Große Datenmengen knacken mit SAS High-Performance Analytics

Größe: px
Ab Seite anzeigen:

Download "Große Datenmengen knacken mit SAS High-Performance Analytics"

Transkript

1 make connections share ideas be inspired Große Datenmengen knacken mit SAS High-Performance Analytics Martin Schütz CC Analytics SAS Institute GmbH

2 Agenda Terminologie: SAS High-Performance Analytics SAS High-Performance Analytics (Product) Motivation: Wozu? Inhalt: Was ist es? Architektur: Wie funktioniert es? Funktionalität: Wie nutze ich es? Beispiele Online Demo

3 SAS High-Performance Analytics Alltägliche Herausforderungen IT-Sicht Nicht vollständig genutzte Ressourcen Unterstützung inkrementellen Wachstums (Skalierbarkeit) Unnötige Datenbewegungen Single version of the truth für analytische Daten Garantie von Verfügbarkeit & Kontinuität Steigende Kosten Fachbereichs-Sicht Wachstum hinsichtlich Datenvolumina und Komplexität Lange Zeiten für die Ergebnisgenerierung Langsame Antwortzeiten Limitierte Analysemöglichkeiten aufgrund fehlender Ressourcen Geringe Produktivität

4 Demo: HPA Prozeduren Maschinen-Konfiguration Client 2 CPUs HPA Greenplum Appliance (1/4 Rack) 4 Worker Knoten zu 24 Cores Demo Setup Eine Prozedur PROC (HP)LOGISTIC Client PROC LOGISTIC (multi-threaded) auf einer 5% Stichprobe aus 1 Mrd. Beobachtungen auf dem Client Rechner HPA Appliance PROC HPLOGISTIC auf einer 5% Stichprobe aus 1 Mrd. Beobachtungen auf der HPA Appliance proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run;

5 SAS High-Performance Analytics Komponenten ANALYTIC INFRASTRUCTURE SAS High-Performance Analytics SAS High-Performance Solutions SAS Visual Analytics

6 SAS Grid Computing Daten und Analysen auf viele Rechner verteilen Dynamische Lastverteilung und Verwaltung für SAS Prozesse mittels SAS Grid Manager im Serververbund Vorteile Intelligente Lastverteilung Skalierbarkeit Hochverfügbarkeit und Ausfallsicherheit Parallelisierung auf Programmschritt-Ebene (manuell bis tool-unterstützt) Gemeinsamer Zugriff auf Datenbestand

7 SAS In-Database Analytics zu den Daten bringen SAS Analyse und Scoring-Prozesse können direkt in die Datenbank übertragen und dort angewandt werden SQL-basierte implizite Parallelisierung im DBMS Vorteile Beschleunigte Modellentwicklung auf großen Datenmengen Automatisierte Modellüberführung Höchste Performance bei der Modellanwendung Vermeidung von Datenbewegungen SAS Enterprise Miner und Rapid Predictive Modeller Zugriff auf DB-Tabellen (Samples) Modell-Entwicklung und Training Manuelles Modell-Deployment Datenbank SAS Model Manager Rollen- und Workflow unterstütztes Modell Management u. Monitoring Automatisiertes Modell-Deployment SAS Modelle

8 SAS In-Memory Analytics Blitzschnelle Berechnungen im Hauptspeicher SAS In-Memory Analytics SAS High-Performance Analytics (Produkt) SAS High-Performance Solutions SAS Visual Analytics

9 Die Lösung im Überblick SAS High-Performance Analytics SAS In-Memory Analytics SAS High-Performance Solutions SAS Visual Analytics Revolutionäre High-End Analytics-Plattform EMC Greenplum / Teradata Massiv-parallele Datenbank und Hardware Skalierende Verarbeitungsinfrastruktur SAS High-Performance Analytics Framework Massive-parallele SAS Analytics Verarbeitung SAS In-Memory Analytics Parallelisierung auf der Ebene der Algorithmen Nutzung über gängige SAS Anwendungen proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; run;

10 SAS High Performance Analytics Appliance Dedizierte High-Performance Analyseumgebung Zur Lösung komplexer analytischer Fragestellungen Extrem große Datenmengen (Big Data) Keine Datenbewegungen Heute extrem langlaufender oder nicht lösbarer Analysen Hoher Mehrwert durch Laufzeitreduktion Hoher Mehrwert durch verbesserte Modellperformance Bestehend aus einer Menge überarbeiteter SAS Prozeduren Base SAS, SAS / STAT SAS / ETS SAS Enterprise Miner

11 Grenzen bisheriger Ansätze Analytische Anforderungen Multi-pass Methoden Nur der erste Durchgang sollte auf die Festplatte zugreifen Danach sollten die Daten im Speicher gehalten werden Austausch lokaler Resultate Klassifikationseffekte Iterative Methoden Erhaltung des Status des Algorithmus zwischen Durchgängen Dynamisch generierter Code Restriktionen des In-DB Ansatzes Single-pass Methoden Lokale Datenpartitionen werden in jedem Durchgang abgefragt Lokale Resultate werden ohne den Blick auf andere lokale Resultate zurückgegeben Threads können nicht kommunizieren oder Informationen zwischen den Knoten austauschen Table UDF Restriktionen bzgl. der Anzahl an Spalten, Signatur der Ergebnismenge (Spaltendefinitionen) Mathematische Logik läuft unter Bedingungen des DBMS

12 Architektur proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run; proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run;

13 Spektrum der Fähigkeiten (Mai 2012) Data Preparation Data Exploration Analytics HPDS2 HPDMDB HPSAMPLE HPSUMMARY HPDMDB HPSAMPLE HPREDUCE HPIMPUTE* HPBIN* * Experimenteller Status im aktuellen Release HPSUMMARY HPLOGISTIC HPREG HPREDUCE HPNEURAL HPNLIN HPDS2 HPCOUNTREG HPSEVERITY HPFOREST* HPSVM* HPDECIDE*

14 Wie nutzt man die neuen Möglichkeiten? Wie immer! HPA Prozeduren mittels traditioneller SAS Programmierung option set=gridhost= green1.sas.com"; option set=gridinstallloc="/opt/tkgrid"; Festlegung der Appliance libname GPLib greenplm server=gpdca user=xxx password=yyy database=zzz; proc hplogistic data=gplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=gplib.logout pred=p; run; Festlegung des Executables Nutzung der HP-PROC Neue HP Knoten innerhalb des SAS Enterprise Miner 7.1 Explore, Transform, Variable Selection, Impute, Regression, Neural Network Model Export & Registrierung in EDW mittels SAS Model Manager Enterprise Data Warehouse

15 SAS High-Performance Markdown Optimization ZIEL Optimale Preisfindung auf Artikelebene (SKU) pro Filialfläche Verbesserte Abschriften individuell pro Filiale HERAUSFORDERUNG 270 Million mögliche Kombinationen von Einzeldaten ( 3 Terabyte) LÖSUNG SAS High-Performance Analytics mit In-memory, distributed processing Eine auf große Datenmengen (Big Data) ausgelegte Business Analytics Solution (SAS Markdown Optimization) ERGEBNIS 93% weniger Rechenzeit von 30 h auf 2 h (untertägig)

16 Anwendungsbeispiel - Kreditrisiko Management Hauskredit-Risiko Management Berechnung eins Modells zur Vorhersage der Kreditausfallwahrscheinlichkeit über den gesamten Kundenbestand Traditioneller analytischer Prozess High-Performance analytischer Prozess Verbesserte Modelle 167 Hours 84 SECONDS Einsparungen im zweistelligen Millionenbereich

17 Perspektive des Analytikers Standard Data Mining Prozess High-Performance Data Mining Finales Modell basiert auf nur einem analytischen Algorithmus - Neuronales Netz (NN) 7 Trainings-Iterationen des Neuronalen Netzes benötigten ~5 Std. (~1.4 Iterationen / Std.) Ein Modellierer kann somit ein Modell pro Tag erstellen. Geringe Produktivität Model Lift von 1,6 auf Top 10% Finales Model basiert auf dem Vergleich unterschiedlicher analytischer Algorithmen (NN, SVM, logistische Regression,...) 5000 Trainings-Iterationen des NN Knoten in 70 Min. (~71,4 Iterationen / Min.) Ein Modellierer kann somit 10 Modelle pro Tag erstellen (Annahme von 30 Min. pro Modell) Hohe Produktivität Model Lift von 2,5 auf Top 10% Was bedeutet eine Liftverbesserung von 56% bei einem anvisierten Umsatzpotential von $64 Mrd.?

18 HPA Procedures Demo - Zusammenfassung Logistische Regression 1 abhängige Variable 6 unabhängige Variablen Beobachtungen Job Setup CPU Time Client, 2 CPUs 09:41.93 HPA Appliance, 96 cores 00:23.30 (elapsed time) Beschleunigung um Faktor 26!

19 SAS Enterprise Miner Demo Logistische Regression 1 abhängige Variable 6 unabhängige Variablen Beobachtungen SAS Enterprise Miner Workflow Vorhersage von Flugverspätungen 1 abhängige Variable 12 unabhängige Variablen Beobachtungen

20 SAS Enterprise Miner Demo Konfiguration Workflow Schritt CPU Laufzeit Client, 2 CPUs HPA Appliance, 96 cores Explore Modify 00:04:52:89 Model 02:47:46:12 00:03:19:30 (100,000 Beob) Total (Modify + Model) 02:52:39:01 Explore Modify 00:00:43:74 Model 00:06:28:92 00:00:36:01 (123,000,000 Beob) Total (Modify + Model) 00:07:12:66 Beschleunigung um Faktor 25!

21 SAS High-Performance Analytics Mehr Informationen unter

22 Vielen Dank für Ihre Aufmerksamkeit!

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

MIT HIGH PERFORMANCE IN DIE ANALYTIK VON SAS 9.4 GERHARD SVOLBA

MIT HIGH PERFORMANCE IN DIE ANALYTIK VON SAS 9.4 GERHARD SVOLBA MIT HIGH PERFORMANCE IN DIE ANALYTIK VON SAS 9.4 GERHARD SVOLBA AGENDA SAS High Performance Analytics Neuigkeiten in den klassischen SAS Analytik Produkten SAS 9.4 VERSIONSNUMMERN FÜR DIE SAS ANALYTIK-PRODUKTE

Mehr

HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH

HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH AGENDA High-Performance Analytics Produktbündel 1 Warum High-Performance Analytics 2 4 3 SAS In-Memory

Mehr

Big Data & High-Performance Analytics: Anwendungsszenarien

Big Data & High-Performance Analytics: Anwendungsszenarien Big Data & High-Performance Analytics: Anwendungsszenarien Dr. Thomas Keil, Program Manager Business Analytics Frankfurt 26.4.2012 McKinsey-Studie zeigt Big Value Quelle: McKinsey Global Institute, May

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit make connections share ideas be inspired Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit Artur Eigenseher, SAS Deutschland Herausforderungen SAS Umgebungen sind in

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen Nahezu 70% aller Data Warehouse Anwendungen leiden unter Leistungseinschränkungen der unterschiedlichsten Art. - Gartner

Mehr

Die IBM Netezza Architektur für fortgeschrittene Analysen

Die IBM Netezza Architektur für fortgeschrittene Analysen Michael Sebald IT Architect Netezza Die IBM Netezza Architektur für fortgeschrittene Analysen 2011 IBM Corporation Was ist das Problem aller Data Warehouse Lösungen? I / O Transaktionaler und analytischer

Mehr

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS INSTITUTE EIN UNTERNEHMEN IN ZAHLEN SAS is the first company to call when you need to solve

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK" ANKE FLEISCHER

WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK ANKE FLEISCHER WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK" ANKE FLEISCHER EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

SPARC LDom Performance optimieren

SPARC LDom Performance optimieren SPARC LDom Performance optimieren Marcel Hofstetter hofstetter@jomasoft.ch http://www.jomasoftmarcel.blogspot.ch Mitgründer, Geschäftsführer, Enterprise Consultant JomaSoft GmbH 1 Inhalt Wer ist JomaSoft?

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Bessere Daten durch Stammdatenmanagement

Bessere Daten durch Stammdatenmanagement make connections share ideas be inspired Bessere Daten durch Stammdatenmanagement Mit SAS MDM, bessere Stammdaten für operativen Systeme make connections share ideas be inspired Overview Mit SAS MDM bessere

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur Alfred Geers Teradata Solution Architect Agenda SAS/Teradata

Mehr

Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring

Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring Alexander Beck-Ratzka Monitoring-WS, 28.11.2008 Alexander Beck-Ratzka Monitoring GEO600 Monitoring Workshop Agenda Was ist GEO600 und einstein@home?

Mehr

Open Source als de-facto Standard bei Swisscom Cloud Services

Open Source als de-facto Standard bei Swisscom Cloud Services Open Source als de-facto Standard bei Swisscom Cloud Services Dr. Marcus Brunner Head of Standardization Strategy and Innovation Swisscom marcus.brunner@swisscom.com Viele Clouds, viele Trends, viele Technologien

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Schritt für Schritt in das automatisierte Rechenzentrum Converged Management Michael Dornheim Mein Profil Regional Blade Server Category Manager Einführung Marktentnahme Marktreife Bitte hier eigenes Foto

Mehr

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor Yves-Deniz Obermeier Sales Manager Financial Services Ing. Thomas Heinzmann Division Management BI Mag. Martin Feith Senior Expert Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Mehr

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun?

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Marius Mertens 20.02.2015 Super rechnen ohne Superrechner? Warum? Algorithmik und Parallelisierung Wie? Alternative Architekturen

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Business Mehrwerte von SAP HANA

Business Mehrwerte von SAP HANA Business Mehrwerte von SAP HANA von der Technologie zum Geschäft Halle, 07.05.2013 2013 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda GISA im Überblick Was ist SAP HANA? Was

Mehr

Oracle Database 10g Die RAC Evolution

Oracle Database 10g Die RAC Evolution Oracle Database 10g Die RAC Evolution Markus Michalewicz BU Database Technologies ORACLE Deutschland GmbH 2 Page 1 www.decus.de 1 RAC-Revolution, RAC-Evolution & Computing Oracle8i mit OPS Oracle9i Rel.

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr

HP ConvergedSystem Technischer Teil

HP ConvergedSystem Technischer Teil HP ConvergedSystem Technischer Teil Rechter Aussenverteidiger: Patrick Buser p.buser@smartit.ch Consultant, SmartIT Services AG Linker Aussenverteidiger: Massimo Sallustio massimo.sallustio@hp.com Senior

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers.

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers. Business und IT. Ein Team. Aus Sicht eines Retailers. Hier steht ein Bild randabfallend. Wenn kein Bild vorhanden ist, bitte Folie 2 benutzen. IT-Services Club of Excellence. Das CIO Forum der IBM vom

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Oracle Automatic Storage Management (ASM) Best Practices

Oracle Automatic Storage Management (ASM) Best Practices Oracle Automatic Storage Management (ASM) Best Practices Markus Michalewicz BU Database Technologies ORACLE Deutschland GmbH 2 Page 1 www.decus.de 1 Agenda ASM Funktionalität und Architektur Storage Management

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Datenqualität für Kapital- und Liquiditätssteuerung sicherstellen

Datenqualität für Kapital- und Liquiditätssteuerung sicherstellen make connections share ideas be inspired Datenqualität für Kapital- und Liquiditätssteuerung sicherstellen Datenqualitätsprozesse auf allen Verarbeitungsstufen Carsten Krah, SAS Michael Herrmann, SAS Datenqualität

Mehr

Microsoft Azure für Java Entwickler

Microsoft Azure für Java Entwickler Holger Sirtl Microsoft Deutschland GmbH Microsoft Azure für Java Entwickler Ein Überblick Agenda Cloud Computing Die Windows Azure Platform Anwendungen auf Windows Azure Datenspeicherung mit SQL Azure

Mehr

www.raber-maercker.de Herzlich willkommen!

www.raber-maercker.de Herzlich willkommen! www.raber-maercker.de Herzlich willkommen! Raber+Märcker GmbH Hochverfügbarkeit für Dynamics NAV-, Exchange- und SQL-Server Thomas Kuhn Microsoft Certified Solution Developer Teamleiter Server Applications

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Mobile Client beim Bundesministerium für Landesverteidigung

Mobile Client beim Bundesministerium für Landesverteidigung Mobile Client beim Bundesministerium für Landesverteidigung Dr. Gerald Ritz Senior Solution Architect, HP 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change

Mehr

Drive the Change. SAS Hostanwendungen erfolgreich auf eine zentrale SAS-BI-Plattform migrieren

Drive the Change. SAS Hostanwendungen erfolgreich auf eine zentrale SAS-BI-Plattform migrieren Drive the Change SAS Hostanwendungen erfolgreich auf eine zentrale SAS-BI-Plattform migrieren Konferenz: SAS Forum Deutschland, September 2013, Mannheim Agenda Mehrwert 1 Ausgangslage Zieldesign 2 3 Drive

Mehr

Nutzen einer SAS GRID Umgebung für IT und Fachbereich

Nutzen einer SAS GRID Umgebung für IT und Fachbereich make connections share ideas be inspired Nutzen einer SAS GRID Umgebung für IT und Fachbereich POC Erfahrungen der Erste Bank Group Manuel Nitschinger SAS Platform Manager sit Solutions Austria Erste Group

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH Grid Computing in komplexen Systemen mit Blick auf RFID Günther Stürner Vice President Business Unit Database & STCCs ORCLE Deutschland GmbH 2 Datenbanken sind die Basis für jede denkbare IT Lösung Infrastruktur

Mehr

Wir befinden uns inmitten einer Zeit des Wandels.

Wir befinden uns inmitten einer Zeit des Wandels. Wir befinden uns inmitten einer Zeit des Wandels. Geräte Apps Ein Wandel, der von mehreren Trends getrieben wird Big Data Cloud Geräte Mitarbeiter in die Lage versetzen, von überall zu arbeiten Apps Modernisieren

Mehr

Ersetzen Sie Cisco INVICTA

Ersetzen Sie Cisco INVICTA Ersetzen Sie Cisco INVICTA globits Virtual Fast Storage (VFS) Eine Lösung von globits Hat es Sie auch eiskalt erwischt!? Hat es Sie auch eiskalt erwischt!? Wir haben eine echte Alternative für Sie! globits

Mehr

OSEK/VDX NM (Network Management)

OSEK/VDX NM (Network Management) OSEK/VDX NM (Network Management) Alexander Berger alexander.berger@uni-dortmund.de PG Seminarwochenende 21.-23. Oktober 2007 1 Überblick Motivation Aufgaben des NM Architektur Konzept und Verhalten Indirektes

Mehr

Software Defined Storage

Software Defined Storage Software Defined Storage - Wenn Speicher zum Service wird - Copyright 2015 DataCore Software Corp. All Rights Reserved. Copyright 2015 DataCore Software Corp. All Rights Reserved. Über uns... Über 25.000

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC. Alexander Scholz

Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC. Alexander Scholz Hochverfügbar und Skalierung mit und ohne RAC Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC Alexander Scholz Copyright its-people Alexander Scholz 1 Einleitung Hochverfügbarkeit

Mehr

Effizienter Einsatz von Flash-Technologien im Data Center

Effizienter Einsatz von Flash-Technologien im Data Center Effizienter Einsatz von Flash-Technologien im Data Center Herbert Bild Solution Marketing Manager Georg Mey Solutions Architect 1 Der Flash-Hype 2 Drei Gründe für den Hype um Flash: 1. Ungebremstes Datenwachstum

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Release Automation für Siebel

Release Automation für Siebel June 30 th 2015 Release Automation für Siebel Stefan Kures Agenda + Herausforderungen + Lösung mit Automic + Vorteile + Resultate 3 Property of Automic Software. All rights reserved Siebel als zentrale

Mehr

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP)

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) Oliver Steinhauer.mobile PROFI Mobile Business Agenda MOBILE ENTERPRISE APPLICATION PLATFORM AGENDA 01 Mobile Enterprise Application Platform 02 PROFI News

Mehr

Überblick über Oracle Technologie im Bereich Hochverfügbarkeit. Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz

Überblick über Oracle Technologie im Bereich Hochverfügbarkeit. Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz Überblick über Oracle Technologie im Bereich Hochverfügbarkeit Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz Herrmann & Lenz Services GmbH Erfolgreich seit 1996 am Markt Firmensitz:

Mehr

Azure und die Cloud. Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat. Institut für Informatik Software & Systems Engineering

Azure und die Cloud. Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat. Institut für Informatik Software & Systems Engineering Azure und die Cloud Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat Institut für Informatik Software & Systems Engineering Agenda Was heißt Cloud? IaaS? PaaS? SaaS? Woraus besteht

Mehr

Schöne neue Welt. So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten. SAS Treff 13. Juni 2013

Schöne neue Welt. So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten. SAS Treff 13. Juni 2013 Schöne neue Welt So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten SAS Treff 13. Juni 2013 ist IT-Dienstleister für Business Intelligence und Datenanalyse gibt es seit fast 25 Jahren

Mehr

MTF Ihr Weg zum modernen Datacenter

MTF Ihr Weg zum modernen Datacenter MTF Ihr Weg zum modernen Datacenter Beat Ammann Rico Steinemann Agenda Migration Server 2003 MTF Swiss Cloud Ausgangslage End of Support Microsoft kündigt den Support per 14. Juli 2015 ab Keine Sicherheits-

Mehr

Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten

Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten Datenqualität / Validierung Gerhard Svolba SAS Austria Mariahilfer Straße 116 A-1070 Wien gerhard.svolba@sas.com Zusammenfassung

Mehr

Automatisierte Ressourcenplanung in dienstorientierten Netzinfrastrukturen

Automatisierte Ressourcenplanung in dienstorientierten Netzinfrastrukturen Automatisierte Ressourcenplanung in dienstorientierten Netzinfrastrukturen In Kooperation mit dem BMBF Projekt MAMS/MAMSplus ITG FG 5.2.1 Workshop Network Resource Management 2009 Andreas Reifert andreas.reifert@ikr.uni-stuttgart.de

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

Hybride Cloud-Infrastrukturen Bereitstellung & Verwaltung mit System Center 2012

Hybride Cloud-Infrastrukturen Bereitstellung & Verwaltung mit System Center 2012 Hybride Cloud-Infrastrukturen Bereitstellung & Verwaltung mit System Center 2012 Roj Mircov TSP Datacenter Microsoft Virtualisierung Jörg Ostermann TSP Datacenter Microsoft Virtualisierung 1 AGENDA Virtual

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Nashville (V7) Peter Waschk. März 1999. Director Technology SAS Institute

Nashville (V7) Peter Waschk. März 1999. Director Technology SAS Institute Nashville (V7) März 1999 Peter Waschk Director Technology SAS Institute Agenda Status V7 weitere Vorgehensweise Technologie im Überblick Nashville Skalierbarkeit Offenheit Das Nashville Projekt Nashville

Mehr

Systemanforderungen für MSI-Reifen Release 7

Systemanforderungen für MSI-Reifen Release 7 Systemvoraussetzung [Server] Microsoft Windows Server 2000/2003/2008* 32/64 Bit (*nicht Windows Web Server 2008) oder Microsoft Windows Small Business Server 2003/2008 Standard od. Premium (bis 75 User/Geräte)

Mehr

Moderne Datenbankentwicklung mit Hilfe von SQL Server Data Tools

Moderne Datenbankentwicklung mit Hilfe von SQL Server Data Tools Moderne Datenbankentwicklung mit Hilfe von SQL Server Data Tools David Schäfer Vorstellung: HMS Analytical Software Anwendungs-Know-how, u.a. Banken und Versicherungen Pharma- und Medizinprodukte Technologie-Know-how,

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

dsmisi Storage Lars Henningsen General Storage

dsmisi Storage Lars Henningsen General Storage dsmisi Storage dsmisi MAGS Lars Henningsen General Storage dsmisi Storage Netzwerk Zugang C Zugang B Zugang A Scale-Out File System dsmisi Storage Netzwerk Zugang C Zugang B Zugang A benötigt NFS oder

Mehr

Zend PHP Cloud Application Platform

Zend PHP Cloud Application Platform Zend PHP Cloud Application Platform Jan Burkl System Engineer All rights reserved. Zend Technologies, Inc. Zend PHP Cloud App Platform Ist das ein neues Produkt? Nein! Es ist eine neue(re) Art des Arbeitens.

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Bitte beachten Sie die folgenden Systemvoraussetzungen um DocuWare installieren zu können:

Bitte beachten Sie die folgenden Systemvoraussetzungen um DocuWare installieren zu können: Bitte beachten Sie die folgenden Systemvoraussetzungen um DocuWare installieren zu können: DocuWare Server und Web Komponenten Hardware CPU-Kerne: mindestens 2 x 2,0 GHz, empfohlen 4 x 3,2 GHz RAM: mindestens

Mehr

Peter Garlock Manager Cloud Computing Austria. Cloud Computing. Heiter statt wolkig. 2011 IBM Corporation

Peter Garlock Manager Cloud Computing Austria. Cloud Computing. Heiter statt wolkig. 2011 IBM Corporation Peter Garlock Manager Cloud Computing Austria Cloud Computing Heiter statt wolkig 1 Was passiert in Europa in 2011? Eine Markteinschätzung Quelle: IDC European Cloud Top 10 predictions, January 2011 2

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

(Oracle) BPM in der Cloud

(Oracle) BPM in der Cloud ti&m seminare (Oracle) BPM in der Cloud Integration, Chancen und Risiken Alexander Knauer Architect ti&m AG Version 1.0 28. Januar 2013 ti&m AG Buckhauserstrasse 24 CH-8048 Zürich Belpstrasse 39 CH-3007

Mehr

herzlich vsankameleon Anwendungsbeispiel Titelmasterformat durch Klicken bearbeiten willkommen Titelmasterformat durch Klicken bearbeiten

herzlich vsankameleon Anwendungsbeispiel Titelmasterformat durch Klicken bearbeiten willkommen Titelmasterformat durch Klicken bearbeiten herzlich willkommen vsankameleon Anwendungsbeispiel Powered by DataCore & Steffen Informatik vsan? Kameleon? vsan(virtuelles Storage Area Network) Knoten Konzept Titelmasterformat Alle HDD s über alle

Mehr

Inhalt. TEIL I Grundlagen. 1 SAP HANA im Überblick... 31. 2 Einführung in die Entwicklungsumgebung... 75

Inhalt. TEIL I Grundlagen. 1 SAP HANA im Überblick... 31. 2 Einführung in die Entwicklungsumgebung... 75 Geleitwort... 15 Vorwort... 17 Einleitung... 19 TEIL I Grundlagen 1 SAP HANA im Überblick... 31 1.1 Softwarekomponenten von SAP HANA... 32 1.1.1 SAP HANA Database... 32 1.1.2 SAP HANA Studio... 34 1.1.3

Mehr

Industrie 4.0 22.07.2014

Industrie 4.0 22.07.2014 Industrie 4.0 Georg Weissmüller 22.07.2014 Senior Consultant Fertigungsindustrie Agenda Überblick Industrie 4.0/Anwendungsfälle Intelligenter Service Augmented Reality Diskussion 2014 SAP AG or an SAP

Mehr

IBM Datacap Taskmaster

IBM Datacap Taskmaster IBM Datacap Taskmaster Die Lösung für Scannen, automatisches Klassifizieren und intelligente Datenextraktion Michael Vahland IT-Specialist ECM Software Group Michael.Vahland@de.ibm.com Agenda 2 Einführung

Mehr