Grundlagen der Rechnernetze. Einführung

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Rechnernetze. Einführung"

Transkript

1 Grundlagen der Rechnernetze Einführung

2 Übersicht Basisbausteine und Begriffe Kommunikationsgrundlagen Adressierung Protokolle und Schichten Performance Geschichte und Gegenwart Grundlagen der Rechnernetze Einführung 2

3 Basisbausteine und Begriffe Grundlagen der Rechnernetze Einführung 3

4 Hosts und Links H1 H2 Link Host Grundlagen der Rechnernetze Einführung 4

5 Nachricht, Stream, Paket H1 M H2 H3 S H4 P 1 P 2 P n Header Payload Trailer Bytes Erstes Bit Letztes Bit Grundlagen der Rechnernetze Einführung 5

6 Multiple Access H 1 H 2 H 3 H n Grundlagen der Rechnernetze Einführung 6

7 Multiplexing H 1 H 4 H 2 H 5 H 3 H 6 H 1 H 2 H 4 H 5 H 3 H 6 Grundlagen der Rechnernetze Einführung 7

8 Skalierbarkeit von Multiple Access Netz? H 1 H 2 H 3 H n Annahme alle Knotenpaare kommunizieren gleich häufig. Was ist der Anteil s des Mediums pro Knotenpaar? Grundlagen der Rechnernetze Einführung 8

9 Skalierbarkeit von vollvermaschtem Netz? H11 H1 H2 H10 H3 H9 H4 H8 H7 H6 H5 Anzahl Links k pro Knoten und Gesamtanzahl Links l? Grundlagen der Rechnernetze Einführung 9

10 Switched Network H1 H2 H3 H8 S1 S2 S3 S4 H4 H7 S5 H6 H5 Grundlagen der Rechnernetze Einführung 10

11 Cloud Icon H1 H2 H3 H8 S1 S2 N S3 S4 H4 H7 S5 H6 H5 Grundlagen der Rechnernetze Einführung 11

12 Internet H1 H2 H3 N1 H9 R1 R2 H4 N3 N2 H8 R3 H5 H7 H6 Grundlagen der Rechnernetze Einführung 12

13 Rekursive Anwendung des Cloud Icons H1 H2 H3 N1 R1 R2 H4 H9 N3 N N2 H8 R3 H5 H7 H6 Grundlagen der Rechnernetze Einführung 13

14 Netzgrößen Bildquelle: 01 GAN MAN.html Grundlagen der Rechnernetze Einführung 14

15 Netze und Graphen H1 H2 H3 H1 H2 H3 R1 N1 R2 H4 R1 N1 R2 H4 H9 H8 N3 R3 N2 H5 H9 N3 R3 N2 H5 H7 H6 H8 H7 H6 Definition: Graph Grundlagen der Rechnernetze Einführung 15

16 Beispieltopologien Bus Baum Stern Ring Mesh Grundlagen der Rechnernetze Einführung 16

17 Kommunikationsgrundlagen Grundlagen der Rechnernetze Einführung 17

18 Kommunikationsformen H1 H2 H3 N1 H9 R1 R2 H4 N3 N2 H8 R3 H5 H7 H6 Grundlagen der Rechnernetze Einführung 18

19 Forwarding Tabelle Zieladresse Nächster Hop R Grundlagen der Rechnernetze Einführung 19

20 Timeouts und Acknowledgments H1 H2 H3 N1 H9 R1 R2 H4 N3 N2 H8 R3 H5 H7 H6 Grundlagen der Rechnernetze Einführung 20

21 Verbindungsorientiert und Verbindungslos H1 H2 H3 N1 H9 R1 R2 H4 N3 N2 H8 R3 H5 H7 H6 Grundlagen der Rechnernetze Einführung 21

22 Client Server Prinzip H N S Grundlagen der Rechnernetze Einführung 22

23 Adressierung Grundlagen der Rechnernetze Einführung 23

24 Physikalische Adresse Beispiel Ethernet : 00 : 2B : E4 : B1 : 02 Broadcast FF:FF:FF:FF:FF:FF Multicast 1XXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX {8X,,FX}:XX:XX:XX:XX:XX Grundlagen der Rechnernetze Einführung 24

25 Flache und hierarchische Adressräume H1 H2 H3 H7 H8 H H R R R H H6 Grundlagen der Rechnernetze Einführung 25

26 Konsequenz für Forwarding Tabelle H1 H2 H3 H7 H8 H H R R2 3.1 Ziel H1 3 4 Next Hop nach R1 3.2 R3 4.4 H H6 H2 H3 H4 H5 H6 nach R1 nach R1 direkt direkt direkt Ziel Next Hop 1.X nach R1 2.X direkt 4.X nach R3 H7 nach R3 H8 nach R3 H9 nach R3 Grundlagen der Rechnernetze Einführung 26

27 Classful IP Adressen Class A Netz Host Class B Netz Host Class C Netz Host Grundlagen der Rechnernetze Einführung 27

28 Bedarf für eine weitere Hierarchieebene H1 H2 H3 H7 H8 H H R R R H H6 Eingang ins Campus Netz Grundlagen der Rechnernetze Einführung 28

29 Subnetze Zum Beispiel Class B Adresse Netz Host Subnetz Maske ( ) Ergebnis Netznummer Subnetz Host Grundlagen der Rechnernetze Einführung 29

30 Subnetting Beispiel Subnetznummer : = Subnetzmaske : = H = R = = = = = Beispiel: Verwendung eines Class B Netzes: X.X = XXXXXXXX XXXXXXXX Grundlagen der Rechnernetze Einführung 30 H2

31 Konsequenz für Forwarding Tabellen Subnetznummer : Subnetzmaske : H R1 Interface 1 Interface Subnetznummer Subnetzmaske Nächster Hop direkt (if 1) direkt (if 2) nach R2 (if 2) Netznummer R3 Nächster Hop H R Beispiel: Verwendung des Class B Netzes X.X Grundlagen der Rechnernetze Einführung 31

32 Adressauflösung IP Adresse Physikalische Adresse IP Adresse Physikalische Adresse :FF:AA:36:AB: :48:A4:28:AA: ??? :48:A4:28:AA: :35:FE:36:42:55 H :FF:AA:36:AB:11 85:48:A4:28:AA:18 R1 H2 Grundlagen der Rechnernetze Einführung 32

33 Motivation für Super Netting Betrachten wir als Beispiel die IT Abteilung eines Uni Campus, die autonom eine Menge von IP Adressen nutzt. Mit Subnetting können wir gegebene Menge von IP Adressen effizient nutzen. Aber, die IT Abteilung muss immer noch IP Adressmenge in den Granularitäten Class A, B, oder C Netz beantragen/verwalten. Was ist wenn wir z.b. 257 Hosts im Netz haben? 1. Beantrage ein Class B Netz. Effizienz? 2. Beantrage zwei Class C Netze. Grundlagen der Rechnernetze Einführung 33

34 Lösung: Classless Interdomain Routing (CIDR) Aggregiere Netz Adressen. Beispiel: Annahme wir haben 16*256 1 Hosts. Verwenden Adressen von 16 Class C Netzen. Aber Adressen nicht beliebig, sondern hintereinanderliegend, z.b.: Beobachtung: alle Adressen beginnen mit denselben 20 Bits: Grundlagen der Rechnernetze Einführung 34

35 Lösung: Classless Interdomain Routing (CIDR) Beobachtung: alle Adressen beginnen mit denselben 20 Bits: Im Beispiel also eine 20 Bit Netzadresse Liegt zwischen Class C (24 Bit) und Class B (16 Bit) Erforderte Ausgabe von 2^4 = 16 Class C Adressen Allgemein: i Bit Netzadresse erfordert wie viele Class C Netze? Internet Router beachten nur noch die i Bit Netzadresse. Grundlagen der Rechnernetze Einführung 35

36 Lösung: Classless Interdomain Routing (CIDR) Wir brauchen für das Schema noch eine passende Notation. Notation am Beispiel: wird zusammengefasst dargestellt als: /20 Also, /20 bedeutet Netzadresse besteht aus ersten 20 Bit und fasst die 2^4=16 aufeinander folgenden Class C Netze beginnend mit zusammen. Grundlagen der Rechnernetze Einführung 36

37 Quiz Wie fasst man die Class C Netze bis mittels /X Notation zusammen? Wie stellt man das einzelne Class C Netz in /X Notation dar? Grundlagen der Rechnernetze Einführung 37

38 Lösung: Classless Interdomain Routing (CIDR) Umgang mit aggregierten Adressen im Router: Adressen in den Routing Tabellen: <länge,wert> Paar Vergleichbar mit <mask,wert> Paar im Subnetting, wenn Mask aus aufeinanderfolgenden 1 Bit Werten besteht CIDR erlaubt weitere Routenaggregation. Beispiel: Kunden Netze Advertise / /24 Internet Anbieter /24 Es müssen noch nicht mal alle 8 aufeinanderfolgenden Netze aktuell genutzt sein! Grundlagen der Rechnernetze Einführung 38

39 Lösung: Classless Interdomain Routing (CIDR) CIDR und Routingtabelleneinträge? Prefixe dürfen überlappen. Beispiel Routingtabelle: Network Address Next Hop /16 if /24 if2 Wohin mit der Nachricht an ? Wohin mit der Nachricht an ? Generell: Longest Prefix Match (erfordert effiziente Algorithmen/Datenstrukturen zum Finden des längsten passenden Prefix.) Grundlagen der Rechnernetze Einführung 39

40 Subnetting versus CIDR Subnetting erlaubt das Aufteilen einer Netzadresse in Teilnetze Aufteilung annähernd beliebig; alles was mit der Subnetzmaske ausdrückbar ist CIDR dient dem Aggregieren von Netzadressen in einer einzigen Adresse Aggregation nicht beliebig; Netzadressen müssen aufeinanderfolgend sein; zusammengefasst werden immer nur 2^i viele Netze Gewisse Flexibilität, indem man Dummy Netze verwendet Grundlagen der Rechnernetze Einführung 40

41 Protokolle und Schichten Grundlagen der Rechnernetze Einführung 41

42 Protokoll und Interface Host 1 Host 2 High Level Objekt High Level Objekt Service Interface Service Interface Protokoll Peer to peer Interface Protokoll Grundlagen der Rechnernetze Einführung 42

43 Message Sequence Chart (MSC) H1 H2 Grundlagen der Rechnernetze Einführung 43

44 Protokollzustandsautomat connection request/ connection response file request/ file response Wait for connection request Wait for file request close request Grundlagen der Rechnernetze Einführung 44

45 Beispiel H N S Service Primitiven: File f GET_FILE(), void ABORT_FILE_RETRIVAL(),... Zustände: CLIENT_IDLE, CLIENT_WAITS_FOR_FILE,... Zeitvorgaben: if client waits 1000ms then change to state CLIENT_ERROR Nachrichtenformate: FILE_REQUEST_MESSAGE: CLIENT_ADR SERVER_ADR FILE_NAME Grundlagen der Rechnernetze Einführung 45

46 Protokollgraph Host 1 Host 2 Protokoll 1 Protokoll 2 Protokoll 1 Protokoll 2 Protokoll 3 Protokoll 3 Protokoll 4 Protokoll 4 Grundlagen der Rechnernetze Einführung 46

47 Nachrichtenkapselung Host 1 Anwendung 1 Daten Protokoll 1 Host 2 Anwendung 1 Daten Protokoll 1 H1 Daten H1 Daten Protokoll 2 Protokoll 2 H2 H1 Daten H2 H1 Daten Protokoll 3 Protokoll 3 H3 H2 H1 Daten Grundlagen der Rechnernetze Einführung 47

48 Multiplexing und Demultiplexing Host 1 Host 2 Protokoll 1 Protokoll 2 Protokoll 1 Protokoll 2 Protokoll 3 Protokoll 3 Protokoll 4 Protokoll 4 Grundlagen der Rechnernetze Einführung 48

49 OSI Modell Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 49

50 Internet Modell Nothing stated by TCP/IP model Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50

51 Internet Protokolle Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 51

52 Anwendungssicht auf TCP (oder UDP) Erzeugen eines Sockets int socket(int domain, int type, int protocol) domain : PF_INET, PF_UNIX, PF_PACKET,... type : SOCK_STREAM, SOCK_DGRAM,... protocol : UNSPEC,... Passive Open auf der Server Seite int bind(int socket, struct sockaddr *address, int len) int listen(int socket, int backlog) int accept(int socket, struct sockaddr *address, int *len) address : enthält IP-Adresse und Port backlog : Anzahl erlaubter Pending-Connections Active Open auf der Client Seite int connect(int socket, struct sockaddr *address, int len) Senden und Empfangen von Daten int send(int socket, char *message, int len, int flags) int recv(int socket, char *buffer, int len, int flags) Grundlagen der Rechnernetze Einführung 52

53 Adressen im Internet Modell Host 1 Host 2 Application Application Application Application Port TCP UDP UDP TCP Demux Key IP IP IP Adresse LINK physical Physikalische Adresse LINK physical Grundlagen der Rechnernetze Einführung 53

54 Performance Grundlagen der Rechnernetze Einführung 54

55 Bandbreite s 1 Sekunde Bandbreite b in obigem Beispiel: Grundlagen der Rechnernetze Einführung 55

56 Bps und bps Kenngröße Größenordnung Wert KBps 2 10 Byte/s MBps 2 20 Byte/s GBps 2 30 Byte/s TBps 2 40 Byte/s Kbps 10 3 Bits/s Mbps 10 6 Bits/s Gbps 10 9 Bits/s Tbps Bits/s Vereinfachung für Überschlagsrechnungen: Grundlagen der Rechnernetze Einführung 56

57 Propagation Delay H1 d H2 Zeit x zur Übertragung eines Bits bei Distanz d und Signalausbreitungsgeschwindigkeit l Grundlagen der Rechnernetze Einführung 57

58 Delay einer Single Hop Übertragung d H1 H2 Zeit x zur Übertragung von n Bits bei Distanz d Signalausbreitungsgeschwindigkeit l und Bandbreite b: Grundlagen der Rechnernetze Einführung 58

59 Delay einer Multi Hop Übertragung H1 d H2 Zeit x zur Übertragung von n Bits bei Distanz d, Signalausbreitungsgeschwindigkeit l, Bandbreite b und Queuing Zeit q: Grundlagen der Rechnernetze Einführung 59

60 Delay Bandbreiten Produkt Bandbreite Delay Beispiel: Anzahl Bits n die ein Kanal mit 100ms Latenz und 50Mbps Bandbreite speichert Grundlagen der Rechnernetze Einführung 60

61 Transferzeit und Effektiver Durchsatz H1 H2 Beispiel: Überschlagsrechnung zu Transferzeit z und effektivem Durchsatz d und bei Abrufen einer 1MB Datei über einen Kanal mit 1Gbps Bandbreite und 92ms RTT: Grundlagen der Rechnernetze Einführung 61

62 Bitfehlerrate und Paketverlustrate Bitfehler Paket 1 Paket 2 Paket 3 Paket 4 Paketfehler Einfacher Zusammenhang zwischen BER und PER, für n Bit Nachrichten ohne Fehlerkorrektur Grundlagen der Rechnernetze Einführung 62

63 Additive und Bottleneck Kosten H1 10ms 5ms R2 10ms 20ms e e 2 e 1 3 e4 1Mbps R1 1Gbps 1Gbps R3 1Mbps H2 Beispiel: Delay d und Bandbreite b zwischen zwischen H1 und H2 Grundlagen der Rechnernetze Einführung 63

64 Multiplikative Kosten H1 p p 1 =2/3 2 =1/3 R2 p 3 =1/2 p 4 =1/2 e e 2 e 1 3 e4 R1 R3 H2 Beispiel: Gesamtpaketerfolgsrate bei gegebenen Paketverlustraten pro Link Grundlagen der Rechnernetze Einführung 64

65 Performance Beispiel: Effektiver Durchsatz von Packet Switching Grundlagen der Rechnernetze Einführung 65

66 Delay Einsparungen Circuit Switching Message Switching Packet Switching H1 R1 R2 H2 H1 R1 R2 H2 H1 R1 R2 H2 Grundlagen der Rechnernetze Einführung 66

67 Einfluss der Paketgröße H1 R1 R2 H2 Nachrichtenlänge Paket Payload Paket Header Bandbreite Delay pro Hop Anzahl Hops n Bits k Bits c Bits b bps d Sekunden h Effektiver Durchsatz x Grundlagen der Rechnernetze Einführung 67

68 Beispiel Plot Effektiver Durchsatz in Gbps Nachrichtengröße 1 GB Bandbreite 1 Gbps Header Größe 64 Byte Anzahl Hops 10 Delay pro Hop 10 ms Paketgröße in KB Grundlagen der Rechnernetze Einführung 68

69 Performance Beispiel: Vorteil von statistischem Multiplexing Grundlagen der Rechnernetze Einführung 69

70 Statisches versus Statistisches Multiplexing H 1 p b bps H n p Verhältnis x der mittleren Bandbreite pro Knoten von statistischem über statischem Multiplexing bei n Knoten, Zugriffswahrscheinlichkeit p und Bandbreite b Grundlagen der Rechnernetze Einführung 70

71 Beispiel Plot Angepasste über fester Bandbreitenzuweisung 50% Zugriffwahrscheinlichkeit 70% Zugriffwahrscheinlichkeit 90% Zugriffwahrscheinlichkeit Anzahl Knoten Grundlagen der Rechnernetze Einführung 71

72 Geschichte und Gegenwart Grundlagen der Rechnernetze Einführung 72

73 Geschichte und Gegenwart Entwicklung des Internet Grundlagen der Rechnernetze Einführung 73

74 Packet Switching der ersten Stunde Ende der 1950er Gegen 1960 Auf Höhe des kalten Krieges möchte das DoD (1) eine Lösung für ein Command und Kontrollzentrumsnetz, welches einen nuklearen Angriff überlebt. Das DoD beschließt einen Vertrag mit RAND Corporation, eine Lösung zu finden. Mitarbeiter Paul Baran entwickelte ein stark verteiltes und fehlertolerantes System auf Basis von digitalem Packet Switching. Der zu dieser Zeit amerikanische Telefonmonopolist AT&T findet dieses System jedoch nicht realisierbar. Struktur des Telefonsystems (1) Das DoD ist das Department of Defense der USA. Barans verteiltes Switching System Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 74

75 Das ARPANET 1967 Die ARPA (1) wechselt ihren Schwerpunkt unter der Leitung von Larry Roberts auf die Erforschung von Netzen. Einer der damals kontaktierten Experten, Wesley Clark, entwickelt ein Packet Switched Subnetz, in dem jeder Host an einen Router angebunden ist. Unabhängig davon wurde unter Leitung von Donald Davies am NPL (2) ein ähnliches Packet Switching System entworfen und sogar als Campus Netz schon implementiert. Das NPL referenziert hierbei die ursprünglich abgelehnte Arbeit von Paul Baran Die ARPA beauftragt die Consulting Firma BBN in Cambridge ein solches Netz und die dazu notwendige Netzsoftware zu entwickeln. Des Weiteren werden Graduate Studenten der Universität Utah damit beauftragt die Host Software zu entwickeln. Das Ergebnis ist das ARPANET welches schnell größer wurde und bald die ganze USA abdeckte. Struktur des Packet Switched Subets nach Clark Dez 1969 Jul 1970 Mär 1971 Apr 1972 Sep 1972 (1) Die ARPA, Advanced Research Projects Agency, ist ein staatlicher, amerikanischer, Der Zuwachs im ARPANET militärischer Forschungsförderer für Universitäten und Industrie. (2) Das NPL ist das National Physical Laboratory in England. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 75

76 Das ARPANET und NSFNET 1974 Die ersten ARPANET Protokolle erlaubten keine transparente End to End Kommunikation über verschiedene Netze. Dies wurde mit wachsen des ARPANET immer wichtiger und führte schließlich zur Entwicklung von TCP/IP von Vinton Cerf und Robert Kahn. Späte 1970 bis Ende 1980er Die ARPA forcierte die Verwendung von TCP/IP durch Verträge mit BBN und der University of California Berkeley, die neuen Protokolle in Berkeley Unix zu integrieren. Hierbei wurde auch die Socket Schnittstelle entwickelt. Die Teilnahme am ARPANET erforderte einen Vertrag mit dem DoD. Daher beschloss man im NSF (1) einen für alle US Universitäten freien Nachfolger des ARPANETs zu bauen. Der Anfang war ein USA umspannender Backbone, der sechs Super Computer Center verband. An den Backbone wurden etwa 20 regionale von der NSF geförderte Netze angebunden. Das Ergebnis war das NSFNET. Das ARPANET und das NSFNET wurden erstmals an der Universität Carnegie Mellon verbunden. Das NSF Backbone 1988 (1) Die NSF ist die US National Science Foundation. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 76

77 Kommerzialisierung des Internet Während der 1980er Mit dem immer größer werden der Netze wurde das Auffinden von Hosts anhand von IP Adressen immer aufwendiger. Als Lösung wurde eine hierarchische Namensstruktur, das DNS (Domain Name System), entwickelt. Das NSFNET verband Nutzer an tausenden von US Universitäten, Forschungslaboren, Bibliotheken und Museen. Es war damit permanent überladen. Die NSF beschloss einen Vertrag mit MERIT, einem Konsortium in Michigan, das Netz weiter zu betreiben. Damit erfuhr der Backbone des NSFNET einen Upgrade (zunächst von 56kbps auf 448kbps (Fiber Channels von MCI) und dann noch mal auf 1.5Mbps Lines) Mit dem Zusammenschluss von ARPANET und NSFNET schlossen sich viele weitere regionale Netze und Netze in Kanada, Europa, und Pazifik an Als ersten Schritt in Richtung Kommerzialisierung gibt die NSF das NSFNET an die nonprofit Corporation ANS (Advanced Networks and Services) von MERIT, MCI und IBM ab. Das ANS machte einen Upgrade des NSFNET Backbones auf das ANSNET, von 1.5Mbps auf 45Mbps Lines. Des Weiteren schloss das NSF Verträge mit den Netzbettreibern PacBell, Ameritech, MFS und Sprint ab, die einen fairen Wettbewerb der Netzanbieter sicher stellten Das ANSNET wurde an American Online verkauft. Damit begann die Kommerzialisierung von IP Diensten. Grundlagen der Rechnernetze Einführung 77

78 WWW Während der 1990er In vielen anderen Ländern entstehen nationale Forschungsnetze, häufig ähnlich gestaltet wie das ARPANET und NSFNET. Beispiele sind in Europa EuropaNET und EBONE, die mit 2Mbps starteten, einen Upgrade auf 34Mbps erfuhren und dann irgendwann ebenfalls an die Industrie abgegeben wurden. Bis in die frühen 1990er waren Akademiker die Anwender des Internet. Die Hauptanwendungen waren , News, Remote Login und File Transfer. Dies änderte sich schlagartig mit der Erfindung des WWW des CERN Physikers Tim Berners Lee und des Mosaik Browsers von Marc Andreesen am National Center for Supercomputer Applications in Urbana, Illinois. Es entstanden viele Internet Service Provider (ISP), die es einer immer größer werdenden Zahl von Endnutzern ermöglichten sich von Zuhause ins Internet einzuwählen. Grundlagen der Rechnernetze Einführung 78

79 Vereinfachte Übersicht des heutigen Internets Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 79

80 Geschichte und Gegenwart Telefonnetze, LANs und Standardisierung Grundlagen der Rechnernetze Einführung 80

81 Wide Area Datennetze 1970er 1980er 1990er Das verbindungsorientierte Wide Area Datennetz der ersten Stunde ist das in den 1970er entwickelte X.25 System. Das System wurde etwa ein Jahrzehnt verwendet. In den 1980ern wird X.25 im wesentlichen durch ein neues System, Frame Relay, ersetzt. Es diente (zum Teil sogar bis heute) hauptsächlich zum verbinden von LANs. In den 1990er wurde ATM (Asynchronous Transfer Mode) entwickelt. Das Ziel war der Zusammenschluss von Sprache, Daten, Kabelfernsehn, Telex, Telegraph in einem einzigen Datennetz (ATM = Internet versus Telcos). ATM hatte zwar nicht den ursprünglich erhofften Erfolg, wird aber häufig von Carriern für internen Datentransport von Internet Traffic verwendet. Grundlagen der Rechnernetze Einführung 81

82 Local Area Netze Frühe 1970er Norman Abrahamson und Kollegen der Universität Hawaii entwickeln das drahtlose (Short Range Radio) ALOHANET mit dem Computer der anliegenden Inseln mit dem Hauptcomputer auf Honolulu kommunizieren können Auf der Basis der Arbeit von Norman Abrahamson entwickeln Bob Metcalfe und David Boggs bei Xerox PARC das erste LAN mit dem Namen Ethernet (ursprüngliche Datenrate: 2.94Mbps) Das Xerox Ethernet wurde 1978 von DEC, Intel und Xerox als 10Mbps Ethernet unter dem Namen DIX standardisiert. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 82

83 Local Area Netze Ab 1978 Mitte der 1990er Bob Metcalfe gründet die Firma 3Com und verkauft über 100 Millionen Ethernet Adapter. Ethernet wurde über die Jahre immer weiter entwickelt: 100Mbps und 1000Mbps, Switching, Cabling etc. Neben dem Ethernet Standard wurden auch ein Token Bus und ein Token Ring LAN Standard etabliert. Der Ethernet Standard hat sich jedoch weitestgehend hier gegenüber durchgesetzt. Standardisierung eine Ethernet kompatiblen drahtlosen LAN Technik namens WiFi. Drahtloses Netz mit Access Point Ad hoc Netz Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 83

84 Standardisierungsgremien Telekommunikation ITU International Telecommunicaiton Union Internationale Standards ISO IEEE International Standards Organization Institute of Electrical and Electronics Engineering Internet Standards ISOC IAB IRTF IETF Internet Society Internet Architecture Board Internet Research Task Force Internet Engineering Task Force IEEE 802 Working Groups Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 84

85 Zusammenfassung und Literatur Grundlagen der Rechnernetze Einführung 85

86 Zusammenfassung Rekursive Definition eines Netzes Skalierbarkeit durch hierarchische Aggregation Adressierung, Routing, Forwarding Statistisches Multiplexing Layering, Protokolle Separation of Concerns OSI Modell, Internet Hour Glass Modell Latenz und Bandbreite Standardisierungen Grundlagen der Rechnernetze Einführung 86

87 Literatur [PetersonDavie2007] Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, Edition 4, Requirements 1.3 Network Architecture Application Programming Interface (Sockets) 1.5 Performance What is an Internetwork? Global Addresses Datagramm Forwarding in IP Subnetting Classless Routing (CIDR) [Tanenbaum2003] Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Example Networks 1.6 Network Standardization Grundlagen der Rechnernetze Einführung 87

Konsequenz für Forwarding Tabellen

Konsequenz für Forwarding Tabellen Konsequenz für Forwarding Tabellen Subnetznummer : 128. 96. 34. 0 Subnetzmaske : 255.255.255.128 128. 96. 34. 15 H1 128. 96. 34. 1 128. 96. 34.130 R1 Interface 1 Interface 2 128. 96. 34.128 255.255.255.128

Mehr

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 Adressauflösung IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 IP Adresse Physikalische Adresse 128.96.34.15??? 128.96.34.16 85:48:A4:28:AA:18 128.96.34.15

Mehr

Performance. Grundlagen der Rechnernetze Einführung 54

Performance. Grundlagen der Rechnernetze Einführung 54 Performance Grundlagen der Rechnernetze Einführung 54 Bandbreite 0 1 1 0 0 1 1 1 s 1 Sekunde Bandbreite b in obigem Beispiel: Grundlagen der Rechnernetze Einführung 55 Bps und bps Kenngröße Größenordnung

Mehr

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41 Protokolle und Schichten Grundlagen der Rechnernetze Einführung 41 Protokoll und Interface Host 1 Host 2 High Level Objekt High Level Objekt Service Interface Service Interface Protokoll Peer to peer Interface

Mehr

Performance. Beispiel: Vorteil von statistischem Multiplexing. Grundlagen der Rechnernetze Einführung 69

Performance. Beispiel: Vorteil von statistischem Multiplexing. Grundlagen der Rechnernetze Einführung 69 Performance Beispiel: Vorteil von statistischem Multiplexing Grundlagen der Rechnernetze Einführung 69 Statisches versus Statistisches Multiplexing H 1 p b bps H n p Verhältnis x der mittleren Bandbreite

Mehr

Protokollgraph. Host 1. Host 2. Protokoll 2. Protokoll 1. Protokoll 3. Protokoll 4. Grundlagen der Rechnernetze Einführung 46

Protokollgraph. Host 1. Host 2. Protokoll 2. Protokoll 1. Protokoll 3. Protokoll 4. Grundlagen der Rechnernetze Einführung 46 Protokollgraph Host 1 Host 2 Protokoll 1 Protokoll 2 Protokoll 1 Protokoll 2 Protokoll 3 Protokoll 3 Protokoll 4 Protokoll 4 Grundlagen der Rechnernetze Einführung 46 Nachrichtenkapselung Host 1 Anwendung

Mehr

Internet Modell. Nothing stated. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50

Internet Modell. Nothing stated. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50 Internet Modell Nothing stated by TCP/IP model Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50 Internet Protokolle Bildquelle: Andrew

Mehr

Classful IP Adressen

Classful IP Adressen Classful IP Adressen 10101011 01000101 11010010 11110101 171.69.210.245 Class A 7 24 0 Netz Host Class B 14 16 1 0 Netz Host Class C 21 8 1 1 0 Netz Host Grundlagen der Rechnernetze Einführung 27 Bedarf

Mehr

Bitfehlerrate und Paketverlustrate

Bitfehlerrate und Paketverlustrate Bitfehlerrate und Paketverlustrate 010100010111100010011101110010110001101 Bitfehler Paket 1 Paket 2 Paket 3 Paket 4 Paketfehler Einfacher Zusammenhang zwischen BER und PER, für n Bit Nachrichten ohne

Mehr

Delay einer Multi Hop Übertragung

Delay einer Multi Hop Übertragung Delay einer Multi Hop Übertragung H1 d H2 Zeit x zur Übertragung von n Bits bei Distanz d, Signalausbreitungsgeschwindigkeit l, Bandbreite b und Queuing Zeit q: Grundlagen der Rechnernetze Einführung 59

Mehr

Grundlagen der Rechnernetze. Einführung

Grundlagen der Rechnernetze. Einführung Grundlagen der Rechnernetze Einführung Übersicht Basisbausteine und Begriffe Kommunikationsgrundlagen Adressierung Protokolle und Schichten Performance Geschichte und Gegenwart Grundlagen der Rechnernetze

Mehr

Bedarf für eine weitere Hierarchieebene

Bedarf für eine weitere Hierarchieebene Bedarf für eine weitere Hierarchieebene H1 H2 H3 H7 H8 H9 1.1 1.2 1.7 4.1 4.2 4.3 H4 1 2.5 R1 1.10 2.8 R2 3.1 3 4 3.2 R3 4.4 2.7 2 H5 2.1 2.4 H6 Eingang ins Campus Netz Grundlagen der Rechnernetze Einführung

Mehr

Grundlagen der Rechnernetze

Grundlagen der Rechnernetze Grundlagen der Rechnernetze Einführung Übersicht Basisbausteine und Begriffe Kommunikationsgrundlagen Adressierung Protokolle und Schichten Performance Geschichte und Gegenwart Grundlagen der Rechnernetze

Mehr

2.1 Adressierung im Internet

2.1 Adressierung im Internet 2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110

Mehr

Grundlagen der Rechnernetze. Internetworking

Grundlagen der Rechnernetze. Internetworking Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012

Mehr

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer Einführung in IP, ARP, Routing Wap WS02/03 Ploner, Zaunbauer - 1 - Netzwerkkomponenten o Layer 3 o Router o Layer 2 o Bridge, Switch o Layer1 o Repeater o Hub - 2 - Layer 3 Adressierung Anforderungen o

Mehr

Einführung: Grundlegende Design-Prinzipien des Internet. 2000 B. Plattner, H. Lubich Internet Intro 1

Einführung: Grundlegende Design-Prinzipien des Internet. 2000 B. Plattner, H. Lubich Internet Intro 1 Einführung: Grundlegende Design-Prinzipien des Internet 2000 B. Plattner, H. Lubich Internet Intro 1 Ursprüngliche Entwurfsentscheidungen Paketvermittlung damals eine neue Technik, im ARPANET erforscht

Mehr

Einführung in die Netzwerktechnik

Einführung in die Netzwerktechnik Ich Falk Schönfeld Seit 8 Jahren bei eurogard GmbH Entwickler für Remoteserviceprodukte Kernkompetenz Linux Mail: schoenfeld@eurogard.de Telefon: +49/2407/9516-15 Ablauf: Was bedeutet Netzwerktechnik?

Mehr

KN 20.04.2015. Das Internet

KN 20.04.2015. Das Internet Das Internet Internet = Weltweiter Verbund von Rechnernetzen Das " Netz der Netze " Prinzipien des Internet: Jeder Rechner kann Information bereitstellen. Client / Server Architektur: Server bietet Dienste

Mehr

IP routing und traceroute

IP routing und traceroute IP routing und traceroute Seminar Internet-Protokolle Dezember 2002 Falko Klaaßen fklaasse@techfak.uni-bielefeld.de 1 Übersicht zum Vortrag Was ist ein internet? Was sind Router? IP routing Subnet Routing

Mehr

Folgende Voraussetzungen für die Konfiguration müssen erfüllt sein: - Ein Bootimage ab Version 7.4.4. - Optional einen DHCP Server.

Folgende Voraussetzungen für die Konfiguration müssen erfüllt sein: - Ein Bootimage ab Version 7.4.4. - Optional einen DHCP Server. 1. Dynamic Host Configuration Protocol 1.1 Einleitung Im Folgenden wird die Konfiguration von DHCP beschrieben. Sie setzen den Bintec Router entweder als DHCP Server, DHCP Client oder als DHCP Relay Agent

Mehr

Client-Server mit Socket und API von Berkeley

Client-Server mit Socket und API von Berkeley Client-Server mit Socket und API von Berkeley L A TEX Projektbereich Deutsche Sprache Klasse 3F Schuljahr 2015/2016 Copyleft 3F Inhaltsverzeichnis 1 NETZWERKPROTOKOLLE 3 1.1 TCP/IP..................................................

Mehr

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vorlesung 11: Netze Sommersemester 2001 Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vielen Dank an Andrew Tanenbaum der Vrije Universiteit Amsterdam für die Bilder Andrew Tanenbaum, Computer Networks,

Mehr

Internet Routing am 14. 11. 2006 mit Lösungen

Internet Routing am 14. 11. 2006 mit Lösungen Wissenstandsprüfung zur Vorlesung Internet Routing am 14. 11. 2006 mit Lösungen Beachten Sie bitte folgende Hinweise! Dieser Test ist freiwillig und geht in keiner Weise in die Prüfungsnote ein!!! Dieser

Mehr

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz Übung 6 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz Fakultät für Informatik 03.06.2015 / FEIERTAG 1/1 IPv6 Routing Routing Table 172.16.0.254/24

Mehr

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur Probeklausur Diese Probeklausur ist auf eine Bearbeitungsdauer von 90 Minuten (= 90 maximal erreichbare Punkte) angelegt. Beachten Sie, dass die echte Klausur 120 Minuten dauern wird und entsprechend mehr

Mehr

Multimedia und Datenkommunikation

Multimedia und Datenkommunikation Multimedia und Datenkommunikation Einteilung in Unterpunkte Netzwerk Audioausgabe Internetzugang Basis des Projektes Büro 5 Mitarbeiter Datenaustausch via Diskette Kein Netzwerk Ein Nadeldrucker Netzwerke

Mehr

Ursprung des Internets und WWW

Ursprung des Internets und WWW Ursprung des Internets und WWW Ende der 60er Jahre des letzten Jahrtausends wurde in den USA die Agentur DARPA (Defense Advanced Research Projects Agency) gegründet, mit dem Ziel den Wissens und Informationsaustausch

Mehr

Verbindungslose Netzwerk-Protokolle

Verbindungslose Netzwerk-Protokolle Adressierung Lokales Netz jede Station kennt jede Pakete können direkt zugestellt werden Hierarchisches Netz jede Station kennt jede im lokalen Bereich Pakete können lokal direkt zugestellt werden Pakete

Mehr

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1)

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) 1 FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) In dieser Kurseinheit geht es um verteilte Anwendungen, bei denen wir sowohl ein Client- als auch ein

Mehr

4. Network Interfaces Welches verwenden? 5. Anwendung : Laden einer einfachen Internetseite 6. Kapselung von Paketen

4. Network Interfaces Welches verwenden? 5. Anwendung : Laden einer einfachen Internetseite 6. Kapselung von Paketen Gliederung 1. Was ist Wireshark? 2. Wie arbeitet Wireshark? 3. User Interface 4. Network Interfaces Welches verwenden? 5. Anwendung : Laden einer einfachen Internetseite 6. Kapselung von Paketen 1 1. Was

Mehr

2. Architektur von Kommunikationssystemen

2. Architektur von Kommunikationssystemen 2. Architektur von Kommunikationssystemen 2.1 2.2 TCP/IP-basierte Protokollarchitektur Digitale Kommunikationssysteme Prof. Dr. Habermann / Dr. Hischke 12-01 / 1 Das OSI-Referenzmodell wird ausführlich

Mehr

Guide DynDNS und Portforwarding

Guide DynDNS und Portforwarding Guide DynDNS und Portforwarding Allgemein Um Geräte im lokalen Netzwerk von überall aus über das Internet erreichen zu können, kommt man um die Themen Dynamik DNS (kurz DynDNS) und Portweiterleitung(auch

Mehr

Netzwerktechnologie 2 Sommersemester 2004

Netzwerktechnologie 2 Sommersemester 2004 Netzwerktechnologie 2 Sommersemester 2004 FH-Prof. Dipl.-Ing. Dr. Gerhard Jahn Gerhard.Jahn@fh-hagenberg.at Fachhochschulstudiengänge Software Engineering Software Engineering für Medizin Software Engineering

Mehr

IP-Adresse und Netzmaske:

IP-Adresse und Netzmaske: IP-Adresse und Netzmaske: 1.) Gehört 134.169.34.218 in das Netz 134.169.34.192/26? Antwort: Wir sehen eine Netzmaske der Größe 26 (das ist das Zeichen /26). Das soll heißen: Das Netzwerk hat eine 26 Bit

Mehr

Stefan Dahler. 1. Remote ISDN Einwahl. 1.1 Einleitung

Stefan Dahler. 1. Remote ISDN Einwahl. 1.1 Einleitung 1. Remote ISDN Einwahl 1.1 Einleitung Im Folgenden wird die Konfiguration einer Dialup ISDN Verbindungen beschrieben. Sie wählen sich über ISDN von einem Windows Rechner aus in das Firmennetzwerk ein und

Mehr

Seite - 1 - 3. Wireless Distribution System (Routing / Bridging) 3.1 Einleitung

Seite - 1 - 3. Wireless Distribution System (Routing / Bridging) 3.1 Einleitung 3. Wireless Distribution System (Routing / ) 3.1 Einleitung Im Folgenden wird die Konfiguration des Wireless Distribution Modus gezeigt. Sie nutzen zwei Access Points um eine größere Strecke über Funk

Mehr

Anbindung des eibport an das Internet

Anbindung des eibport an das Internet Anbindung des eibport an das Internet Ein eibport wird mit einem lokalen Router mit dem Internet verbunden. Um den eibport über diesen Router zu erreichen, muss die externe IP-Adresse des Routers bekannt

Mehr

Anleitung zur Nutzung des SharePort Utility

Anleitung zur Nutzung des SharePort Utility Anleitung zur Nutzung des SharePort Utility Um die am USB Port des Routers angeschlossenen Geräte wie Drucker, Speicherstick oder Festplatte am Rechner zu nutzen, muss das SharePort Utility auf jedem Rechner

Mehr

2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen

2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen 2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen Dienste des Internets Das Internet bietet als riesiges Rechnernetz viele Nutzungsmöglichkeiten, wie etwa das World

Mehr

Gefahren aus dem Internet 1 Grundwissen April 2010

Gefahren aus dem Internet 1 Grundwissen April 2010 1 Grundwissen Voraussetzungen Sie haben das Internet bereits zuhause oder an der Schule genutzt. Sie wissen, was ein Provider ist. Sie wissen, was eine URL ist. Lernziele Sie wissen, was es braucht, damit

Mehr

Walther- Übungsaufgabe 24. Januar 2016 Rathenau- Routing Name: Gewerbeschule Freiburg DHCP Klasse: E3FI1T Seite 1 Punkte: /20 Note:

Walther- Übungsaufgabe 24. Januar 2016 Rathenau- Routing Name: Gewerbeschule Freiburg DHCP Klasse: E3FI1T Seite 1 Punkte: /20 Note: Fach: ITS Walther- Übungsaufgabe 24. Januar 2016 Gruppe: Rathenau- Routing Name: Gewerbeschule VLANs Freiburg DHCP Klasse: E3FI1T Seite 1 Punkte: /20 Note: Hinweise Liebe Leute, bitte versucht so gut als

Mehr

Konfigurationsanleitung Access Control Lists (ACL) Funkwerk. Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0.

Konfigurationsanleitung Access Control Lists (ACL) Funkwerk. Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0. Konfigurationsanleitung Access Control Lists (ACL) Funkwerk Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0 Seite - 1 - 1. Konfiguration der Access Listen 1.1 Einleitung Im Folgenden

Mehr

Kontrollfragen: Internet

Kontrollfragen: Internet Kontrollfragen: Internet 1. Zählen Sie mindestens 5 Internet-Dienste auf. 2. Was ist eine virtuelle Verbindung? Vergleichen Sie eine virtuelle TCP/IP-Verbindung mit der Leitungsvermittlung (analoge Telefonverbindung).

Mehr

Manchester Codierung sowie Differenzielle Manchester Codierung

Manchester Codierung sowie Differenzielle Manchester Codierung Manchester Codierung sowie Differenzielle Manchester Codierung Nadine Sass 1 von 8 Inhaltsverzeichnis Inhaltsverzeichnis... 2 Abbildungsverzeichnis... 3 Das Ethernet... 4 Das IEEE 802.3 Ethernet Paketformat...

Mehr

3 Das verbindungslose Vermittlungsprotokoll IP

3 Das verbindungslose Vermittlungsprotokoll IP Das verbindungslose Vermittlungsprotokoll IP 27 3 Das verbindungslose Vermittlungsprotokoll IP In diesem Kapitel lernen Sie das verbindungslose Vermittlungsprotokoll IP näher kennen. Nach dem Durcharbeiten

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 9. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

All People Seem To Need Data Processing: Application Presentation - Session Transport Network Data-Link - Physical

All People Seem To Need Data Processing: Application Presentation - Session Transport Network Data-Link - Physical OSI-Schichtenmodell (OSI = Open System Interconnection) Bitubertragungsschicht (Physical Layer L1): Bitübertragung Sicherungsschicht (Data-Link Layer L2): Gruppierung des Bitstroms in Frames Netzwerkschicht

Mehr

IT- und Medientechnik

IT- und Medientechnik IT- und Medientechnik Vorlesung 5: 7.11.2014 Wintersemester 2014/2015 h_da, Lehrbeauftragter Themenübersicht der Vorlesung Hard- und Software Hardware: CPU, Speicher, Bus, I/O,... Software: System-, Unterstützungs-,

Mehr

IP-Adressen und Ports

IP-Adressen und Ports IP-Adressen und Ports Eine Einführung Tina Umlandt Universität Hamburg 2. August 2011 Überblick Präsentationsablauf 1 IP = Internetwork protocol Schematische Darstellung über die Layer IP-Datenpaket (IPv4)

Mehr

Man liest sich: POP3/IMAP

Man liest sich: POP3/IMAP Man liest sich: POP3/IMAP Gliederung 1. Einführung 1.1 Allgemeiner Nachrichtenfluss beim Versenden von E-Mails 1.2 Client und Server 1.2.1 Client 1.2.2 Server 2. POP3 2.1 Definition 2.2 Geschichte und

Mehr

Referat von Sonja Trotter Klasse: E2IT1 Datum Jan. 2003. Subnetting

Referat von Sonja Trotter Klasse: E2IT1 Datum Jan. 2003. Subnetting Referat von Sonja Trotter Klasse: E2IT1 Datum Jan. 2003 Subnetting Einleitung Thema dieser Ausarbeitung ist Subnetting Ganz zu Beginn werden die zum Verständnis der Ausführung notwendigen Fachbegriffe

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet

Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL5 Folie 1 Dr. Jens Döbler Internet Grundlagen Zusammenschluß

Mehr

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur Probeklausur Aufgabe 1 (Allgemeine Verständnisfragen): 1. Wie nennt man die Gruppe von Dokumenten, in welchen technische und organisatorische Aspekte (bzw. Standards) rund um das Internet und TCP/IP spezifiziert

Mehr

Thema IPv6. Geschichte von IPv6

Thema IPv6. Geschichte von IPv6 Geschichte von IPv6 IPv6 ist der Nachfolger des aktuellen Internet Protokolls IPv4, welches für die Übertragung von Daten im Internet zuständig ist. Schon Anfang der 90er Jahre wurde klar, dass die Anzahl

Mehr

Die Subnetzmaske/Netzwerkmaske

Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske (auch Netzwerkmaske genannt) ist eine mehrstellige Binärzahl (Bitmaske), die in einem Netzwerk eine IP-Adresse in eine Netzadresse und eine Geräteadresse

Mehr

Technische Grundlagen von Internetzugängen

Technische Grundlagen von Internetzugängen Technische Grundlagen von Internetzugängen 2 Was ist das Internet? Ein weltumspannendes Peer-to-Peer-Netzwerk von Servern und Clients mit TCP/IP als Netzwerk-Protokoll Server stellen Dienste zur Verfügung

Mehr

Internet und WWW Übungen

Internet und WWW Übungen Internet und WWW Übungen 6 Rechnernetze und Datenübertragung [WEB6] Rolf Dornberger 1 06-11-07 6 Rechnernetze und Datenübertragung Aufgaben: 1. Begriffe 2. IP-Adressen 3. Rechnernetze und Datenübertragung

Mehr

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze CCNA Exploration Network Fundamentals Chapter 6 Subnetze Chapter 6: Zu erwerbende Kenntnisse Wissen über: Rechnen / Umrechnen im binären Zahlensystem Strukturteile einer IP-Adresse Spezielle IPv4-Adressen

Mehr

C.M.I. Control and Monitoring Interface. Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) Version 1.08

C.M.I. Control and Monitoring Interface. Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) Version 1.08 C.M.I. Version 1.08 Control and Monitoring Interface Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) de LAN LAN Beschreibung der Datentransfermethode Mit dieser Methode ist es möglich, analoge

Mehr

8. Bintec Router Redundancy Protocol (BRRP) 8.1 Einleitung

8. Bintec Router Redundancy Protocol (BRRP) 8.1 Einleitung 8. Bintec Router Redundancy Protocol (BRRP) 8.1 Einleitung Im Folgenden wird die Konfiguration von BRRP gezeigt. Beide Router sind jeweils über Ihr Ethernet 1 Interface am LAN angeschlossen. Das Ethernet

Mehr

Black Box erklärt. Subnetzmasken

Black Box erklärt. Subnetzmasken Black Box erklärt Subnetzmasken Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske (auch Netzwerkmaske genannt) ist eine mehrstellige Binärzahl (Bitmaske), die in einem Netzwerk eine IP-Adresse in eine Netzadresse

Mehr

www.internet-einrichten.de

www.internet-einrichten.de E-Mail-Programme E-Mail Adresse einrichten Bei t-online, AOL, Compuserve, und anderen können Sie sich E-Mail-Adressen einrichten. Dies hat aber den Nachteil, dass Sie diese nur mit der entsprechenden Zugangssoftware

Mehr

IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken

IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken Version 2.0 1 Original-Application Note ads-tec GmbH IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken Stand: 27.10.2014 ads-tec GmbH 2014 IRF2000 2 Inhaltsverzeichnis

Mehr

Analyse und Darstellung der Protokollabläufe in IPv6-basierten Rechnernetzen

Analyse und Darstellung der Protokollabläufe in IPv6-basierten Rechnernetzen Analyse und Darstellung der Protokollabläufe in IPv6-basierten Rechnernetzen Diplomarbeit Harald Schwier Vortragsthema: Integration von IPv6 in IPv4-basierte Netze Harald Schwier 26.05.2005 Themen der

Mehr

Virtual Private Network

Virtual Private Network Virtual Private Network Allgemeines zu VPN-Verbindungen WLAN und VPN-TUNNEL Der VPN-Tunnel ist ein Programm, das eine sichere Verbindung zur Universität herstellt. Dabei übernimmt der eigene Rechner eine

Mehr

Routing im Internet Wie findet ein IP Paket den Weg zum Zielrechner?

Routing im Internet Wie findet ein IP Paket den Weg zum Zielrechner? Wie findet ein IP Paket den Weg zum Zielrechner? Bildung von Subnetzen, welche über miteinander verbunden sind. Innerhalb einer Collision Domain (eigenes Subnet): Rechner startet eine ARP (Address Resolution

Mehr

ICMP Internet Control Message Protocol. Michael Ziegler

ICMP Internet Control Message Protocol. Michael Ziegler ICMP Situation: Komplexe Rechnernetze (Internet, Firmennetze) Netze sind fehlerbehaftet Viele verschiedene Fehlerursachen Administrator müsste zu viele Fehlerquellen prüfen Lösung: (ICMP) Teil des Internet

Mehr

RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse?

RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse? RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse? Holger Jakobs, bibjah@bg.bib.de Bildungszentrum b.i.b. e. V. RCSfile: dhcp.tex,v Revision: 1.2 p. 1 RARP Was heißt RARP? Reverse Address Resolution

Mehr

Adressen im Internet (Wdh.)

Adressen im Internet (Wdh.) Subnetze und Routen Subnetze werden benötigt, um die nutzbaren IP-Adressen weiter zu strukturieren. Die Diskriminierung erfolgt über die Netzmaske. Zwischen Subnetzen muss per Gateway bzw. Router vermittelt

Mehr

HBF IT-Systeme. BBU-NPA Übung 4 Stand: 27.10.2010

HBF IT-Systeme. BBU-NPA Übung 4 Stand: 27.10.2010 BBU-NPA Übung 4 Stand: 27.10.2010 Zeit Laborübung 90 min IP-Adressierung und e Aufbau einer IP-Adresse Jeder Rechner in einem Netzwerk muß eine eindeutige IP-Adresse besitzen. Die IP-Adresse von IPv4 ist

Mehr

Konfiguration Firewall (Zyxel Zywall 10) (von Gruppe Schraubenmeier)

Konfiguration Firewall (Zyxel Zywall 10) (von Gruppe Schraubenmeier) Konfiguration Firewall (Zyxel Zywall 10) (von Gruppe Schraubenmeier) Firewall über Seriellen Anschluss mit Computer verbinden und Netzteil anschliessen. Programm Hyper Terminal (Windows unter Start Programme

Mehr

Konfiguration des Fernzugriffes auf Eyseo-IP-Netzwerkkameras mittels dynamischer IP-Adresse

Konfiguration des Fernzugriffes auf Eyseo-IP-Netzwerkkameras mittels dynamischer IP-Adresse Konfiguration des Fernzugriffes auf Eyseo-IP-Netzwerkkameras mittels dynamischer IP-Adresse 1. Netzwerkinfrastuktur 2. Warum DynDNS? 3. Erstellen eines DynDNS Hosteintrages 4. Beispeil-Konfiguration eines

Mehr

Multicast Security Group Key Management Architecture (MSEC GKMArch)

Multicast Security Group Key Management Architecture (MSEC GKMArch) Multicast Security Group Key Management Architecture (MSEC GKMArch) draft-ietf-msec-gkmarch-07.txt Internet Security Tobias Engelbrecht Einführung Bei diversen Internetanwendungen, wie zum Beispiel Telefonkonferenzen

Mehr

Uni-Firewall. Absicherung des Überganges vom Hochschulnetz zum Internet am Wingate (Helmut Celina)

Uni-Firewall. Absicherung des Überganges vom Hochschulnetz zum Internet am Wingate (Helmut Celina) Uni-Firewall Absicherung des Überganges vom Hochschulnetz zum Internet am Wingate (Helmut Celina) Was ist eine Firewall? oder 2 Was ist eine Firewall? Eine Firewall muss ein Tor besitzen Schutz vor Angriffen

Mehr

Telekommunikationsnetze 2

Telekommunikationsnetze 2 Telekommunikationsnetze 2 Breitband-ISDN Lokale Netze Internet WS 2008/09 Martin Werner martin werner, January 09 1 Breitband-ISDN Ziele Flexibler Netzzugang Dynamische Bitratenzuteilung Effiziente Vermittlung

Mehr

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart.

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart. Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart. Ausgangssituation: Es ist ein Computer vorhanden (Rechnername

Mehr

Netzwerk- Konfiguration. für Anfänger

Netzwerk- Konfiguration. für Anfänger Netzwerk- Konfiguration für Anfänger 1 Vorstellung Christian Bockermann Informatikstudent an der Universität Dortmund Freiberuflich in den Bereichen Software- Entwicklung und Netzwerk-Sicherheit tätig

Mehr

GLASFASERNETZ DATACENTER RHEIN-NECKAR RHEIN-NECKAR-CLOUD MULTIMEDIA. Fixed Line BESCHREIBUNG. carrier ethernet TBFL_PFK_MA_13201507

GLASFASERNETZ DATACENTER RHEIN-NECKAR RHEIN-NECKAR-CLOUD MULTIMEDIA. Fixed Line BESCHREIBUNG. carrier ethernet TBFL_PFK_MA_13201507 Fixed Line carrier ethernet TBFL_PFK_MA_13201507 Carrier Ethernet Services Ihre Kunden haben mehrere Standorte und einen wachsenden Bedarf an Lösungen zum differenzierten Austausch von immer größeren Datenmengen?

Mehr

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können.

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können. Rechnernetzwerke Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können. Im Gegensatz zu klassischen Methoden des Datenaustauschs (Diskette,

Mehr

Um DynDNS zu konfigurieren, muss ausschließlich folgendes Menü konfiguriert werden:

Um DynDNS zu konfigurieren, muss ausschließlich folgendes Menü konfiguriert werden: 1. Konfiguration von DynDNS 1.1 Einleitung Im Folgenden wird die Konfiguration von DynDNS beschrieben. Sie erstellen einen Eintrag für den DynDNS Provider no-ip und konfigurieren Ihren DynDNS Namen bintec.no-ip.com.

Mehr

ISA Server 2004 Erstellen eines neuen Netzwerkes - Von Marc Grote

ISA Server 2004 Erstellen eines neuen Netzwerkes - Von Marc Grote Seite 1 von 10 ISA Server 2004 Erstellen eines neuen Netzwerkes - Von Marc Grote Die Informationen in diesem Artikel beziehen sich auf: Microsoft ISA Server 2004 Einleitung Microsoft ISA Server 2004 bietet

Mehr

WLAN Konfiguration. Michael Bukreus 2014. Seite 1

WLAN Konfiguration. Michael Bukreus 2014. Seite 1 WLAN Konfiguration Michael Bukreus 2014 Seite 1 Inhalt Begriffe...3 Was braucht man für PureContest...4 Netzwerkkonfiguration...5 Sicherheit...6 Beispielkonfiguration...7 Screenshots Master Accesspoint...8

Mehr

Security. Stefan Dahler. 4. Internet Verbindung. 4.1 Einleitung

Security. Stefan Dahler. 4. Internet Verbindung. 4.1 Einleitung 4. Internet Verbindung 4.1 Einleitung Im Folgenden wird die Konfiguration der DFL-800 Firewall gezeigt. Sie konfigurieren einen Internet Zugang zum Provider mit dem Protokoll PPPoE. In der Firewallrichtlinie

Mehr

Übersicht. Was ist FTP? Übertragungsmodi. Sicherheit. Öffentliche FTP-Server. FTP-Software

Übersicht. Was ist FTP? Übertragungsmodi. Sicherheit. Öffentliche FTP-Server. FTP-Software FTP Übersicht Was ist FTP? Übertragungsmodi Sicherheit Öffentliche FTP-Server FTP-Software Was ist FTP? Protokoll zur Dateiübertragung Auf Schicht 7 Verwendet TCP, meist Port 21, 20 1972 spezifiziert Übertragungsmodi

Mehr

Inhalt. Erreichbarkeit von VPN-Gateways hinter einem Genexis FTTH-Abschlussrouter

Inhalt. Erreichbarkeit von VPN-Gateways hinter einem Genexis FTTH-Abschlussrouter Dieses Dokument beschreibt die notwendigen Einstellungen, um ein VPN-Gateway hinter einer Genexis OCG-218M/OCG-2018M und HRG1000 LIVE! TITANIUM trotz NAT-Funktion erreichbar zu machen. Inhalt 1 OCG-218M/OCG-2018M...

Mehr

Anleitung Grundsetup C3 Mail & SMS Gateway V02-0314

Anleitung Grundsetup C3 Mail & SMS Gateway V02-0314 Anleitung Grundsetup C3 Mail & SMS Gateway V02-0314 Kontakt & Support Brielgasse 27. A-6900 Bregenz. TEL +43 (5574) 61040-0. MAIL info@c3online.at loxone.c3online.at Liebe Kundin, lieber Kunde Sie haben

Mehr

MSXFORUM - Exchange Server 2003 > SMTP Konfiguration von Exchange 2003

MSXFORUM - Exchange Server 2003 > SMTP Konfiguration von Exchange 2003 Page 1 of 8 SMTP Konfiguration von Exchange 2003 Kategorie : Exchange Server 2003 Veröffentlicht von webmaster am 25.02.2005 SMTP steht für Simple Mail Transport Protocol, welches ein Protokoll ist, womit

Mehr

Internetanwendungstechnik (Übung)

Internetanwendungstechnik (Übung) Internetanwendungstechnik (Übung) IPv6 Stefan Bissell, Gero Mühl Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Kommunikations- und Betriebssysteme (KBS) Einsteinufer 17, Sekr.

Mehr

Einführung in die. Netzwerktecknik

Einführung in die. Netzwerktecknik Netzwerktecknik 2 Inhalt ARP-Prozeß Bridging Routing Switching L3 Switching VLAN Firewall 3 Datenaustausch zwischen 2 Rechnern 0003BF447A01 Rechner A 01B765A933EE Rechner B Daten Daten 0003BF447A01 Quelle

Mehr

TK-Schnittstelleneinrichtung. Redundante Softswitches

TK-Schnittstelleneinrichtung. Redundante Softswitches TK-Schnittstelleneinrichtung TK-Anlage: : Anschaltung: Protokoll: Redundante Softswitches Classic DAKS Release 7.5x.. 7.6x ICTC V3.1x µdaks-alert V1.0x.. V1.1x Siemens OScAR-Pro V3R2 Siemens OScAR-Eco

Mehr

ICS-Addin. Benutzerhandbuch. Version: 1.0

ICS-Addin. Benutzerhandbuch. Version: 1.0 ICS-Addin Benutzerhandbuch Version: 1.0 SecureGUARD GmbH, 2011 Inhalt: 1. Was ist ICS?... 3 2. ICS-Addin im Dashboard... 3 3. ICS einrichten... 4 4. ICS deaktivieren... 5 5. Adapter-Details am Server speichern...

Mehr

IPv6. Übersicht. Präsentation von Mark Eichmann Klasse WI04f 22. November 2005

IPv6. Übersicht. Präsentation von Mark Eichmann Klasse WI04f 22. November 2005 Präsentation von Mark Eichmann Klasse WI04f 22. November 2005 Übersicht Geschichte Die Neuerungen von Warum? Häufige Missverständnisse Der Header eines -Paketes Adressaufbau von Übergang von zu Neue Versionen

Mehr

Kontrollfragen Die nötigen Netzwerkgrundlagen

Kontrollfragen Die nötigen Netzwerkgrundlagen Kontrollfragen Die nötigen Netzwerkgrundlagen ISO/OSI Referenzmodell Ordnung muss sein... Das ISO/OSI-Referenzmodell besteht bekanntlich aus sieben unterschiedlichen Schichten. Welche der offerierten Varianten

Mehr

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol CCNA Exploration Network Fundamentals ARP Address Resolution Protocol ARP: Address resolution protocol 1. Eigenschaften ARP-Cache Aufbau 2. Ablauf Beispiel Flussschema 3. ARP-Arten 4. Sicherheit Man-In-The-Middle-Attacke

Mehr

Nutzung dieser Internetseite

Nutzung dieser Internetseite Nutzung dieser Internetseite Wenn Sie unseren Internetauftritt besuchen, dann erheben wir nur statistische Daten über unsere Besucher. In einer statistischen Zusammenfassung erfahren wir lediglich, welcher

Mehr

IPV6. Eine Einführung

IPV6. Eine Einführung IPV6 Eine Einführung ÜBERSICHT IPv4 Historisch IPv6 Historisch Darstellung von IPv6-Adressen Adresstypen Unicast Link Local Multicast IPv6 Headeraufbau DNS IPV4 - HISTORISCH Entwicklung 1981 Geplant für

Mehr

Prof. Dr. R. Sethmann Übungen: Datum: 30.06.2005 Rechnernetze und Telekommunikation

Prof. Dr. R. Sethmann Übungen: Datum: 30.06.2005 Rechnernetze und Telekommunikation Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Σ Punkte 10 10 10 10 10 50 20 10 20 10 20 20 200 erreichte Pkt. Name: Semester: Matrikel-Nr.: Bitte beachten Sie: Schreiben Sie Ihren Namen, Semester und Matrikel-Nr.

Mehr