Beschuss. Quanten mit höchster Energie Der Mensch unter Beschuss Saturday Morning Physics 23. November 2013 www.auger.org Joachim Enders Institut für Kernphysik Technische Universität Darmstadt Quanten mit höchster

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

0 Einführung. Strahlenphysik. Strahlenphysik. 1 Der radioaktive Zerfall. 1.1 Das Zerfallsgesetz

0 Einführung. Strahlenphysik. Strahlenphysik. 1 Der radioaktive Zerfall. 1.1 Das Zerfallsgesetz Strahlenphysik 0 Einführung Einführung Der radioaktive Zerfall Zerfallsarten Zerfallsdiagramme Zerfallsreihen Das Zerfallsgesetz Beispiele füer Zerfälle Aktivität Ionisierende Strahlung Strahlungsarten

Mehr

Anwendung ionisierender Strahlung in der Radiologie

Anwendung ionisierender Strahlung in der Radiologie Anwendung ionisierender Strahlung in der Radiologie Gliederung: Ionisierende Strahlen (geordnet nach Praxisrelevanz) Strahlenarten und -spezifiken - Photonenstrahlung - Korpuskularstrahlung Strahlenanwendung

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit)

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Elektromagnetische Strahlung Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Röntgenstrahlung besteht aus elektromagnetischen Wellen. Der Wellenlängenbereich erstreckt sich von etwa 10 nm bis

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Physikalische Grundlagen der Röntgentechnik und Sonographie. Dosimetrie

Physikalische Grundlagen der Röntgentechnik und Sonographie. Dosimetrie 1 Physikalische Grundlagen der Röntgentechnik und Sonographie Dosimetrie PD Dr. Frank Zöllner Dosimetrie Ziel der Dosimetrie ist, die von einer ionisierenden Strahlung in einem Material erzeugten Energiedosis

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

bei Multiple-Choice-Fragen ist jeweils nur eine Antwort zutreffend

bei Multiple-Choice-Fragen ist jeweils nur eine Antwort zutreffend 0 /Serie 0 Qualifikationsverfahren Med. Praxisassistentinnen EFZ/ Med. Praxisassistenten EFZ BERUFSKENNTNISSE Pos. Diagnostische und therapeutische Prozesse Bildgebende Diagnostik Lösungsexemplar Zeit

Mehr

Biologische Wirkungen der Strahlungen

Biologische Wirkungen der Strahlungen Biologische Wirkungen der Strahlungen den 14 Oktober 2016 Dr. Emőke Bódis TGfE JJ9 Prüfungsfrage Die biologische Wirkung der radioaktiven Strahlungen. Dosenabhängige Wirkung der Strahlungen: Dosis- Wirkung

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Merkblatt Strahlenschutz HFU

Merkblatt Strahlenschutz HFU Merkblatt Strahlenschutz HFU nach StrlSchV (bzw RöV) Allgemeine Regelungen Den Schutz vor Schäden durch ionisierende Strahlen und Röntgenstrahlen regeln die Verordnung über den Schutz vor Schäden durch

Mehr