GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12

Größe: px
Ab Seite anzeigen:

Download "GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12"

Transkript

1 12 GPGPU-Programming Constantin Timm Informatik 12 TU Dortmund 2012/04/09 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt.

2 Motivation (1) General Purpose Computing on Graphics Processing Units (GPGPU) Einführung um CPU (bei Spielen) zu entlasten Physikalische Berechnungen Künstliche Intelligenz & fr.wikipedia - 2 -

3 Motivation (2) GPUs haben eine große Anzahl von parallelen Rechenkernen Wie kann man diese effizient programmieren? Gut für datenparallele Programme void add_vector(int* in1, int *in2, int *out) { for ( int i = 0; i < N; ++i ) { out[i] = in1[i] + in2[i] ; Nvidia Best Practice Guide - 3 -

4 Motivation (3) Was sollte man bzgl. GPGPU-Applikationen beachten? Parallele Applikationen mit möglichst unabhängigen Operationen Kopier-Overhead für Daten GPU GPU CPU CPU - 4 -

5 Geschichte der GPGPU-Programmierung (1) Bis zirka Benutzung von Shader-Sprachen zur Programmierung Vertex- und Fragmentshaderprogramme void main(void) { gl_fragcolor = vec4(0.0, 1.0, 0.0, 1.0); David Kirk/NVIDIA and Wen-mei W. Hwu, , University of Illinois - 5 -

6 Geschichte der GPGPU-Programmierung (2) Ab 2004 Einführung von Sprachen zum Streamprocessing, z.b. BrookGPU Von der Stanford University Nutzung von GPUs als Coprocessor / Beschleuniger Versteckt Komplexität kernel void foo (float a<>, float b<>, out float result<>) { result = a + b; float a<100>; float b<100>; float c<100>; foo(a,b,c); - 6 -

7 Geschichte der GPGPU-Programmierung (3) Ab 2004 BrookGPU Komplexer Kompilervorgang Plattform-unabhängig BrookGPU-Kompilervorgang brcc : S2S-Compiler brt : Runtime Stanford University Graphics Lab - 7 -

8 Geschichte der GPGPU-Programmierung (4) Ab 2007 Einführung von CUDA Compute Unified Device Architecture Framework für Streamprocessing auf Nvidia Grafikkarten Ursprünglich nur für Datenparallelität konzipiert Ab 2008 Einführung von OpenCL Allgemeines Framework für Streamprocessing auf Multi- und Manycore- Architekturen Für Daten- und Taskparallelität konzipiert Spezifikation durch Khronos: AMD, Apple, ARM, Creative, Google, Intel, TI, Samsung, Nvidia - 8 -

9 CUDA Adaptiert das Streamprocessing-Konzept Elementare Programmierkomponente => Kernel Keine Rekursion Parameteranzahl ist nicht variabel Unterscheidung von Host- und GPU-Code void add_vector(int* in1, int *in2, int *out) { for ( int i = 0; i < N; ++i ) { out[i] = in1[i] + in2[i] ; Vektoraddition in C global void add_vector (int* in1, int *in2, int *out) { int i = (blockidx.x*blockdim.x)+threadidx.x; out[i] = in1[i] + in2[i]; add_vector<<<n,1>>>( in1, in2, out ); Vektoraddition in Cuda - 9 -

10 CUDA Entwicklungsprozess Mehrstufig und kompliziert Programmierung von Code für einen Thread Spezifikation der Parallelität per Hand Viele statisch vorgegebene Größen

11 CUDA Elemente des Frameworks Thread Instanz eines Kernels Block Gruppe von Threads Grid Gesamtheit aller Blocks Host Kernel 1 Device Grid 1 Block (0, 0) Block (0, 1) Block (1, 0) Block (1, 1) Grid 2 global void add_vector (int* in1, int *in2, int *out) { int i = (blockidx.x*blockdim.x)+threadidx.x; out[i] = in1[i] + in2[i]; Kernel 2 Block (1, 1) (0,0,1) (1,0,1) (2,0,1) (3,0,1) Thread (0,0,0) Thread (0,1,0) Thread (1,0,0) Thread (1,1,0) Thread (2,0,0) Thread (2,1,0) Thread (3,0,0) Thread (3,1,0) Nvidia

12 CUDA Kompilierung CUDA-Programme werden in einem mehrstufigen Verfahren kompiliert GPU- und Host-Code getrennt kompiliert GPU-Binaries in Host-Code eingebettet Neuster Compiler von Nvidia basiert auf LLVM

13 CUDA Abbildungsbeispiel Kernel benötigt folgende Ressourcen 5 Register pro Thread 1052 Bytes Shared Memory per Block Grid size: 64 Blocks Block size: 256 Threads Grafikkarte (1 Streaming-Multiprocessor) 8152 Register Bytes Scratchpad-Speicher Max 768 Threads, 8 Blocks und 24 Warps Auslastung der Grafikkarte 768 Threads, 3 Blocks, 4608 Bytes Shared Memory und 3840 Register

14 CUDA - Speicherallokation cudamalloc() Allokiert globalen Speicher auf der Grafikkarte cudafree() Gibt allokierten Speicher auf der Grafikkarte frei Grid Block (0, 0) Shared Memory Block (1, 0) Shared Memory cudamemcpy() Kopiert in/aus/im globalen Speicher auf der Grafikkarte Registers Thread (0, 0) Registers Thread (1, 0) Registers Thread (0, 0) Registers Thread (1, 0) Host Global Memory Nvidia

15 CUDA - Speichertransfers Kopieren in/aus/im globalen Speicher Vom Host zur Grafikkarte int *d_x; cudamalloc((void**) &d_x, sizeof(int)); int x=0; cudamemcpy(d_x, &x, sizeof(int), cudamemcpyhosttodevice); Von der Grafikkarte zum Host int *d_y; cudamalloc((void**) &d_y, sizeof(int)); int y=0; cudamemcpy(&y, d_y, sizeof(int), cudamemcpydevicetohost); Auf der Grafikkarte int *d_x,d_y; cudamalloc((void**) &d_x, sizeof(int)); cudamalloc((void**) &d_y, sizeof(int)); cudamemcpy(d_x, d_y, sizeof(int), cudamemcpydevicetodevice);

16 CUDA Speicherzugriff Globaler/Shared Memory-Speicherzugriff Zugriff auf globalen/shared Speicher nicht synchronisiert Ausgang von Schreibe-/Leseoperationen auf gemeinsamen Speicher? Lösung: Atomare Operationen global void add_vector_gpu (int* out) { *out+=5; add_vector_gpu<<<1,5>>>(out); global void add_vector_gpu (int* out) { atomicadd(out,5); add_vector_gpu<<<1,5>>>(out); Ergebnis? => out = 5 Ergebnis? => out =

17 CUDA Thread Divergence (1) Ablauf der Threads Vorhersage der tatsächlichen Reihenfolge schwierig Kann von Programmierer erzwungen werden global void update(int* x, int* y) { int i = threadidx.x + blockdim.x * blockidx.x; if (i == 60){ sharedx = *x; sharedx = 1; syncthreads(); if (i == 100) *y = sharedx; update <<<2,512>>>(in,out); Ergebnis? => *out =? 1;

18 CUDA Thread Divergence (2) Synchronisation über Blockgrenzen Problemlos, wenn Blocks auf gleichem SM allokiert Sonst Synchronisation problematisch global void update_1(int* update(int* x, int* x, int* y) y) { { int i = threadidx.x + blockdim.x * blockidx.x; if (i == 600) *x = 1; *x = 1; global syncthreads(); void update_2(int* x, int* y) { if int(i i == = threadidx.x 0) + blockdim.x * blockidx.x; if (i == *y 0) = *y *x; = *x; update_1 <<<2,512>>>(in,out); update_2 <<<2,512>>>(in,out); Ergebnis? => *out =?; 1;

19 CUDA Inline Assembly PTX-Code kann direkt im Kernel benutzt werden Code meist effizienter PTX-Instruktionen keine Hardwarebefehle global void kern(int* x, int* y) { int i = threadidx.x + ; if (i == 0) *x += 1; syncthreads(); if (i == 1) *y = *x; global void kern(int* x, int* y) { int i = threadidx.x + blockdim.x * blockidx.x; if (i == 0) asm("ld.global.s32 %r9, [%0+0];" "add.s32 %r9, %r9, 1;" "st.global.s32 [%0+0], %r9;" : :"r"(x)); syncthreads(); if (i == 1) *y = *x;

20 Open Compute Language - OpenCL

21 OpenCL: Vergleich zu CUDA Unterschied zum CUDA-Ansatz Taskparallelität kann modelliert werden OpenCL-Programme werden online compiliert Unterstützung von heterogenen Systemen Befehle, kleinster Nenner Ausführung auf Nvidia-GPU Nur anderes Frontend + API Leider schlechterer Compiler Nvidia

22 OpenCL für heterogene Systeme OpenCL auf verschiedensten Plattformen zu finden ZiiLabs Tablets Samsung SnuCore ZiiLabs & Samsung

23 OpenCL vs. CUDA: Platform Model Compute Device CUDA: Nvidia Grafikkarte IBM CELL Board Compute Unit CUDA: Streaming Multiprozessor IBM CELL PPU Processing Element CUDA: Streaming Prozessor IBM CELL SPU AMD

24 OpenCL vs. CUDA: Memory Model CUDA Global memory Constant memory Shared memory Register OpenCL Global memory Constant memory Local memory Private memory Nvidia & Patrick Cozzi, GPU Programming and Architecture, University of Pennsylvania

25 OpenCL vs. CUDA: Execution/Program. Model CUDA Kernel Host program Thread Block Grid global void vecadd(float *a, float *b, float *c) { int i = blockidx.x* blockdim.x + threadidx.x; c[i] = a[i] + b[i]; OpenCL Kernel Host program Work item Work group NDRange (index space) kernel void vecadd( global const float *a, global const float *b, global float *c) { int i = get_global_id(0); c[i] = a[i] + b[i]; Nvidia & Patrick Cozzi, GPU Programming and Architecture, University of Pennsylvania

26 OpenCL vs. CUDA: Task-Parallelität Einsortierung von OpenCL-Kernel in Command Queue Synchrone Ausführung Asynchrone Ausführung Kernel A Kernel B Kernel C Kernel D

27 Zusammenfassung Grafikkarten können effizient zur Beschleunigung von parallelen Programmen eingesetzt werden NVIDIA setzt auf CUDA und OpenCL CUDA Programmierung ist zeitaufwendig OpenCL bietet Alternative zu CUDA Portablen Code Unterstützt Taskparallelität direkt

GPGPU-Programmierung

GPGPU-Programmierung 12 GPGPU-Programmierung 2013/04/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on

Mehr

GPGPU-Programmierung

GPGPU-Programmierung 12 GPGPU-Programmierung 2014/04/29 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 12 Rechnerarchitektur (RA) Sommersemester 2015 Foliensatz 6: Grafikprozessoren und GPGPU-Programmierung Michael Engel Informatik 12 michael.engel@tu-.. http://ls12-www.cs.tu-.de/daes/ Tel.: 0231 755 6121

Mehr

CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg

CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg CUDA Seminar Multi-Core Architectures and Programming 1 Übersicht Einleitung Architektur Programmierung 2 Einleitung Computations on GPU 2003 Probleme Hohe Kenntnisse der Grafikprogrammierung nötig Unterschiedliche

Mehr

Grundlagen von CUDA, Sprachtypische Elemente

Grundlagen von CUDA, Sprachtypische Elemente Grundlagen von CUDA, Sprachtypische Elemente Stefan Maskanitz 03.07.2009 CUDA Grundlagen 1 Übersicht 1. Einleitung 2. Spracheigenschaften a. s, Blocks und Grids b. Speicherorganistion c. Fehlerbehandlung

Mehr

OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer

OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer OpenCL Programmiersprachen im Multicore-Zeitalter Tim Wiersdörfer Inhaltsverzeichnis 1. Was ist OpenCL 2. Entwicklung von OpenCL 3. OpenCL Modelle 1. Plattform-Modell 2. Ausführungs-Modell 3. Speicher-Modell

Mehr

Compute Unified Device Architecture CUDA

Compute Unified Device Architecture CUDA Compute Unified Device Architecture 06. Februar 2012 1 / 13 Gliederung 2 / 13 : Compute Unified Device Architecture entwickelt von Nvidia Corporation spezifiziert Software- und Hardwareeigenschaften Ziel:

Mehr

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Prof. Dr. Michael Bader Technische Universität München, Germany Outline Organisatorisches Entwicklung

Mehr

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Technische Universität München, Germany Outline Entwicklung General Purpose GPU Programming (GPGPU)

Mehr

GPU-Programmierung: OpenCL

GPU-Programmierung: OpenCL Seminar: Multicore Programmierung Sommerstemester 2009 04.06.2009 Inhaltsverzeichnis 1 GPU-Programmierung von Grafikkarten von GPU-Computing 2 Architektur Spracheigenschaften Vergleich mit CUDA Beispiel

Mehr

Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern

Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Institut für Betriebssysteme und Rechnerverbund TU Braunschweig 25.10., 26.10.

Mehr

Eine kurze Geschichte der Grafikkarten

Eine kurze Geschichte der Grafikkarten 3.1 Einführung Eine kurze Geschichte der Grafikkarten ursprünglich: Graphics Card steuert Monitor an Mitte 80er: Grafikkarten mit 2D-Beschleunigung angelehnt an Arcade- und Home-Computer frühe 90er: erste

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg Einführung CUDA Friedrich-Alexander-Universität Erlangen-Nürnberg PrakParRA, 18.11.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner

Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dipl.-Inform. Korbinian Molitorisz M. Sc. Luis Manuel Carril Rodriguez KIT Universität des Landes Baden-Württemberg

Mehr

Yilmaz, Tolga MatNr: Mesaud, Elias MatNr:

Yilmaz, Tolga MatNr: Mesaud, Elias MatNr: Yilmaz, Tolga MatNr: 157317 Mesaud, Elias MatNr: 151386 1. Aufbau und Funktionsweise einer Grafikkarte 2. CPU vs. GPU 3. Software 4. Beispielprogramme Kompilierung und Vorführung 5. Wo wird Cuda heutzutage

Mehr

Rheinisch-Westfälische Technische Hochschule Aachen. Seminararbeit

Rheinisch-Westfälische Technische Hochschule Aachen. Seminararbeit Rheinisch-Westfälische Technische Hochschule Aachen Seminararbeit Analyse von General Purpose Computation on Graphics Processing Units Bibliotheken in Bezug auf GPU-Hersteller. Gregori Kerber Matrikelnummer

Mehr

OpenCL. OpenCL. Boris Totev, Cornelius Knap

OpenCL. OpenCL. Boris Totev, Cornelius Knap OpenCL OpenCL 1 OpenCL Gliederung Entstehungsgeschichte von OpenCL Was, warum und überhaupt wieso OpenCL CUDA, OpenGL und OpenCL GPUs OpenCL Objekte Work-Units OpenCL Adressbereiche OpenCL API Codebeispiel

Mehr

Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg

Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg GPU-Versuch andreas.schaefer@cs.fau.de Friedrich-Alexander-Universität Erlangen-Nürnberg Praktikum Parallele Rechnerarchitekturen SS2014 Outline 1 Einführung 2 Outlook 1 Einführung 2 Eine kurze Geschichte

Mehr

OpenCL. Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian

OpenCL. Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian OpenCL Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian Hardware-Software-Co-Design Universität Erlangen-Nürnberg Apelt, Nicolas / Zöllner, Christian 1 Was ist OpenCL?

Mehr

Parallele Programmierung mit GPUs

Parallele Programmierung mit GPUs Parallele Programmierung mit GPUs Jutta Fitzek Vortrag im Rahmen des Moduls Parallele Programmierung, WS12/13, h_da Agenda GPUs: Historie GPU Programmierung Konzepte Codebeispiel Generelle Tipps & Tricks

Mehr

Ferienakademie Erik Muttersbach

Ferienakademie Erik Muttersbach Ferienakademie 2009 - Erik Muttersbach 1. Einführung 2. Kernels, Threads, Blocks 3. CUDA Execution Model 4. Software Stack 5. Die CUDA Runtime API 6. Speichertypen/ Zugriff 7. Profiling und Optimierung

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-04-17 Kapitel I OpenCL Einführung Allgemeines Open Compute Language: API für einheitliche parallele Programmierung heterogener

Mehr

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de > Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion

Mehr

Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs)

Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) im Rahmen des Proseminars Technische Informatik Juni

Mehr

Proseminar. GPU-Computing Cuda vs. OpenCL. SS 2013 Alexander Stepanov

Proseminar. GPU-Computing Cuda vs. OpenCL. SS 2013 Alexander Stepanov Proseminar GPU-Computing Cuda vs. OpenCL SS 2013 Alexander Stepanov Inhaltsverzeichnis 1. Einführung: Warum GPU Computing? CPU vs. GPU GPU Architektur 2. CUDA Architektur Beispiel Matrix Multiplikation

Mehr

Stream Processing und High- Level GPGPU Sprachen

Stream Processing und High- Level GPGPU Sprachen Stream Processing und High- Level GPGPU Sprachen Seminar Programmierung von Grafikkarten Jens Breitbart Problem 5000% 4000% 3000% 2000% Rechenleistung: +71% pro Jahr Bandbreite: +25% pro Jahr Zugriffszeit:

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 203-04-24 Was bisher geschah Host Device Platform Führt aus Führt aus Device Context Applikation Java, C++, Kernel (OpenCL C) Memory

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-06-25 Kapitel XV: Parallele Algorithmen mit OpenCL 15.1 Parallele Programmierung Quellen: V.a. Wikipedia. Leistungsdaten unter Vorbehalt. Bitte

Mehr

FPGA Beschleuniger. Your Name. Armin Jeyrani Mamegani Your Organization (Line #2)

FPGA Beschleuniger. Your Name. Armin Jeyrani Mamegani Your Organization (Line #2) FPGA Beschleuniger 15.12.2008 Armin Jeyrani Mamegani Your Name HAW Hamburg Your Title Department Your Organization Informatik (Line #1) Your Organization (Line #2) Einleitung Wiederholung aus AW1: Handy

Mehr

CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1

CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1 CUDA Axel Jena, Jürgen Pröll Multi-Core Architectures and Programming Axel Jena, Jürgen Pröll 1 Warum Tesla? Traditionelle Graphikkarten Getrennte Prozessoren für Vertex- / Pixelberechnungen - Nachteil:

Mehr

Gliederung. Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung

Gliederung. Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung Philipp Kayser Gliederung Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung Multi-Agenten Simulation (MAS) simuliert durch eine Vielzahl von Agenten Die

Mehr

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius Software Engineering für moderne, parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dr. Victor Pankratius Dr. Victor Pankratius, Dipl.Inform. Frank Otto IPD Tichy Lehrstuhl für Programmiersysteme

Mehr

> High-Level Programmierung heterogener paralleler Systeme

> High-Level Programmierung heterogener paralleler Systeme > High-Level Programmierung heterogener paralleler Systeme Projektseminar im SoSe 2012 Prof. Sergei Gorlatch, Michel Steuwer, Tim Humernbrum AG Parallele und Verteilte Systeme, Westfälische Wilhelms-Universität

Mehr

Grafikkarten-Architektur

Grafikkarten-Architektur > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: s.albers@wwu.de 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur

Mehr

Multicore-Architekturen

Multicore-Architekturen Universität Erlangen- Nürnberg Technische Universität München Universität Stuttgart Multicore-Architekturen Vortrag im Rahmen der Ferienakademie 2009 Kurs 1: Programmierkonzepte für Multi-Core Rechner

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

GPGPU WITH OPENCL. Praktikum Parallele Rechnerarchitekturen, 2015w Franz Richter-Gottfried

GPGPU WITH OPENCL. Praktikum Parallele Rechnerarchitekturen, 2015w Franz Richter-Gottfried GPGPU WITH OPENCL Praktikum Parallele Rechnerarchitekturen, 2015w Franz Richter-Gottfried INFRASTRUCTURE Enqueue interactive job srun --gres --pty bash Graphics cards available for tesla_k20,

Mehr

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen. OpenCL Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.de Abstract: In diesem Dokument wird ein grundlegender Einblick in das relativ

Mehr

Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern

Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern Bachelorarbeit Moritz Lüdecke 8. Juli 2014 INSTITUT FÜR TECHNISCHE INFORMATIK - LEHRSTUHL FÜR RECHNERARCHITEKTUR UND PARALLELVERARBEITUNG

Mehr

Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung

Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung CUDA und Python Christian Wilms Integriertes Seminar Projekt Bildverarbeitung Universität Hamburg WiSe 2013/14 12. Dezember 2013 Christian CUDA und Python 1 Gliederung 1 Motivation 2 (GP)GPU 3 CUDA 4 Zusammenfassung

Mehr

GPU Architektur CUDA - OpenCL

GPU Architektur CUDA - OpenCL GPU Architektur und Programmiermöglichkeiten für GPGPU-Anwendungen kernel void matsq( global const float *mat, global float *out ) { int dim = get_global_size(0); //Matrix dimension int i = get_global_id(0);

Mehr

Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL)

Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL) Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL) Verteidigung der Belegarbeit Andreas Stahl Zielstellung Globales Beleuchtungsverfahren für die

Mehr

RST-Labor WS06/07 GPGPU. General Purpose Computation On Graphics Processing Units. (Grafikkarten-Programmierung) Von: Marc Blunck

RST-Labor WS06/07 GPGPU. General Purpose Computation On Graphics Processing Units. (Grafikkarten-Programmierung) Von: Marc Blunck RST-Labor WS06/07 GPGPU General Purpose Computation On Graphics Processing Units (Grafikkarten-Programmierung) Von: Marc Blunck Ablauf Einführung GPGPU Die GPU GPU Architektur Die Programmierung Programme

Mehr

Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo

Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Gliederung Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Was ist CUDA? Nvidia CUDA ist eine von NvidiaGPGPU-Technologie, die es Programmierern erlaubt, Programmteile

Mehr

Paralleler Cuckoo-Filter. Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21.

Paralleler Cuckoo-Filter. Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21. Paralleler Cuckoo-Filter Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21. November 2017 1 Paralleler Cuckoo-Filter Cuckoo-Hashtabelle Serieller Cuckoo-Filter

Mehr

Parallel Computing in der industriellen Bildverarbeitung

Parallel Computing in der industriellen Bildverarbeitung SOLUTIONS FOR MACHINE VISION Parallel Computing in der industriellen Bildverarbeitung Dipl.-Inform. Alexander Piaseczki Research and Development Sirius Advanced Cybernetics GmbH Tools & Solutions für die

Mehr

Programmierung von Graphikkarten

Programmierung von Graphikkarten Programmierung von Graphikkarten Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg phone: 06221/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

Mehr

OpenCL mit Aparapi. Seminararbeit. Studiengang: Scientific Programming. 1. Betreuer: Prof. Ulrich Stegelmann

OpenCL mit Aparapi. Seminararbeit. Studiengang: Scientific Programming. 1. Betreuer: Prof. Ulrich Stegelmann Seminararbeit Studiengang: Scientific Programming 1. Betreuer: Prof. Ulrich Stegelmann 2. Betreuer: Dipl.-Inform. Tobias Rötschke Vorgelegt von: Lukas Abels-Vehns 21.12.2011 SOPTIM AG Im Süsterfeld 5-7

Mehr

GPGPU mit NVIDIA CUDA

GPGPU mit NVIDIA CUDA 01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung

Mehr

PGI Accelerator Model

PGI Accelerator Model PGI Accelerator Model Philip Höhlein, Nils Werner Supervision: R. Membarth, P. Kutzer, F. Hannig Hardware-Software-Co-Design Universität Erlangen-Nürnberg Philip Höhlein, Nils Werner 1 Übersicht Motivation

Mehr

Architektur und Programmierung von Grafik- und Koprozessoren

Architektur und Programmierung von Grafik- und Koprozessoren Architektur und Programmierung von Grafik- und Koprozessoren General Purpose Programmierung auf Grafikprozessoren Stefan Zellmann Lehrstuhl für Informatik, Universität zu Köln SS2018 Host Interface Ausführungszeit

Mehr

CUDA Workshop. Ausblick. Daniel Tenbrinck

CUDA Workshop. Ausblick. Daniel Tenbrinck CUDA Workshop Ausblick Daniel Tenbrinck Computer Vision and Pattern Recognition Group Institut für Informatik Westfälische Wilhelms-Universität Münster 03.Juli 2009 Folie: 1 / 10 Daniel Tenbrinck CUDA

Mehr

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth Computing 1 Inhalt Einführung nvidia CUDA AMD Stream Computing CUDA vs. Stream Computing - Warum, Vorteile, Motivation - Überblick, API - Details, Beispiele - Überblick, API - Details, Beispiele - wesentliche

Mehr

MESIF- (links) vs. MESI-Protokoll (rechts)

MESIF- (links) vs. MESI-Protokoll (rechts) 2.3 Beispiele für Multikern-Architekturen 2.3.1 Intel-Nehalem-Architektur MESIF- (links) vs. MESI-Protokoll (rechts) Annahme: Prozessor links unten und rechts oben haben Kopie MESIF : Nur Prozessor, dessen

Mehr

Raytracing in GA mittels OpenACC. Michael Burger, M.Sc. FG Scientific Computing TU Darmstadt

Raytracing in GA mittels OpenACC. Michael Burger, M.Sc. FG Scientific Computing TU Darmstadt Raytracing in GA mittels OpenACC Michael Burger, M.Sc. FG Scientific Computing TU Darmstadt michael.burger@sc.tu-darmstadt.de 05.11.12 FB Computer Science Scientific Computing Michael Burger 1 / 33 Agenda

Mehr

GPUs. Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

GPUs. Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg GPUs Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Vorgelegt von: Johannes Coym E-Mail-Adresse: 4coym@informatik.uni-hamburg.de

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-29 Kapitel Parallelität [1]: Parallel Programming (Rauber, Rünger, 2007) [2]: Algorithms Sequential & Parallel A Unified Approach

Mehr

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch CUDA 7. Vorlesung Thorsten Grosch Danke an Hendrik Lensch Parallele l Programmierung mit der GPU Bisher: GPU = OpenGL Pipeline mit Shadern Alles orientiert sich am Rendering Programme für Eckpunkte und

Mehr

Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) Compute Unified Device Architecture (CUDA) Thomas Koller 12. Februar 2012 Zusammenfassung Diese Ausarbeitung beschäftigt sich mit der Programmierung von Grafikkarten mittels CUDA. Bei bestimmten Berechnungen

Mehr

General Purpose Computation on GPUs

General Purpose Computation on GPUs General Purpose Computation on GPUs Matthias Schneider, Robert Grimm Universität Erlangen-Nürnberg {matthias.schneider, robert.grimm}@informatik.stud.uni-erlangen.de M. Schneider, R. Grimm 1 Übersicht

Mehr

OpenCL Implementierung von OpenCV Funktionen

OpenCL Implementierung von OpenCV Funktionen Multi-Core Architectures and Programming OpenCL Implementierung von OpenCV Funktionen julian.mueller@e-technik.stud.uni-erlangen.de Hardware/Software Co-Design August 18, 2011 1 Table of content 1 OpenCL

Mehr

Hochleistungsrechnen auf dem PC

Hochleistungsrechnen auf dem PC Hochleistungsrechnen auf dem PC Steffen Börm Christian-Albrechts-Universität zu Kiel Ringvorlesung Informatik, 26. Juni 2014 S. Börm (CAU Kiel) Hochleistungsrechnen auf dem PC 26. Juni 2014 1 / 33 Übersicht

Mehr

Cuda Speicherhierarchie

Cuda Speicherhierarchie Cuda Speicherhierarchie Threads eines Blocks können über Shared Memory kommunizieren Der Shared Memory ist klein aber sehr schnell Alle Threads können nur über Global Memory kommunizieren Der Global Memory

Mehr

Volumenrendering mit CUDA

Volumenrendering mit CUDA Volumenrendering mit CUDA Arbeitsgruppe Visualisierung und Computergrafik http://viscg.uni-muenster.de Überblick Volumenrendering allgemein Raycasting-Algorithmus Volumen-Raycasting mit CUDA Optimierung

Mehr

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen Universität Hamburg Scientific Visualization and Parallel Processing Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen & Werkzeuge

Mehr

Untersuchung und Vorstellung moderner Grafikchiparchitekturen

Untersuchung und Vorstellung moderner Grafikchiparchitekturen Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Untersuchung und Vorstellung moderner Grafikchiparchitekturen Hauptseminar Technische

Mehr

GPGPU Basiskonzepte. von Marc Kirchhoff GPGPU Basiskonzepte 1

GPGPU Basiskonzepte. von Marc Kirchhoff GPGPU Basiskonzepte 1 GPGPU Basiskonzepte von Marc Kirchhoff 29.05.2006 GPGPU Basiskonzepte 1 Inhalt Warum GPGPU Streams, Kernels und Prozessoren Datenstrukturen Algorithmen 29.05.2006 GPGPU Basiskonzepte 2 Warum GPGPU? Performance

Mehr

Prozessor- und Rechnerarchitekturen (Master)

Prozessor- und Rechnerarchitekturen (Master) Prozessor- und Rechnerarchitekturen (Master) Themen am 28.06.17: Semesterrückblick, Terminplanung Ihrer Vorträge ProRecArc17_V10 Ulrich Schaarschmidt HS Düsseldorf, SS 2017 V1 (5.4.): Termine + mögliche

Mehr

CUDA by Example. Paralleles Rechnen auf der Grafikkarte. Leipzig, Paul Jähne SethosII

CUDA by Example. Paralleles Rechnen auf der Grafikkarte. Leipzig, Paul Jähne SethosII CUDA by Example Paralleles Rechnen auf der Grafikkarte Leipzig, 31.03.2017 Paul Jähne SethosII 1 Warum? 2 Aufbau CPU geringe Latenz große Zwischenspeicher besser für serielle Ausführung GPU hohe Rechenleistung

Mehr

Memory Models Frederik Zipp

Memory Models Frederik Zipp Memory Models Frederik Zipp Seminar: Programmiersprachen für Parallele Programmierung (SS 2010) Fakultät für Informatik - IPD SNELTING LEHRSTUHL PROGRAMMIERPARADIGMEN 1

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08 Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease

Mehr

Parallelisierung mit Hilfe grafischer Prozessoren 318

Parallelisierung mit Hilfe grafischer Prozessoren 318 Parallelisierung mit Hilfe grafischer Prozessoren 318 Schon sehr früh gab es diverse Grafik-Beschleuniger, die der normalen CPU Arbeit abnahmen. Die im März 2001 von Nvidia eingeführte GeForce 3 Series

Mehr

Enblend - Portierung auf die GPU

Enblend - Portierung auf die GPU Multi-Core Architectures and Programming Enblend - Portierung auf die GPU Hardware/Software Co-Design September 25, 2009 1 Inhalt 1 Motivation 2 Enblend-Algorithmus 3 Beschleunigung mittels Cuda 4 Benchmark

Mehr

Seminarvortrag: Direktivenbasierte Programmierung von Beschleunigern mit OpenMP 4.5 und OpenACC 2.5 im Vergleich

Seminarvortrag: Direktivenbasierte Programmierung von Beschleunigern mit OpenMP 4.5 und OpenACC 2.5 im Vergleich Seminarvortrag: Direktivenbasierte Programmierung von Beschleunigern mit Direktivenbasierte Programmierung von Beschleunigern mit Agenda Einführung / Motivation Überblick zu OpenMP und OpenACC Asynchronität

Mehr

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016 CUDA (Compute Unified Device Architecture) Thomas Trost May 31 th 2016 Introduction and Overview platform and API for parallel computing on GPUs by NVIDIA relatively straightforward general purpose use

Mehr

Architektur moderner GPUs. W. Sczygiol - M. Lötsch

Architektur moderner GPUs. W. Sczygiol - M. Lötsch Architektur moderner GPUs W. Sczygiol - M. Lötsch Überblick Chipentwicklung Aktuelle Designs Nvidia: NV40 (ATI: R420) Vertex-Shader Pixel-Shader Shader-Programmierung ROP - Antialiasing Ausblick Referenzen

Mehr

Prinzipieller Aufbau der Architektur eines Multikern- Prozessors. Programmierung Standard-Mulitkern-Prozessoren mit OpenMP

Prinzipieller Aufbau der Architektur eines Multikern- Prozessors. Programmierung Standard-Mulitkern-Prozessoren mit OpenMP 3.1 Einführung Multi-Core-Architekturen Motivation Multikern-Prozessoren Prinzipieller Aufbau der Architektur eines Multikern- Prozessors Programmierung Standard-Mulitkern-Prozessoren mit OpenMP Programmierung

Mehr

Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene

Mehr

LEISTUNGSVERGLEICH VON FPGA, GPU UND CPU FÜR ALGORITHMEN ZUR BILDBEARBEITUNG PROSEMINAR INF-B-610

LEISTUNGSVERGLEICH VON FPGA, GPU UND CPU FÜR ALGORITHMEN ZUR BILDBEARBEITUNG PROSEMINAR INF-B-610 LEISTUNGSVERGLEICH VON FPGA, GPU UND CPU FÜR ALGORITHMEN ZUR BILDBEARBEITUNG PROSEMINAR INF-B-610 Dominik Weinrich dominik.weinrich@tu-dresden.de Dresden, 30.11.2017 Gliederung Motivation Aufbau und Hardware

Mehr

GPU-Computing. Michael Vetter

GPU-Computing. Michael Vetter GPU-Computing Universität Hamburg Scientific Visualization and Parallel Processing @ Informatik Climate Visualization Laboratory @ Clisap/CEN Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL

Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL Christian Siegl 1, Hannes G. Hofmann 1, Benjamin Keck 1, Marcus Prümmer 1, Joachim Hornegger 1,2 1 Lehrstuhl für Mustererkennung,

Mehr

Games with Cellular Automata auf Parallelen Rechnerarchitekturen

Games with Cellular Automata auf Parallelen Rechnerarchitekturen Bachelor Games with Cellular Automata auf Parallelen en ( ) Dipl.-Inf. Marc Reichenbach Prof. Dietmar Fey Ziel des s Paralleles Rechnen Keine akademische Nische mehr Vielmehr Allgemeingut für den Beruf

Mehr

C-to-CUDA-Compiler. Johannes Kölsch. October 29, 2012

C-to-CUDA-Compiler. Johannes Kölsch. October 29, 2012 October 29, 2012 Inhaltsverzeichnis 1 2 3 4 5 6 Motivation Motivation CUDA bietet extreme Leistung für parallelisierbare Programme Kompliziert zu programmieren, da multi-level parallel und explizit verwalteter

Mehr

2.6 Graphikprozessoren

2.6 Graphikprozessoren 12 2.6 Graphikprozessoren Peter Marwedel Informatik 12 TU Dortmund 2012/04/16 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt.

Mehr

Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL

Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL Hardware-unabhängige Beschleunigung von Medizinischer Bildverarbeitung mit OpenCL Christian Siegl 1, Hannes G. Hofmann 1, Benjamin Keck 1, Marcus Prümmer 1, Joachim Hornegger 1,2 1 Lehrstuhl für Mustererkennung,

Mehr

2.6 Graphikprozessoren

2.6 Graphikprozessoren 12 2.6 Graphikprozessoren Peter Marwedel Informatik 12 TU Dortmund 2014 年 04 月 24 日 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt.

Mehr

GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni

GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni 1 Ablauf GPU Programm Vertex und Fragment Shader 2 3 4 5 Image Processing 6 Ablauf GPU Programm Ablauf GPU Programm Vertex und Fragment

Mehr

Parallelisierung mit Hilfe grafischer Prozessoren 323

Parallelisierung mit Hilfe grafischer Prozessoren 323 Parallelisierung mit Hilfe grafischer Prozessoren 323 Schon sehr früh gab es diverse Grafik-Beschleuniger, die der normalen CPU Arbeit abnahmen. Die im März 2001 von Nvidia eingeführte GeForce 3 Series

Mehr

Cell and Larrabee Microarchitecture

Cell and Larrabee Microarchitecture Cell and Larrabee Microarchitecture Benjamin Grund Dominik Wolfert Universität Erlangen-Nürnberg 1 Übersicht Einleitung Herkömmliche Prozessorarchitekturen Motivation für Entwicklung neuer Architekturen

Mehr

Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe

Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe Grafikprozessoren Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe 2D: Berechnung der Bildes aus einfachen Grafikprimitiven 3D: Bildaufbau aus räumlicher Beschreibung

Mehr

Mehrprozessorarchitekturen

Mehrprozessorarchitekturen Mehrprozessorarchitekturen (SMP, UMA/NUMA, Cluster) Arian Bär 12.07.2004 12.07.2004 Arian Bär 1 Gliederung 1. Einleitung 2. Symmetrische Multiprozessoren (SMP) Allgemeines Architektur 3. Speicherarchitekturen

Mehr

OpenCL (Cell B. E., PS3) Multicore Architectures and Programming

OpenCL (Cell B. E., PS3) Multicore Architectures and Programming OpenCL (Cell B. E., PS3) Multicore Architectures and Programming Apelt, Nicolas Zoellner, Christian Hardware-Software-Co-Design Universität Erlangen-Nürnberg Apelt, Nicolas Zoellner, Christian 1 Übersicht

Mehr