PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

Größe: px
Ab Seite anzeigen:

Download "PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN"

Transkript

1 PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN UNIX/Linux-Interprozesskommunikation 6. UNIX/Linux Shared Memory ( gemeinsame Speicherbereiche ) Wintersemester 2016/17

2 UNIX/Linux-IPC-Mechanismen Nachrichtenbasierter Informationsaustausch: Nachrichten(warte)schlangen ( message queues ) System V IPC 2. Sockets BSD-UNIX Speicherbasierter Informationsaustausch: 4. Gemeinsame Speicherbereiche ( shared memory ) System V IPC 5. Pipes (Named Pipes und FIFOs) Version 7 Signale: 6. Asynchrone UNIX-Signale Version 7 Synchronisationsmechanismen: 7. UNIX-Semaphore System V IPC ws 2016/17 H.-A. Schindler Folie: 6-2

3 Speicherbasierter Informationsaustausch Kommunikation über Shared Memory ist Form des Speicher basierten Informationsaustausches Prozess 1 Befehle Prozess 2 Befehle Daten Daten Prinzip: gemeinsame Daten Zugriff auf gemeinsame Speicherbereiche (und damit auf gemeinsame Daten) Implementierung (Realisierung): 2 oder mehr Prozesse haben einen Teil des Datenbereichs gemeinsam ws 2016/17 H.-A. Schindler Folie: 6-3

4 UNIX/Linux Shared Memory: Systemaufrufe 1. shmget(...) legt neues Speichersegment an oder greift auf existierendes Speichersegment zu 2. shmat(...) hängt Speichersegment an Adressraum des aufrufenden Prozesses an ( shared memory attach ) 3. shmdt(...) entfernt Speichersegment aus Adressraum des aufrufenden Prozesses ( shared memory detach ) 4. shmctl(...) führt verschiedene Steuerungsfunktionen aus ( shared memory control ) ws 2016/17 H.-A. Schindler Folie: 6-4

5 Shared Memory: shmget(..) legt neues Speichersegment an oder greift auf existierendes Speicher- Segment zu Verwendung im Programm (Prinzip): int <id_shm>; 8 <id_shm> = shmget(<key>, <size>, <flag>); Konkretes Beispiel: int id; 8 id = shmget(15, 100, IPC_CREATE 0700); Parameter Symbol Typ Bedeutung Wert <id_shm> int Interpretation Rückkehrwert 0 O.K. auf <id_shm>: Identifikator des Speichersegments -1 Feh- Systemaufruf fehlgeschlagen ler <key> long numerischer Eintrag: Schlüssel IPC_PRIVATE UNIX erzeugt Schlüssel selbst ws 2016/17 H.-A. Schindler Folie: 6-5

6 Shared Memory: shmget(..) legt neues Speichersegment an oder greift auf existierendes Speicher-Segment zu Verwendung im Programm (Prinzip): int <id_shm>; 8 <id_shm> = shmget(<key>, <size>, <flag>); Konkretes Beispiel: int id; 8 id = shmget(15, 100, IPC_CREATE 0700); Parameter Symbol Typ Bedeutung Interpretation <size> int Größe des Anzahl Byte Speichersegments <flag> int Wirkung des Aufrufs Beispieleintrag: IPC_CREATE 0644 Anlegen neuer Warteschlange mit Zugriffsrechten: rw r - - r - - wichtig: Zugriffsrechte unbedingt spezifizieren Beispieleintrag: 0 (Null) Zugriff auf vorhandenes Segment ws 2016/17 H.-A. Schindler Folie: 6-6

7 Beispielprogramm shmget.c #include <stdio.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> /* Laenge des Segments = Laenge einer integer-variablen */ #define SHM_SEGSIZE sizeof(int) main() { int id_shm; } id_shm = shmget(ipc_private, SHM_SEGSIZE, IPC_CREAT 0644); printf("id_shm = %d\n", id_shm); ws 2016/17 H.-A. Schindler Folie: 6-7

8 Shared Memory: shmat(..) fügt Speichersegment zum Adressraum des aufrufenden Prozesses hinzu Verwendung im Programm (Prinzip): int *<shm_ptr>, <id_shm>; 8 <shm_ptr> = shmat(<id_shm>, <addr>, <flag>); Konkretes Beispiel: int *ptr, id; 8 ptr = shmat(id, 0, 0); Parameter Symbol Typ Bedeutung Wert <shm_ptr> *int Interpretation Rückkehrwert 0 O.K. Pointer auf die Anfangsadresse im Prozess-Adressraum, an die Speichersegment angebunden wurde -1 Feh- Systemaufruf fehlgeschlagen ler <id_shm> int Identifikator identifiziert Speichersegment (= Rückkehrwert des shmget()-aufrufs) ws 2016/17 H.-A. Schindler Folie: 6-8

9 Shared Memory: shmat(..) fügt Speichersegment zum Adressraum des aufrufenden Prozesses hinzu Verwendung im Programm (Prinzip): int *<shm_ptr>, <id_shm>; 8 <shm_ptr> = shmat(<id_shm>, <addr>, <flag>); Konkretes Beispiel: int *ptr, id; 8 ptr = shmat(id, 0, 0); Parameter Symbol Typ Bedeutung Interpretation <addr> int * Adresse Adresse im Adressraum des aufrufenden Prozesses, der Segment zugeordnet wird empfohlene Angabe: 0 (NULL) UNIX wählt selbst <flag> int Nutzungsart vorgesehene Nutzungsart des Speichersegments: Möglichkeiten: 0 (NULL) Lesen und Schreiben erlaubt SHM_RDONLY nur Lesen erlaubt ( read only ) (aufrufender Prozess darf nicht schreiben!) ws 2016/17 H.-A. Schindler Folie: 6-9

10 Beispielprogramm shmat.c #include <stdio.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #define SHM_SEGSIZE sizeof(int) main() { int id_shm, *shm_ptr; id_shm = shmget(2222, SHM_SEGSIZE, IPC_CREAT 0644); printf("id_shm = %d\n", id_shm); } shm_ptr = shmat(id_shm, 0, 0); printf("shm_ptr = %d\n", shm_ptr); ws 2016/17 H.-A. Schindler Folie: 6-10

11 Shared Memory: shmdt(..) entfernt Speichersegment aus Adressraum des aufrufenden Prozesses Verwendung im Programm (Prinzip): int <result>, *<shm_ptr>; 8 <result> = shmdt(<shm_ptr>); Konkretes Beispiel: int x, *ptr; 8 x = shmat(ptr); Parameter Symbol Typ Bedeutung Wert Interpretation <result> int Rückkehrwert 0 O.K. Systemaufruf erfolgreich -1 Feh- Systemaufruf fehlgeschlagen ler <shm_ptr> *int Pointer hier zur Identifikation des Speicher- Segments verwendet ws 2016/17 H.-A. Schindler Folie: 6-11

12 Struktur shmid_ds Verwaltungsstruktur für jedes Shared-Memory-Segment struct shmid_ds { struct ipc_perm shm_perm; /* Zugriffsberechtigungen, Eigentümer, Gruppe etc. */ struct anon_map *shm_amp; /* Zeiger auf anon -Tabelle für dieses Segment */ int shm_segsz; /* Größe des Segments in Byte */ unsigned short shm_lkcnt; /* Anzahl der Sperren auf dieses Segment */ pid_t shm_lpid; /* Prozess-Nr. für letztes shmop(..) */ pid_t msg_cpid; /* Prozess-Nr. des Erzeugers */ unsigned long shm_nattch; /* Anzahl Prozesse, die Segment verwenden */ unsigned short shm_cnattch; /* gleicher Wert wie auf shm_nattch, nur f. shminfo */ }; time_t shm_atime; /* Zeit des letzten shmat(..) */ time_t shm_dtime; /* Zeit des letzten shmdt(..) */ time_t msg_ctime; /* Zeit, zu der diese Struktur zuletzt geändert */ ws 2016/17 H.-A. Schindler Folie: 6-12

13 Struktur ipc_perm ( ipc permissions ) spezifiziert Zugriffsrechte (wie bekannt) struct ipc_perm { uid_t uid; /* effektive Benutzernummer des Eigentümers */ gid_t gid; /* effektive Gruppennummer des Eigentümers */ uid_t cuid; /* effektive Benutzernummer des Erzeugers */ gid_t cgid; /* effektive Gruppennummer des Erzeugers */ }; mode_t mode; /* Zugriffsmodus */ unsigned long seq; /* Zähler der Verwendung der IPC-Struktur */ key_t key; /* Schlüssel */ ws 2016/17 H.-A. Schindler Folie: 6-13

14 Beispielprogramm shm-ohne-synch.c #include <stdio.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include <sys/wait.h> #define MAXCOUNT #define NUM_CHILDREN 4 #define SHM_SEGSIZE sizeof(int) main() { int i, id_shm, *shm_ptr, result, count = 0; int pid[num_children ]; id_shm = shmget(0x2222, SHM_SEGSIZE, IPC_CREAT 0644 ); printf("id_shm = %d\n", id_shm); shm_ptr = (int *)shmat(id_shm, 0, 0); printf("shm_ptr = %p\n", shm_ptr); *shm_ptr = 0; printf("inhalt des Segments *shm_ptr = %d\n", *shm_ptr);... ws 2016/17 H.-A. Schindler Folie: 6-14

15 Beispielprogramm shm-ohne-synch.c... for (i = 0; i < NUM_CHILDREN; i++) { pid[i] = fork(); printf("%d-ter Kindprozess erzeugt\n", i); if (pid[i] == -1) { printf("%d-ter Kindprozess nicht erzeugbar!\n", i); return 0; } if (pid[i] == 0) { while (*shm_ptr < MAXCOUNT ) { *shm_ptr += 1; count++; } printf("kind %d erhöhte Wert im Segment um %d\n", i, count); result = shmdt(shm_ptr); printf("kind %d: result = %d\n", i, result); return 0; } } for ( i = 0; i < NUM_CHILDREN; i++) waitpid( pid[i], NULL, 0 ); printf("inhalt des Speichersegments am Ende: \ %d - MAXCOUNT = %d\n,*shm_ptr, MAXCOUNT); } ws 2016/17 H.-A. Schindler Folie: 6-15

16 Shared Memory: shmctl(..) führt verschiedene Operationen auf einem Shared-Memory-Segment aus Aufruf im Programmtext: <result> = shmctl(<id_shm>, <cmd>, <*buf>); result (int) >0 Systemaufruf erfolgreich -1 Systemaufruf fehlgeschlagen id_shm (int) Identifikator des Speichersegments, siehe shmget(...) cmd (int) Kommando - siehe nächste Folie! *buf (struct shmid_ds) Zeiger auf eine Struktur vom Typ shmid_ds im Nutzeradressraum als Aufnahmebereich für Werte aus der msqid_ds-kernstruktur (vergleiche message queues ) ws 2016/17 H.-A. Schindler Folie: 6-16

17 Shared Memory: shmctl(..) Aufruf im Programmtext: <result> = shmctl(<id_shm>, <cmd>, <*buf>);... cmd (int) Befehl zur Ausführung auf dem über id_shm identifizierten Shared-Memory-Segment Möglichkeiten: IPC_STAT: kopiert shmid_ds -Struktur aus UNIX-Kern in Anwenderpuffer, der durch *buf adressiert IPC_SET: kopiert aus Nutzerstruktur in Kernstruktur IPC_RMID: löscht Speichersegment SHM_LOCK: Shared-Memory-Segment im Arbeitsspeicher sperren (nur Superuser!) SHM_UNLOCK: Speichersegment entsperren (nur Superuser!) ws 2016/17 H.-A. Schindler Folie: 6-17

18 Aufgabenstellung (Anregungen) 1. Erzeugen Sie mit shmget(..) Programmbeispiel: shmget.c ein neues Speichersegment, und untersuchen Sie mit ipcs (und geeigneten Parametern)wie die zugehörige Verwaltungsstruktur shmid_dsinitialisiert wird! 2. Untersuchen Sie die Wirkung unterschiedlicher Parameterwerte für shmget(..)! Was passiert, wenn keine Zugriffsrechte angegeben sind was wenn nur Zugriffsrechte spezifiziert sind? 3. Verwenden Sie shmat(..) Programmbeispiel: shmat.c um das erzeugte Speichersegment an Ihren Prozess anzufügen! Studieren Sie wieder mit ipcs (und geeigneten Parametern)die Auswirkungen auf die Verwaltungsstruktur shmid_ds! Experimentieren Sie ebenfalls mit unterschiedlichen Parameterwerten! 4. Beschäftigen Sie sich mit dem Programm shm-ohne-synch.c! Verschaffen Sie sich Klarheit darüber, was bei der Ausführung passieren wird! Führen Sie dann das Programm mehrfach aus und vergleichen Sie die Resultate! Interpretieren Sie! 5. Löschen Sie bitte alle von Ihnen erzeugten IPC-Strukturen (mit ipcrm bzw. shmctl(..) )! ws 2016/17 H.-A. Schindler Folie: 6-18

19 Kommando ipcs (vollständig) Benutzung: ipcs [-asmq] [-tclup] ipcs [-smq] -i <id> siehe unten Ausg. nur für durch Identifizierer <id> spez. Ressource ipcs -h -h help (Infos über Kommandobenutzung) -m shared memory segments -q message queues -s semaphore arrays -a all (default, d.h. gleiche Ausgabe auch ohne Angabe von -a ) -t time (alle Zeitangaben) -c creator (Erzeuger und Eigentümer der Strukturen) -p (nicht für Semaphore) -u summary (zusammenfassende Informationen) -l limits (Maximalwerte für diese UNIX-Implementation) ws 2016/17 H.-A. Schindler Folie: 6-19

20 Kommando ipcrm (vollständig) Benutzung: ipcrm [-M <key> -m <id> -Q <key> -q <id> -S <key> -s <id>] veraltete Form auch: ipcrm [shm msg sem ] <id>... -M, -m shared memory segments -Q, -q message queues -S, -s semaphore arrays ws 2016/17 H.-A. Schindler Folie: 6-20

PROGRAMMIEREN MIT UNIX/Linux-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/Linux-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/Linux-SYSTEMAUFRUFEN UNIX/Linux-Interprozesskommunikation, zugehörige Systemaufrufe und Kommandos 7. UNIX/Linux-Shared Memory 8. (Benannte) Pipes UNIX/Linux-IPC-Mechanismen Nachrichtenbasierter

Mehr

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P)

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P) Systempraktikum im Wintersemester 2009/2010 (LMU): Vorlesung vom 26.11. Foliensatz 5 Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 11. UNIX/Linux-Semaphore Wintersemester 2016/17 Semaphore * wurden 1965 von E.W. DIJKSTRA (NL) als BS-gestützter Mechanismus zur Realisierung von Koordinationsaufgaben

Mehr

J.1 Überblick. Prototyp. Besprechung 6. Aufgabe (timed) (die 5. Aufgabe wird erst in der nächsten Woche besprochen) select. Shared Memory.

J.1 Überblick. Prototyp. Besprechung 6. Aufgabe (timed) (die 5. Aufgabe wird erst in der nächsten Woche besprochen) select. Shared Memory. J 8. Übung J 8. Übung J. Überblick Besprechung 6. Aufgabe (timed) (die 5. Aufgabe wird erst in der nächsten Woche besprochen) Prototyp #include #include select Shared Memory Semaphore

Mehr

Ganze Arrays von Semaphoren können auf einmal angelegt werden. In einer Operation können mehrere Semaphore auf einmal modifiziert werden.

Ganze Arrays von Semaphoren können auf einmal angelegt werden. In einer Operation können mehrere Semaphore auf einmal modifiziert werden. Übungen zur Vorlesung Betriebssysteme I Studiengang Informatik SS 05 AG Betriebssysteme FB3 Kirsten Berkenkötter Allerlei Nützliches 1 Semaphore 1.1 Allgemein Semaphore sind unter System V IPC erweitert:

Mehr

2. Prozesssynchronisation

2. Prozesssynchronisation Tafelübung zu BSRvS1 2. Prozesssynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 2. UNIX/Linux-Prozessverwaltung und zugehörige Systemaufrufe Wintersemester 2016/17 2. Die UNIX/LINUX-Prozessverwaltung Aufgaben: 1. Erzeugen neuer Prozesse

Mehr

Systemnahe Programmierung in C/C++

Systemnahe Programmierung in C/C++ Systemnahe Programmierung in C/C++ Interprozesskommunikation (IPC) Knut Stolze stolze@informatik.uni-jena.de Lehrstuhl für Datenbanken und Informationssysteme Fakultät für Mathematik und Informatik 2006

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 3. UNIX/Linux-Dateisysteme und zugehörige Systemaufrufe und Kommandos (Teil I) Wintersemester 206/7 UNIX/Linux-Dateisystem(e) Systemaufrufe zur Dateiarbeit:

Mehr

Tafelübung zu BSRvS 1 2. Prozesssynchronisation

Tafelübung zu BSRvS 1 2. Prozesssynchronisation Tafelübung zu BSRvS 1 2. Prozesssynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Einführung in die Systemprogrammierung unter Linux

Einführung in die Systemprogrammierung unter Linux Einführung in die Systemprogrammierung unter Linux Systemsoftware Praktikum Inhalt Übersicht über benötigte Systemfunktionen Programmieren unter Linux Grundlegendes Message-Queue Shared Memory Semaphore

Mehr

Systemprogrammierung.: unter Linux :.

Systemprogrammierung.: unter Linux :. Systemprogrammierung.: unter Linux :. Einführung in Linux 1. Das Filesystem 2. Prozesse 3. Unix Tools 4. Die Shell 1. Das Filesystem 1.1 Dateien 1.2 Ordner 1.3 Links 1.1 Dateien Alles im Filesystem sind

Mehr

Vorlesung Betriebssysteme II

Vorlesung Betriebssysteme II 1 / 15 Vorlesung Betriebssysteme II Thema 3: IPC Robert Baumgartl 20. April 2015 2 / 15 Message Passing (Nachrichtenaustausch) Prinzip 2 grundlegende Operationen: send(), receive() notwendig, wenn kein

Mehr

Übung zu Grundlagen der Betriebssysteme. 5. Übung

Übung zu Grundlagen der Betriebssysteme. 5. Übung Übung zu Grundlagen der Betriebssysteme 5. Übung 13.11.2012 Aufgabe 1 Erläutern Sie den Begriff Prozess und unterscheiden Sie die Begriffe Prozess und Programm voneinander. Ein Prozess ist ein aufgerufenes,

Mehr

Übung zu Grundlagen der Betriebssysteme. 6. Übung

Übung zu Grundlagen der Betriebssysteme. 6. Übung Übung zu Grundlagen der Betriebssysteme 6. Übung 20.11.2012 Prozess & Programm Erläutern Sie den Begriff Prozess und unterscheiden Sie die Begriffe Prozess und Programm voneinander. Verwaltet ein in Ausführung

Mehr

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1 5.4 Segmentierung Adressraum besteht aus mehreren Segmenten (segments), die unabhängig voneinander manipulierbar sind. Segmentierungsstruktur ist festgelegt durch die Hardware den Adressumsetzer. Einfachstes

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 2. UNIX/Linux-Prozessverwaltung und zugehörige Systemaufrufe Wintersemester 2015/16 2. Die UNIX/LINUX-Prozessverwaltung Aufgaben: 1. Erzeugen neuer Prozesse

Mehr

Systemprogrammierung unter Linux eine Einführung S. 1

Systemprogrammierung unter Linux eine Einführung S. 1 Systemprogrammierung unter Linux eine Einführung S. 1 Inhaltsverzeichnis 1 Übersicht der Systemfunktionen ( system calls )...2 1.1 Grundliegende Systemcalls...2 Erfragen der PID des laufenden Prozesses...2

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 10. UNIX/Linux: Reaktion auf Fehler Wintersemester 2016/17 Reaktion auf Fehler: Übersicht Systemaufrufe: 1. Rückkehrwert: in den meisten (aber nicht in allen!)

Mehr

Lösung von Übungsblatt 10. (Kommunikation von Prozessen)

Lösung von Übungsblatt 10. (Kommunikation von Prozessen) Lösung von Übungsblatt 10 Aufgabe 1 (Kommunikation von Prozessen) 1. Was ist bei Interprozesskommunikation über gemeinsame Speichersegmente (Shared Memory) zu beachten? Die Prozesse müssen die Zugriffe

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) 13.Vorlesung Betriebssysteme (BTS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Betriebssysteme 31.5.2007 Wiederholung vom letzten Mal Deadlocks und Verhungern

Mehr

Interprozesskommunikation (IPC)

Interprozesskommunikation (IPC) Gliederung 1. Einführung und Übersicht 2. Prozesse und Threads 3. Interrupts Interprozesskommunikation (IPC) 4. Scheduling 5. Synchronisation 6. Interprozesskommunikation 7. Speicherverwaltung IPC Cl.

Mehr

Lab 13: Multi Processor Systems II

Lab 13: Multi Processor Systems II Lab 13: Multi Processor Systems II 1. Können Sie sich erklären warum die Summe nicht 200% ergibt? Warum entspricht die Auslastung nicht 100% pro Prozessor? 100% ist die gesamte Auslastung vom System alle

Mehr

Programmieren von UNIX-Netzen

Programmieren von UNIX-Netzen W. R. Stevens Programmieren von UNIX-Netzen Grundlagen, Programmierung, Anwendung aus dem Englischen übersetzt von Michael Frese, Werner Maisch, Eberhard Trautwein Eine Coedition der Verlage Carl Hanser

Mehr

Systemprogrammierung unter UNIX System V / Linux

Systemprogrammierung unter UNIX System V / Linux Studiengang Angewandte Informatik Systemprogrammierung unter UNIX System V / Linux Systemsoftware Praktikum Prof. Dr. S. Keller Ausgabe: 19.03.2004 Anzahl der Seiten: 27 Angewandte Informatik Praktikum

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN Teil 13: UNIX/LINUX: ZUM ABSCHLUSS Bemerkungen zum Abschluss Wir haben in unserer Veranstaltung absolut bei weitem nicht alle Themen im Zusammenhang mit Unix

Mehr

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften Programmiertechnik Teil 4 C++ Funktionen: Prototypen Overloading Parameter C++ Funktionen: Eigenschaften Funktionen (Unterprogramme, Prozeduren) fassen Folgen von Anweisungen zusammen, die immer wieder

Mehr

Linux Prinzipien und Programmierung

Linux Prinzipien und Programmierung Linux Prinzipien und Programmierung Dr. Klaus Höppner Hochschule Darmstadt Wintersemester 2010/2011 1 / 18 2 / 18 fork und Daten Nach dem fork teilen sich Eltern- und Kindprozess zwar den Programmbereich

Mehr

Variablen. Deklaration: «Datentyp» «Variablenname» Datentyp bestimmt Größe in Bytes: sizeof Beispiel: long int v; Größe: 4 Bytes

Variablen. Deklaration: «Datentyp» «Variablenname» Datentyp bestimmt Größe in Bytes: sizeof Beispiel: long int v; Größe: 4 Bytes Variablen Deklaration: «Datentyp» «Variablenname» Datentyp bestimmt Größe in Bytes: sizeof Beispiel: long int v; Größe: 4 Bytes v ist Stück im Speicher, der 4 Bytes lang ist Speicherzugriff? Über Adressen!

Mehr

Eine Mini-Shell als Literate Program

Eine Mini-Shell als Literate Program Eine Mini-Shell als Literate Program Hans-Georg Eßer 16.10.2013 Inhaltsverzeichnis 1 Eine Mini-Shell 1 1.1 Einen Befehl parsen......................... 2 1.2 Was tun mit dem Kommando?...................

Mehr

Abschlussklausur. Betriebssysteme. Bewertung: 22. November Name: Vorname: Matrikelnummer:

Abschlussklausur. Betriebssysteme. Bewertung: 22. November Name: Vorname: Matrikelnummer: Abschlussklausur Betriebssysteme 22. November 2016 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und dass ich mich gesund und prüfungsfähig

Mehr

Shared-Memory Programmiermodelle

Shared-Memory Programmiermodelle Shared-Memory Programmiermodelle mehrere, unabhängige Programmsegmente greifen direkt auf gemeinsame Variablen ( shared variables ) zu Prozeßmodell gemäß fork/join Prinzip, z.b. in Unix: fork: Erzeugung

Mehr

Praxis der Programmierung

Praxis der Programmierung Dynamische Datentypen Institut für Informatik und Computational Science Universität Potsdam Henning Bordihn Einige Folien gehen auf A. Terzibaschian zurück. 1 Dynamische Datentypen 2 Dynamische Datentypen

Mehr

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free()

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free() Übungspaket 29 Dynamische Speicherverwaltung malloc() und free() Übungsziele Skript In diesem Übungspaket üben wir das dynamische Alloziieren 1. und Freigeben von Speicherbereichen 2. von Zeichenketten

Mehr

2 UNIX Interprozesskommunikation

2 UNIX Interprozesskommunikation Parallelverarbeitung Folie 2-1 2 UNIX Interprozesskommunikation Austausch von Informationen zwischen kooperierenden Prozessen Synchronisation kooperierender Prozesse Kommunikationsmechanismen gemeinsame

Mehr

Betriebssysteme. Kommunikation von Prozessen und Threads. Sommersemester Prof. Dr. Peter Mandl. Seite 1. Prof. Dr. Peter Mandl.

Betriebssysteme. Kommunikation von Prozessen und Threads. Sommersemester Prof. Dr. Peter Mandl. Seite 1. Prof. Dr. Peter Mandl. Kommunikation von Prozessen und Threads Sommersemester 2014 Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung in n 4. Prozesse und Threads

Mehr

Advanced Programming in C

Advanced Programming in C Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer

Mehr

Tafelübung zu BS 4. Interprozesskommunikation

Tafelübung zu BS 4. Interprozesskommunikation Tafelübung zu BS 4. Interprozesskommunikation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

9.3 Virtuelle FS Linux VFS Windows IFS 9.4 Dateizugriff in Linux-Programmen

9.3 Virtuelle FS Linux VFS Windows IFS 9.4 Dateizugriff in Linux-Programmen Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Programmierung mit C Zeiger

Programmierung mit C Zeiger Programmierung mit C Zeiger Zeiger (Pointer)... ist eine Variable, die die Adresse eines Speicherbereichs enthält. Der Speicherbereich kann... kann den Wert einer Variablen enthalten oder... dynamisch

Mehr

Kommunikation von Prozessen und Threads

Kommunikation von Prozessen und Threads Kommunikation von Prozessen und Threads Sommersemester 2015 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in Computersysteme 2. Entwicklung von Betriebssystemen 3. Architekturansätze

Mehr

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN

PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN UNIX/Linux-Interprozesskommunikation 8. UNIX/Linux-Signale Wintersemester 2015/16 UNIX/Linux-IPC-Mechanismen Nachrichtenbasierter Informationsaustausch: 5. 1.

Mehr

7.1 Gegenseitiger Ausschluss. 7.1 Gegenseitiger Ausschluss (3) 7.1 Gegenseitiger Ausschluss (3) 7.1 Gegenseitiger Ausschluss (2) Semaphor

7.1 Gegenseitiger Ausschluss. 7.1 Gegenseitiger Ausschluss (3) 7.1 Gegenseitiger Ausschluss (3) 7.1 Gegenseitiger Ausschluss (2) Semaphor 7.1 Gegenseitiger Ausschluss 7.1 Gegenseitiger Ausschluss (3) Semaphor eigentlich reicht ein Semaphor mit zwei Zuständen: binärer Semaphor void P( int *s ) { while( *s == 0 ); *s= 0; atomare Funktion Problem

Mehr

4.4 Prozesse. H. Weber, HS RM SS 2010 Systemprogrammierung Kap. 4.4 Seite 1 von 22

4.4 Prozesse. H. Weber, HS RM SS 2010 Systemprogrammierung Kap. 4.4 Seite 1 von 22 H. Weber, HS RM SS 2010 Systemprogrammierung Kap. 4.4 Seite 1 von 22 getpid Prozeß-Id ermitteln getppid Parent-Prozeß-Id ermitteln fork Duplizieren eines Prozesses exec-familie Prozeß-Überlagerung durch

Mehr

8. Referenzen und Zeiger

8. Referenzen und Zeiger 8. Referenzen und Zeiger Motivation Variable werden in C++ an speziellen Positionen im Speicher abgelegt. An jeder Position befindet sich 1 Byte. Sie sind durchnummeriert beginnend bei 0. Diese Positionen

Mehr

6. Nebenläufigkeit: wechselseitiger Ausschluss und Synchronisation

6. Nebenläufigkeit: wechselseitiger Ausschluss und Synchronisation 6. Nebenläufigkeit: wechselseitiger Ausschluss und Synchronisation 6.1 Problemdarstellung Relative Ausführungsgeschwindigkeit von Prozessen nicht vorhersagbar Sie ist abhängig von o Aktivitäten anderer

Mehr

Operating Systems Principles. Event Queue

Operating Systems Principles. Event Queue Humboldt University Computer Science Department Operating Systems Principles Event Queue 1. Aufgabe 3 Wochen Zeit zum Lösen der Aufgaben Aufgabenstellung auf der SAR Website Abgabe über GOYA Abgabefrist:

Mehr

Beispiel 3. Shared Memory und Explizite Synchronisation. Daniel Prokesch. 27. April 2015. Überblick. Shared Memory. Semaphore. Ressourcenverwaltung

Beispiel 3. Shared Memory und Explizite Synchronisation. Daniel Prokesch. 27. April 2015. Überblick. Shared Memory. Semaphore. Ressourcenverwaltung 3 e 3 und Explizite Synchronisation Daniel Prokesch Institut für Technische Informatik Technische Universität Wien 27. April 2015 1 2 3 e Bisher betrachtet... Implizite Synchronisation Blockierende Lese-

Mehr

Zusammenfassung des Handzettels für Programmieren in C

Zusammenfassung des Handzettels für Programmieren in C Zusammenfassung des Handzettels für Programmieren in C In der handschriftlichen Kopie werden mehr Abkürzungen verwendet. Alles Grün markierte dient zum lernen und wird nicht auf den Handzettel übertragen.

Mehr

Hydroinformatik I: Referenzen und Zeiger

Hydroinformatik I: Referenzen und Zeiger Hydroinformatik I: Referenzen und Zeiger Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 06. Januar

Mehr

10. Vorlesung Betriebssysteme

10. Vorlesung Betriebssysteme Dr. Christian Baun 10. Vorlesung Betriebssysteme Hochschule Mannheim WS1213 1/63 10. Vorlesung Betriebssysteme Dr. Christian Baun Hochschule Mannheim Fakultät für Informatik wolkenrechnen@gmail.com Dr.

Mehr

Betriebssysteme Teil 11: Interprozess-Kommunikation

Betriebssysteme Teil 11: Interprozess-Kommunikation Betriebssysteme Teil 11: Interprozess-Kommunikation 19.12.15 1 Übersicht Grundbegriffe Shared Memory Pipelines Messages Ports Sockets 2 Grundbegriffe Interprocess-Kommunikation = Austausch von Daten über

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 2 AM 06./07.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 11 Dynamische Feldvereinbarung... 11-2 11.1 Dynamische Vereinbarung von Vektoren... 11-3 11.2 Dynamische Vereinbarung von Matrizen... 11-5 11.3 Die Kommandozeile... 11-8 Propädeutikum 11-1/8 11

Mehr

C++ Teil 6. Sven Groß. 27. Mai Sven Groß (IGPM, RWTH Aachen) C++ Teil Mai / 14

C++ Teil 6. Sven Groß. 27. Mai Sven Groß (IGPM, RWTH Aachen) C++ Teil Mai / 14 C++ Teil 6 Sven Groß 27. Mai 2016 Sven Groß (IGPM, RWTH Aachen) C++ Teil 6 27. Mai 2016 1 / 14 Themen der letzten Vorlesung Musterlösung A2 Wdh.: Zeiger und Felder Kopieren von Feldern Dynamische Speicherverwaltung

Mehr

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes PThreads Prozesse und Threads Ein Unix-Prozess hat IDs (process,user,group) Umgebungsvariablen Verzeichnis Programmcode Register, Stack, Heap Dateideskriptoren, Signale message queues, pipes, shared memory

Mehr

Dynamische Speicherverwaltung

Dynamische Speicherverwaltung Dynamische Speicherverwaltung 1/ 23 Dynamische Speicherverwaltung Tim Dobert 17.05.2013 Dynamische Speicherverwaltung 2/ 23 Gliederung 1 Allgemeines zur Speichernutzung 2 Ziele und Nutzen 3 Anwendung in

Mehr

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger Netzwerk - Programmierung Threads Alexander Sczyrba asczyrba@cebitec.uni-bielefeld.de Jan Krüger jkrueger@cebitec.uni-bielefeld.de Übersicht Probleme mit fork Threads Perl threads API Shared Data Mutexes

Mehr

C++ Teil 5. Sven Groß. 13. Mai Sven Groß (IGPM, RWTH Aachen) C++ Teil Mai / 18

C++ Teil 5. Sven Groß. 13. Mai Sven Groß (IGPM, RWTH Aachen) C++ Teil Mai / 18 C++ Teil 5 Sven Groß 13. Mai 2016 Sven Groß (IGPM, RWTH Aachen) C++ Teil 5 13. Mai 2016 1 / 18 Themen der letzten Vorlesung Funktionen Funktionsüberladung, Signatur Rekursion const-deklaration Referenzen

Mehr

Interprozesskommunikation IPC

Interprozesskommunikation IPC Interprozesskommunikation IPC Seminar Konzepte von Betriebsystem-Komponenten Denis Koslowski koslowski.d@web.de 04.07.2005-1 - Interprozesskommunikation Gliederung 1. Was ist IPC? 2. IPC: Datentransfer

Mehr

critical sections und Semaphore

critical sections und Semaphore Kapitel 4 critical sections und Semaphore Programme, die sich Resourcen teilen, müssen Codeabschnitte allein (exklusiv) ausführen, diese codeteile nennt man critical section. Um dies zu erreichen werden

Mehr

FILE *fp; char fname[100];... fp = fopen (fname, rb ); if( fp == NULL ) { perror( fopen );... } // Fehlernachricht auf letzten Fehler, der aufkam

FILE *fp; char fname[100];... fp = fopen (fname, rb ); if( fp == NULL ) { perror( fopen );... } // Fehlernachricht auf letzten Fehler, der aufkam Aktuelle Fileposition ermitteln long pos; pos=ftell(fp); //aktuelle Bytenummer Filelaenge in Bytes fseek(fp,0,seek_end); pos=ftell(fp); Fileendeerkennung int rc; rc = feof (fp) //!= 0 bei Fileende // ==

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Lineare Listen (1) Einfach verkettete Listen Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 148 Wiederholung Felder Vorteil Der Zugriff auf ein beliebiges

Mehr

Systemsoftware (SYS)

Systemsoftware (SYS) 10.Vorlesung Systemsoftware (SYS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Robotik 13.6.2008 Heute Interprozesskommunikation Kritische Abschnitte Wettlaufsituationen

Mehr

Einführung in die Programmiersprache C

Einführung in die Programmiersprache C Einführung in die Programmiersprache C 11 Was bisher verschwiegen wurde Alexander Sczyrba Robert Homann Georg Sauthoff Universität Bielefeld, Technische Fakultät Type qualifier Typen können mit folgenden

Mehr

Einführung in die Programmiersprache C

Einführung in die Programmiersprache C Einführung in die Programmiersprache C 11 Was bisher verschwiegen wurde Alexander Sczyrba Robert Homann Georg Sauthoff Universität Bielefeld, Technische Fakultät Type qualifier Typen können mit folgenden

Mehr

einlesen n > 0? Ausgabe Negative Zahl

einlesen n > 0? Ausgabe Negative Zahl 1 Lösungen Kapitel 1 Aufgabe 1.1: Nassi-Shneiderman-Diagramm quadratzahlen Vervollständigen Sie das unten angegebene Nassi-Shneiderman-Diagramm für ein Programm, welches in einer (äußeren) Schleife Integer-Zahlen

Mehr

C-Kurs 2010 Pointer. 16. September v2.7.3

C-Kurs 2010 Pointer. 16. September v2.7.3 C-Kurs 2010 Pointer Sebastian@Pipping.org 16. September 2010 v2.7.3 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. C-Kurs Mi Konzepte, Syntax,... printf, scanf Next

Mehr

Verbessertes Konzept: Monitore

Verbessertes Konzept: Monitore Verbessertes Konzept: Monitore Ein Nachteil von Semaphoren ist die Notwendigkeit zur expliziten Anforderung P und Freigabe V des kritischen Bereiches durch den Programmierer Vergißt der Entwickler z.b.

Mehr

FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren

FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren FH Ravensburg-Weingarten Schriftlich Prüfung Programmieren Prof. Dr. M. Zeller Datum, Zeit Aufgabenblätter erreichbare Punktzahl zugelassene Hilfsmittel, 0800 1000 Uhr (120 min) 16 Seiten (einschl. Deckblatt)

Mehr

Dynamische Speicherverwaltung

Dynamische Speicherverwaltung Dynamische Speicherverwaltung Tim Dobert 17.05.2013 Inhaltsverzeichnis 1 Allgemeines zur Speichernutzung 2 2 Ziel und Nutzen 2 3 Anwendung in C 2 3.1 malloc............................... 3 3.2 calloc...............................

Mehr

Nachname:... Vorname:... MatrNr.:... Klausur PR2. Erstellen Sie eine Struktur für eine Komplexe Zahl mit den Elementen real und imag vom Typ double.

Nachname:... Vorname:... MatrNr.:... Klausur PR2. Erstellen Sie eine Struktur für eine Komplexe Zahl mit den Elementen real und imag vom Typ double. Nachname:... Vorname:... MatrNr.:... Klausur PR2 HAW-Hamburg, Fakultät Technik und Informatik, Department Informations- und Elektrotechnik Dr. Robert Heß, 4.7.2008 Bearbeitungsdauer: 90 min Hilfsmittel:

Mehr

Microsoft Visual C++ 6.0

Microsoft Visual C++ 6.0 Hardwareinbindung in Matlab bild = Quickcam; figure;imshow(bildanzeige); MATLAB 6.1 void mexfunction( int nlhs, mxarray *plhs[], int nrhs, const mxarray*prhs[] ) Microsoft Visual C++ 6.0 Aufruf int Capture(unsigned

Mehr

Interprozesskommunikation

Interprozesskommunikation Interprozesskommunikation Inhalt 1. Überblick... 2 2. Pipes... 5 3. Fifo...22 3.1. Übung IPC-2...39 Unix für Entwickler: Interprozesskommunikation Prof Dr. Alois Schütte 1/40 1. Überblick Hier werden die

Mehr

2. Aufgabe (3 Punkte) Ergänzen Sie die leeren Zellen derart, dass sich in einer Zeile die selben Zahlenwerte ergeben.

2. Aufgabe (3 Punkte) Ergänzen Sie die leeren Zellen derart, dass sich in einer Zeile die selben Zahlenwerte ergeben. Programmieren bei Dr. Robert Heß TM&M1, IST1 und ET1 Ende SS 2003 Klausur 1. Aufgabe (2 Punkte) Kodieren Sie folgende Dezimalzahlen in Binärzahlen um. Zeigen Sie den Rechenweg, die negative Zahl soll im

Mehr

Linux-Kernel- Programmierung

Linux-Kernel- Programmierung Michael Beck, Harald Böhme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus, Dirk Verworner Linux-Kernel- Programmierung Algorithmen und Strukturen der Version 1.0 ADDISON-WESLEY PUBLISHING COMPANY Bonn Paris

Mehr

C- Kurs 08 Zeiger. Dipl.- Inf. Jörn Hoffmann leipzig.de. Universität Leipzig Ins?tut für Informa?k Technische Informa?

C- Kurs 08 Zeiger. Dipl.- Inf. Jörn Hoffmann leipzig.de. Universität Leipzig Ins?tut für Informa?k Technische Informa? C- Kurs 08 Dipl.- Inf. Jörn Hoffmann jhoffmann@informa?k.uni- leipzig.de Universität Leipzig Ins?tut für Informa?k Technische Informa?k Überblick Datentyp zur Verwaltung von Adressen (auf Speicherplätze)

Mehr

Übungspaket 20 Zeiger und Zeigervariablen

Übungspaket 20 Zeiger und Zeigervariablen Übungspaket 20 Zeiger und Zeigervariablen Übungsziele: Skript: 1. Definition von Zeigervariablen 2. Verwendung von Zeigern 3. Arrays und Adressberechnungen Kapitel: 45 und 46 Semester: Wintersemester 2017/18

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1. Crashkurs C (2)

Betriebssysteme, Rechnernetze und verteilte Systeme 1. Crashkurs C (2) Betriebssysteme, Rechnernetze und verteilte Systeme 1 Crashkurs C (2) Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/

Mehr

7. Organisation von Informationen

7. Organisation von Informationen Computeranwendung in der Chemie Informatik für Chemiker(innen) 7. Organisation von Informationen Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL7 Folie 1 Grundlagen Programme

Mehr

Vorlesung Betriebssysteme I

Vorlesung Betriebssysteme I 1 / 38 Vorlesung Betriebssysteme I Thema 6: Kommunikation Robert Baumgartl 14. Dezember 2015 2 / 38 Einige Gedanken Kommunikation = Übertragung von Informationen zwischen Aktivitäten meist mit Synchronisation

Mehr

Tafelübung zu BSRvS1. 3. Philosophen. Fortsetzung Grundlagen C-Programmierung

Tafelübung zu BSRvS1. 3. Philosophen.  Fortsetzung Grundlagen C-Programmierung Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

C- Kurs 09 Dynamische Datenstrukturen

C- Kurs 09 Dynamische Datenstrukturen C- Kurs 09 Dynamische Datenstrukturen Dipl.- Inf. Jörn Hoffmann jhoffmann@informaak.uni- leipzig.de Universität Leipzig InsAtut für InformaAk Technische InformaAk Flexible Datenstrukturen Institut für

Mehr

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis...

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis... 1 Einführung................................................ 1 1.1 Was ist ein Betriebssystem?............................... 1 1.1.1 Betriebssystemkern................................ 2 1.1.2 Systemmodule....................................

Mehr

Probeklausur: Programmieren I

Probeklausur: Programmieren I Probeklausur: Programmieren I WS09/10 Erlaubte Hilfsmittel: keine Lösung ist auf den Klausurbögen anzufertigen. (eventuell Rückseiten nehmen) Bitte legen Sie einen Lichtbildausweis und den Studentenausweis

Mehr

Moderne C-Programmierung

Moderne C-Programmierung Xpert.press Moderne C-Programmierung Kompendium und Referenz Bearbeitet von Helmut Schellong 1. Auflage 2005. Buch. xii, 280 S. ISBN 978 3 540 23785 3 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete

Mehr

Integer Integer Integer (Voreinstellung) Integer Gleitkomma Gleitkomma leer/unbestimmt Integer ohne Vorzeichen Integer (explizit) mit Vorzeichen

Integer Integer Integer (Voreinstellung) Integer Gleitkomma Gleitkomma leer/unbestimmt Integer ohne Vorzeichen Integer (explizit) mit Vorzeichen 1 C-Schlüsselwörter Schlüsselwörter sind in allen Programmiersprachen reservierte Wörter. In C sind auch alle Namen _[A-Z]... und... reserviert, auch _... bereichsweise. Weiterhin durch die Standard-

Mehr

Einführung in die Programmierung II. 5. Zeiger

Einführung in die Programmierung II. 5. Zeiger Einführung in die Programmierung II 5. Zeiger Thomas Huckle, Stefan Zimmer 16. 5. 2007-1- Bezüge als Objekte Bisher kennen wir als Bezüge (Lvalues) nur Variablennamen Jetzt kommt eine neue Sorte dazu,

Mehr

Fortgeschrittene I/O

Fortgeschrittene I/O Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Tafelübung zu BS 4. Dateioperationen

Tafelübung zu BS 4. Dateioperationen Tafelübung zu BS 4. Dateioperationen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2013/bs/

Mehr

USBCAN.DLL. Manual. Microcomputersysteme. Version 1.2

USBCAN.DLL. Manual. Microcomputersysteme. Version 1.2 USBCAN.DLL Microcomputersysteme Manual Version 1.2 August 2004 Die in diesem Manual verwendeten Beschreibungen für Erzeugnisse, die ein eingetragenes Warenzeichen darstellen können, wurden nicht separat

Mehr

Grundlagen der Informatik 2. Typen

Grundlagen der Informatik 2. Typen Grundlagen der Informatik 2. Typen Speicher, Speicherbedarf Ein-/Ausgabe Grundlagen der Informatik (Alex Rempel) 1 Wiederholung // root calculation #include #include using namespace

Mehr

Betriebssysteme I SS 2008 Hans-Georg Eßer, Hochschule München Zusammenfassung Seite 1

Betriebssysteme I SS 2008 Hans-Georg Eßer, Hochschule München Zusammenfassung Seite 1 /home/esser/daten/dozent/hs-muenchen-2008/folien/bs-ss2008-esser-14.odp Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]:

Mehr

Die Programmiersprache C

Die Programmiersprache C Die Programmiersprache C höhere Programmiersprache (mit einigen Assembler-ähnlichen Konstrukten) gut verständliche Kommandos muss von Compiler in maschinenlesbaren Code (Binärdatei) übersetzt werden universell,

Mehr

Arrays (Felder/Vektoren)

Arrays (Felder/Vektoren) Arrays (Felder/Vektoren) Zusammenfassung mehrerer Variablen des gleichen Typs unter einem Namen im Speicher direkt hintereinander abgelegt Definition: Typname Arrayname [Größe]; Beispiel: int ar [5]; Zugriff

Mehr

Einführung in C. EDV1-04C-Einführung 1

Einführung in C. EDV1-04C-Einführung 1 Einführung in C 1 Helmut Erlenkötter C Programmieren von Anfang an Rowohlt Taschenbuch Verlag ISBN 3-4993 499-60074-9 19,90 DM http://www.erlenkoetter.de Walter Herglotz Das Einsteigerseminar C++ bhv Verlags

Mehr

Grundlagen der Informatik 6. Arrays I

Grundlagen der Informatik 6. Arrays I 6. Arrays I Motivation Array (konstante Länge) Speicherbereich Eingabe von Arrays Grundlagen der Informatik (Alex Rempel) 1 Motivation Beispiel: Bildschirmpixel zeichnen Auflösung 800x600, d.h. insgesamt

Mehr