Große Datenmengen knacken mit SAS High-Performance Analytics

Größe: px
Ab Seite anzeigen:

Download "Große Datenmengen knacken mit SAS High-Performance Analytics"

Transkript

1 make connections share ideas be inspired Große Datenmengen knacken mit SAS High-Performance Analytics Martin Schütz CC Analytics SAS Institute GmbH

2 Agenda Terminologie: SAS High-Performance Analytics SAS High-Performance Analytics (Product) Motivation: Wozu? Inhalt: Was ist es? Architektur: Wie funktioniert es? Funktionalität: Wie nutze ich es? Beispiele Online Demo

3 SAS High-Performance Analytics Alltägliche Herausforderungen IT-Sicht Nicht vollständig genutzte Ressourcen Unterstützung inkrementellen Wachstums (Skalierbarkeit) Unnötige Datenbewegungen Single version of the truth für analytische Daten Garantie von Verfügbarkeit & Kontinuität Steigende Kosten Fachbereichs-Sicht Wachstum hinsichtlich Datenvolumina und Komplexität Lange Zeiten für die Ergebnisgenerierung Langsame Antwortzeiten Limitierte Analysemöglichkeiten aufgrund fehlender Ressourcen Geringe Produktivität

4 Demo: HPA Prozeduren Maschinen-Konfiguration Client 2 CPUs HPA Greenplum Appliance (1/4 Rack) 4 Worker Knoten zu 24 Cores Demo Setup Eine Prozedur PROC (HP)LOGISTIC Client PROC LOGISTIC (multi-threaded) auf einer 5% Stichprobe aus 1 Mrd. Beobachtungen auf dem Client Rechner HPA Appliance PROC HPLOGISTIC auf einer 5% Stichprobe aus 1 Mrd. Beobachtungen auf der HPA Appliance proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run;

5 SAS High-Performance Analytics Komponenten ANALYTIC INFRASTRUCTURE SAS High-Performance Analytics SAS High-Performance Solutions SAS Visual Analytics

6 SAS Grid Computing Daten und Analysen auf viele Rechner verteilen Dynamische Lastverteilung und Verwaltung für SAS Prozesse mittels SAS Grid Manager im Serververbund Vorteile Intelligente Lastverteilung Skalierbarkeit Hochverfügbarkeit und Ausfallsicherheit Parallelisierung auf Programmschritt-Ebene (manuell bis tool-unterstützt) Gemeinsamer Zugriff auf Datenbestand

7 SAS In-Database Analytics zu den Daten bringen SAS Analyse und Scoring-Prozesse können direkt in die Datenbank übertragen und dort angewandt werden SQL-basierte implizite Parallelisierung im DBMS Vorteile Beschleunigte Modellentwicklung auf großen Datenmengen Automatisierte Modellüberführung Höchste Performance bei der Modellanwendung Vermeidung von Datenbewegungen SAS Enterprise Miner und Rapid Predictive Modeller Zugriff auf DB-Tabellen (Samples) Modell-Entwicklung und Training Manuelles Modell-Deployment Datenbank SAS Model Manager Rollen- und Workflow unterstütztes Modell Management u. Monitoring Automatisiertes Modell-Deployment SAS Modelle

8 SAS In-Memory Analytics Blitzschnelle Berechnungen im Hauptspeicher SAS In-Memory Analytics SAS High-Performance Analytics (Produkt) SAS High-Performance Solutions SAS Visual Analytics

9 Die Lösung im Überblick SAS High-Performance Analytics SAS In-Memory Analytics SAS High-Performance Solutions SAS Visual Analytics Revolutionäre High-End Analytics-Plattform EMC Greenplum / Teradata Massiv-parallele Datenbank und Hardware Skalierende Verarbeitungsinfrastruktur SAS High-Performance Analytics Framework Massive-parallele SAS Analytics Verarbeitung SAS In-Memory Analytics Parallelisierung auf der Ebene der Algorithmen Nutzung über gängige SAS Anwendungen proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; run;

10 SAS High Performance Analytics Appliance Dedizierte High-Performance Analyseumgebung Zur Lösung komplexer analytischer Fragestellungen Extrem große Datenmengen (Big Data) Keine Datenbewegungen Heute extrem langlaufender oder nicht lösbarer Analysen Hoher Mehrwert durch Laufzeitreduktion Hoher Mehrwert durch verbesserte Modellperformance Bestehend aus einer Menge überarbeiteter SAS Prozeduren Base SAS, SAS / STAT SAS / ETS SAS Enterprise Miner

11 Grenzen bisheriger Ansätze Analytische Anforderungen Multi-pass Methoden Nur der erste Durchgang sollte auf die Festplatte zugreifen Danach sollten die Daten im Speicher gehalten werden Austausch lokaler Resultate Klassifikationseffekte Iterative Methoden Erhaltung des Status des Algorithmus zwischen Durchgängen Dynamisch generierter Code Restriktionen des In-DB Ansatzes Single-pass Methoden Lokale Datenpartitionen werden in jedem Durchgang abgefragt Lokale Resultate werden ohne den Blick auf andere lokale Resultate zurückgegeben Threads können nicht kommunizieren oder Informationen zwischen den Knoten austauschen Table UDF Restriktionen bzgl. der Anzahl an Spalten, Signatur der Ergebnismenge (Spaltendefinitionen) Mathematische Logik läuft unter Bedingungen des DBMS

12 Architektur proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run; proc hplogistic data=mpplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=mpplib.logout pred=p; run;

13 Spektrum der Fähigkeiten (Mai 2012) Data Preparation Data Exploration Analytics HPDS2 HPDMDB HPSAMPLE HPSUMMARY HPDMDB HPSAMPLE HPREDUCE HPIMPUTE* HPBIN* * Experimenteller Status im aktuellen Release HPSUMMARY HPLOGISTIC HPREG HPREDUCE HPNEURAL HPNLIN HPDS2 HPCOUNTREG HPSEVERITY HPFOREST* HPSVM* HPDECIDE*

14 Wie nutzt man die neuen Möglichkeiten? Wie immer! HPA Prozeduren mittels traditioneller SAS Programmierung option set=gridhost= green1.sas.com"; option set=gridinstallloc="/opt/tkgrid"; Festlegung der Appliance libname GPLib greenplm server=gpdca user=xxx password=yyy database=zzz; proc hplogistic data=gplib.mytable; class A B C D ; model y = a b c b*d x1-x100; output out=gplib.logout pred=p; run; Festlegung des Executables Nutzung der HP-PROC Neue HP Knoten innerhalb des SAS Enterprise Miner 7.1 Explore, Transform, Variable Selection, Impute, Regression, Neural Network Model Export & Registrierung in EDW mittels SAS Model Manager Enterprise Data Warehouse

15 SAS High-Performance Markdown Optimization ZIEL Optimale Preisfindung auf Artikelebene (SKU) pro Filialfläche Verbesserte Abschriften individuell pro Filiale HERAUSFORDERUNG 270 Million mögliche Kombinationen von Einzeldaten ( 3 Terabyte) LÖSUNG SAS High-Performance Analytics mit In-memory, distributed processing Eine auf große Datenmengen (Big Data) ausgelegte Business Analytics Solution (SAS Markdown Optimization) ERGEBNIS 93% weniger Rechenzeit von 30 h auf 2 h (untertägig)

16 Anwendungsbeispiel - Kreditrisiko Management Hauskredit-Risiko Management Berechnung eins Modells zur Vorhersage der Kreditausfallwahrscheinlichkeit über den gesamten Kundenbestand Traditioneller analytischer Prozess High-Performance analytischer Prozess Verbesserte Modelle 167 Hours 84 SECONDS Einsparungen im zweistelligen Millionenbereich

17 Perspektive des Analytikers Standard Data Mining Prozess High-Performance Data Mining Finales Modell basiert auf nur einem analytischen Algorithmus - Neuronales Netz (NN) 7 Trainings-Iterationen des Neuronalen Netzes benötigten ~5 Std. (~1.4 Iterationen / Std.) Ein Modellierer kann somit ein Modell pro Tag erstellen. Geringe Produktivität Model Lift von 1,6 auf Top 10% Finales Model basiert auf dem Vergleich unterschiedlicher analytischer Algorithmen (NN, SVM, logistische Regression,...) 5000 Trainings-Iterationen des NN Knoten in 70 Min. (~71,4 Iterationen / Min.) Ein Modellierer kann somit 10 Modelle pro Tag erstellen (Annahme von 30 Min. pro Modell) Hohe Produktivität Model Lift von 2,5 auf Top 10% Was bedeutet eine Liftverbesserung von 56% bei einem anvisierten Umsatzpotential von $64 Mrd.?

18 HPA Procedures Demo - Zusammenfassung Logistische Regression 1 abhängige Variable 6 unabhängige Variablen Beobachtungen Job Setup CPU Time Client, 2 CPUs 09:41.93 HPA Appliance, 96 cores 00:23.30 (elapsed time) Beschleunigung um Faktor 26!

19 SAS Enterprise Miner Demo Logistische Regression 1 abhängige Variable 6 unabhängige Variablen Beobachtungen SAS Enterprise Miner Workflow Vorhersage von Flugverspätungen 1 abhängige Variable 12 unabhängige Variablen Beobachtungen

20 SAS Enterprise Miner Demo Konfiguration Workflow Schritt CPU Laufzeit Client, 2 CPUs HPA Appliance, 96 cores Explore Modify 00:04:52:89 Model 02:47:46:12 00:03:19:30 (100,000 Beob) Total (Modify + Model) 02:52:39:01 Explore Modify 00:00:43:74 Model 00:06:28:92 00:00:36:01 (123,000,000 Beob) Total (Modify + Model) 00:07:12:66 Beschleunigung um Faktor 25!

21 SAS High-Performance Analytics Mehr Informationen unter

22 Vielen Dank für Ihre Aufmerksamkeit!

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH

HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH HIGH-PERFORMANCE ANALYTICS SAS TREFF UNIVERSITÄT HEIDELBERG 24.10.2013, MARTIN SCHÜTZ, SAS INSTITUTE GMBH AGENDA High-Performance Analytics Produktbündel 1 Warum High-Performance Analytics 2 4 3 SAS In-Memory

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Big Data & High-Performance Analytics: Anwendungsszenarien

Big Data & High-Performance Analytics: Anwendungsszenarien Big Data & High-Performance Analytics: Anwendungsszenarien Dr. Thomas Keil, Program Manager Business Analytics Frankfurt 26.4.2012 McKinsey-Studie zeigt Big Value Quelle: McKinsey Global Institute, May

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit make connections share ideas be inspired Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit Artur Eigenseher, SAS Deutschland Herausforderungen SAS Umgebungen sind in

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur Alfred Geers Teradata Solution Architect Agenda SAS/Teradata

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS INSTITUTE EIN UNTERNEHMEN IN ZAHLEN SAS is the first company to call when you need to solve

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen Nahezu 70% aller Data Warehouse Anwendungen leiden unter Leistungseinschränkungen der unterschiedlichsten Art. - Gartner

Mehr

Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring

Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring Monitoring der GEO600-Jobs Beispiel für Applikations- Monitoring Alexander Beck-Ratzka Monitoring-WS, 28.11.2008 Alexander Beck-Ratzka Monitoring GEO600 Monitoring Workshop Agenda Was ist GEO600 und einstein@home?

Mehr

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers.

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers. Business und IT. Ein Team. Aus Sicht eines Retailers. Hier steht ein Bild randabfallend. Wenn kein Bild vorhanden ist, bitte Folie 2 benutzen. IT-Services Club of Excellence. Das CIO Forum der IBM vom

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Revolution Analytics eine kommerzielle Erweiterung zu R

Revolution Analytics eine kommerzielle Erweiterung zu R Revolution Analytics eine kommerzielle Erweiterung zu R Webinar am 17.07.2014 F. Schuster (HMS) Dr. E. Nicklas (HMS) Von der Einzelplatzlösung zur strategischen Unternehmens- Software Zur Einführung Was

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Schritt für Schritt in das automatisierte Rechenzentrum Converged Management Michael Dornheim Mein Profil Regional Blade Server Category Manager Einführung Marktentnahme Marktreife Bitte hier eigenes Foto

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

SAS VISUAL ANALYTICS NEUE HORIZONTE MIT VISUELLER DATENANALYSE

SAS VISUAL ANALYTICS NEUE HORIZONTE MIT VISUELLER DATENANALYSE SAS VISUAL NEUE HORIZONTE MIT VISUELLER DATENANALYSE DANIEL STRGARSEK BUSINESS EXPERT IT COE DACH IT INTELLIGENCE SOLUTIONS SAS DAS UNTERNEHMEN 360 Power für Ihre integrierte Unternehmenssteuerung 1 HIGH

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

www.raber-maercker.de Herzlich willkommen!

www.raber-maercker.de Herzlich willkommen! www.raber-maercker.de Herzlich willkommen! Raber+Märcker GmbH Hochverfügbarkeit für Dynamics NAV-, Exchange- und SQL-Server Thomas Kuhn Microsoft Certified Solution Developer Teamleiter Server Applications

Mehr

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Nutzen einer SAS GRID Umgebung für IT und Fachbereich

Nutzen einer SAS GRID Umgebung für IT und Fachbereich make connections share ideas be inspired Nutzen einer SAS GRID Umgebung für IT und Fachbereich POC Erfahrungen der Erste Bank Group Manuel Nitschinger SAS Platform Manager sit Solutions Austria Erste Group

Mehr

SPARC LDom Performance optimieren

SPARC LDom Performance optimieren SPARC LDom Performance optimieren Marcel Hofstetter hofstetter@jomasoft.ch http://www.jomasoftmarcel.blogspot.ch Mitgründer, Geschäftsführer, Enterprise Consultant JomaSoft GmbH 1 Inhalt Wer ist JomaSoft?

Mehr

Datenanalyse und Predictive Analytics IBM SPSS Statistics IBM Modeler

Datenanalyse und Predictive Analytics IBM SPSS Statistics IBM Modeler Wiener Biometrische Sektion (WBS) der Internationalen Biometrischen Gesellschaft Region Österreich Schweiz (ROeS) WBS Herbst Seminar Statistische Software für Biometrische Auswertungen Datenanalyse und

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

Nashville (V7) Peter Waschk. März 1999. Director Technology SAS Institute

Nashville (V7) Peter Waschk. März 1999. Director Technology SAS Institute Nashville (V7) März 1999 Peter Waschk Director Technology SAS Institute Agenda Status V7 weitere Vorgehensweise Technologie im Überblick Nashville Skalierbarkeit Offenheit Das Nashville Projekt Nashville

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

Release Automation für Siebel

Release Automation für Siebel June 30 th 2015 Release Automation für Siebel Stefan Kures Agenda + Herausforderungen + Lösung mit Automic + Vorteile + Resultate 3 Property of Automic Software. All rights reserved Siebel als zentrale

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

Erfahrungsbericht zur Einführung der Datenbank-Maschine Exadata

Erfahrungsbericht zur Einführung der Datenbank-Maschine Exadata Erfahrungsbericht zur Einführung der Datenbank-Maschine Exadata München, Februar 2010 Eric Nagel Loyalty Partner Solutions GmbH A Unser Unternehmen/Unsere Lösungen B Einführung der Datenbank-Maschine Exadata/Projektinhalt

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

Dezentrale Datenproduktion und -analyse bei DØ

Dezentrale Datenproduktion und -analyse bei DØ Dezentrale Datenproduktion und -analyse bei DØ Thomas Nunnemann LMU München nunne@fnal.gov DPG Mainz 31.3.04 Computing: Aufgaben/Anforderungen Datenaustausch verteilter Datenbankzugriff Prozessierung von

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D make connections share ideas be inspired BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE Wolfgang Schwab SAS D Copyright 2013, SAS Institute Inc. All rights reserved. BIG DATA: BEDROHUNG ODER CHANCE?

Mehr

Business Mehrwerte von SAP HANA

Business Mehrwerte von SAP HANA Business Mehrwerte von SAP HANA von der Technologie zum Geschäft Halle, 07.05.2013 2013 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda GISA im Überblick Was ist SAP HANA? Was

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

MySQL in großen Umgebungen

MySQL in großen Umgebungen MySQL in großen Umgebungen 03.03.2011 CeBIT Referent: Bernd Erk Agenda DESTINATION TIME REMARK KURZVORSTELLUNG MYSQL STATUS QUO STORAGE ENGINES MONITORING UND MANAGEMENT ENTERPRISE FEATURES FRAGEN UND

Mehr

TIM AG. NetApp @ BASYS. Dipl. Informatiker (FH) Harald Will Consultant

TIM AG. NetApp @ BASYS. Dipl. Informatiker (FH) Harald Will Consultant NetApp @ BASYS Dipl. Informatiker (FH) Harald Will Consultant Organisatorisch Teilnehmerliste Agenda NetApp @ BASYS Data ONTAP Features cdot die neue Architektur Flash die neue Technologie Live Demo Agenda

Mehr

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun?

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Marius Mertens 20.02.2015 Super rechnen ohne Superrechner? Warum? Algorithmik und Parallelisierung Wie? Alternative Architekturen

Mehr

WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK" ANKE FLEISCHER

WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK ANKE FLEISCHER WEBINAR@LUNCHTIME THEMA: SAS ADMINISTRATION LEICHT GEMACHT MIT SAS 9.4 ALLE SYSTEME IM BLICK" ANKE FLEISCHER EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh

Mehr

Bessere Daten durch Stammdatenmanagement

Bessere Daten durch Stammdatenmanagement make connections share ideas be inspired Bessere Daten durch Stammdatenmanagement Mit SAS MDM, bessere Stammdaten für operativen Systeme make connections share ideas be inspired Overview Mit SAS MDM bessere

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Industrie 4.0 22.07.2014

Industrie 4.0 22.07.2014 Industrie 4.0 Georg Weissmüller 22.07.2014 Senior Consultant Fertigungsindustrie Agenda Überblick Industrie 4.0/Anwendungsfälle Intelligenter Service Augmented Reality Diskussion 2014 SAP AG or an SAP

Mehr

Bulk Web-Crawler mit Spring Batch

Bulk Web-Crawler mit Spring Batch Bulk Web-Crawler mit Spring Batch Anforderung - funktional Wir wollen automatisiert Überprüfung, ob bestimmte Produkte (Bücher) in einem Online-Shop gelistet sind. Site Produkt Status AMAZON_DE 0815 FOUND

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Schöne neue Welt. So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten. SAS Treff 13. Juni 2013

Schöne neue Welt. So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten. SAS Treff 13. Juni 2013 Schöne neue Welt So können Sie fehlende SAS-Funktionalitäten mit PROC FCMP nachrüsten SAS Treff 13. Juni 2013 ist IT-Dienstleister für Business Intelligence und Datenanalyse gibt es seit fast 25 Jahren

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

Perceptive Software. Neues aus dem Hause Perceptive. Dirk Schneider Regional Director DACH/CEE & International Partner Director

Perceptive Software. Neues aus dem Hause Perceptive. Dirk Schneider Regional Director DACH/CEE & International Partner Director Perceptive Software Neues aus dem Hause Perceptive Dirk Schneider Regional Director DACH/CEE & International Partner Director 1 Perceptive Software Profil Gegründet 1995 in Kansas City Softwaresparte von

Mehr

HP BUSINESS CRITICAL SYSTEMS IT with Mission-Critical Converged Infrastructure. Simulationen im Europäischen Hochspannungsnetz

HP BUSINESS CRITICAL SYSTEMS IT with Mission-Critical Converged Infrastructure. Simulationen im Europäischen Hochspannungsnetz HP BUSINESS CRITICAL SYSTEMS IT with Mission-Critical Converged Infrastructure Simulationen im Europäischen Hochspannungsnetz Christoph Widrig BCS Sales Consultant HP Schweiz GmbH Rico Künzler, CEO Physiker

Mehr

HP ConvergedSystem Technischer Teil

HP ConvergedSystem Technischer Teil HP ConvergedSystem Technischer Teil Rechter Aussenverteidiger: Patrick Buser p.buser@smartit.ch Consultant, SmartIT Services AG Linker Aussenverteidiger: Massimo Sallustio massimo.sallustio@hp.com Senior

Mehr

Software Defined Storage

Software Defined Storage Software Defined Storage - Wenn Speicher zum Service wird - Copyright 2015 DataCore Software Corp. All Rights Reserved. Copyright 2015 DataCore Software Corp. All Rights Reserved. Über uns... Über 25.000

Mehr

What s New in SAS Data Management

What s New in SAS Data Management make connections share ideas be inspired What s New in SAS Data Management Der SAS Enterprise Data Integration Server 4.3 und 4.4: die wichtigsten Neuerungen und ein Ausblick auf 4.5 Hans-Rainer Pauli

Mehr

Infrastrukturanalyse Ihr Weg aus dem Datenstau

Infrastrukturanalyse Ihr Weg aus dem Datenstau Waltenhofen * Düsseldorf * Wiesbaden Infrastrukturanalyse Ihr Weg aus dem Datenstau SCALTEL Webinar am 20. Februar 2014 um 16:00 Uhr Unsere Referenten Kurze Vorstellung Stefan Jörg PreSales & Business

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining Das Knowledge Grid Eine Architektur für verteiltes Data Mining 1 Gliederung 1. Motivation 2. KDD und PDKD Systeme 3. Knowledge Grid Services 4. TeraGrid Projekt 5. Das Semantic Web 2 Motivation Rapide

Mehr

SAP HANA -Umgebungen. Prof. Dr. Detlev Steinbinder, PBS Software GmbH, 2013

SAP HANA -Umgebungen. Prof. Dr. Detlev Steinbinder, PBS Software GmbH, 2013 Information Lifecycle Management in SAP HANA -Umgebungen Prof. Dr. Detlev Steinbinder, PBS Software GmbH, 2013 Agenda Einführung Business Case Information Lifecycle Management (ILM) ILM und Migration nach

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

What s new in Analytics and Business Intelligence

What s new in Analytics and Business Intelligence make connections share ideas be inspired What s new in Analytics and Business Intelligence Carmelo Iantosca, Solution Specialist Analytics, SAS Institute AG Gregor Herrmann, Senior Systems Engineer, SAS

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

.NET-Objekte einfach speichern Michael Braam, Senior Sales Engineer InterSystems GmbH

.NET-Objekte einfach speichern Michael Braam, Senior Sales Engineer InterSystems GmbH Make Applications Faster.NET-Objekte einfach speichern Michael Braam, Senior Sales Engineer InterSystems GmbH Agenda Vorstellung InterSystems Überblick Caché Live Demo InterSystems auf einen Blick 100.000

Mehr

Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud

Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud Viele Clouds, viele Trends, viele Technologien Kommunikation Private Apps Prozesse Austausch Speicher Big Data Business Virtual Datacenter

Mehr

"Big Data welche Antwort hat SAP auf diesen aktuellen Trend in der IT?"

Big Data welche Antwort hat SAP auf diesen aktuellen Trend in der IT? "Big Data welche Antwort hat SAP auf diesen aktuellen Trend in der IT?" Matthias Heiler, Solution Architect, Database & Technology, SAP Deutschland 23. April 2013 Do Things Differently Do Different Things

Mehr

Open Source als de-facto Standard bei Swisscom Cloud Services

Open Source als de-facto Standard bei Swisscom Cloud Services Open Source als de-facto Standard bei Swisscom Cloud Services Dr. Marcus Brunner Head of Standardization Strategy and Innovation Swisscom marcus.brunner@swisscom.com Viele Clouds, viele Trends, viele Technologien

Mehr

ALM mit Visual Studio Online. Philip Gossweiler Noser Engineering AG

ALM mit Visual Studio Online. Philip Gossweiler Noser Engineering AG ALM mit Visual Studio Online Philip Gossweiler Noser Engineering AG Was ist Visual Studio Online? Visual Studio Online hiess bis November 2013 Team Foundation Service Kernstück von Visual Studio Online

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Business and Data Understanding. Business und Data Understanding

Business and Data Understanding. Business und Data Understanding Business und Data Understanding Gliederung 1. Grundlagen 2. Von Data Warehouse zu Data Mining 3. Das CRISP-DM Referenzmodell 4. Die Phasen Business- und Data Understanding 5. Überblick der weiteren Phasen

Mehr

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH Grid Computing in komplexen Systemen mit Blick auf RFID Günther Stürner Vice President Business Unit Database & STCCs ORCLE Deutschland GmbH 2 Datenbanken sind die Basis für jede denkbare IT Lösung Infrastruktur

Mehr

Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele

Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele Jürgen Karnstädt Senior Consultant HP SAP Competence Center Hewlett-Packard Development Company, L.P. The information contained

Mehr

herzlich vsankameleon Anwendungsbeispiel Titelmasterformat durch Klicken bearbeiten willkommen Titelmasterformat durch Klicken bearbeiten

herzlich vsankameleon Anwendungsbeispiel Titelmasterformat durch Klicken bearbeiten willkommen Titelmasterformat durch Klicken bearbeiten herzlich willkommen vsankameleon Anwendungsbeispiel Powered by DataCore & Steffen Informatik vsan? Kameleon? vsan(virtuelles Storage Area Network) Knoten Konzept Titelmasterformat Alle HDD s über alle

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Hadoop-as-a-Service (HDaaS)

Hadoop-as-a-Service (HDaaS) Hadoop-as-a-Service (HDaaS) Flexible und skalierbare Referenzarchitektur Arnold Müller freier IT Mitarbeiter und Geschäftsführer Lena Frank Systems Engineer @ EMC Marius Lohr Systems Engineer @ EMC Fallbeispiel:

Mehr

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05.

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05. InspireIT SAP HANA Sesam öffne dich Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH Frankfurt am Main, 11.05.2015 OPITZ CONSULTING GmbH 2015 Seite 1 Checker Fragen Ist SAP HANA eine

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

Storage-Trends am LRZ. Dr. Christoph Biardzki

Storage-Trends am LRZ. Dr. Christoph Biardzki Storage-Trends am LRZ Dr. Christoph Biardzki 1 Über das Leibniz-Rechenzentrum (LRZ) Seit 50 Jahren Rechenzentrum der Bayerischen Akademie der Wissenschaften IT-Dienstleister für Münchner Universitäten

Mehr

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics In einer Welt wachsender Datenmengen sind Informationen schneller verfügbar und Auswertungen auf Big Data möglich Motivation

Mehr

1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView

1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView 1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView Alexander Meisel Solution Architect IT Service Management HP OpenView 2004 Hewlett-Packard Development Company, L.P. The information

Mehr

dsmisi Storage Lars Henningsen General Storage

dsmisi Storage Lars Henningsen General Storage dsmisi Storage dsmisi MAGS Lars Henningsen General Storage dsmisi Storage Netzwerk Zugang C Zugang B Zugang A Scale-Out File System dsmisi Storage Netzwerk Zugang C Zugang B Zugang A benötigt NFS oder

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

MTF Ihr Weg zum modernen Datacenter

MTF Ihr Weg zum modernen Datacenter MTF Ihr Weg zum modernen Datacenter Beat Ammann Rico Steinemann Agenda Migration Server 2003 MTF Swiss Cloud Ausgangslage End of Support Microsoft kündigt den Support per 14. Juli 2015 ab Keine Sicherheits-

Mehr

NHibernate vs. Entity Framework

NHibernate vs. Entity Framework Manfred Steyer CAMPUS 02 softwarearchitekt.at NHibernate vs. Entity Framework Ziele NHibernate und Entity Framework sowie deren Unterschiede kennen lernen 1 Agenda Kriterien Beispiel mit EF Beispiel mit

Mehr