Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web:

Größe: px
Ab Seite anzeigen:

Download "Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?"

Transkript

1 Algorithmen I Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1

2 Kap. 12: Generische Optimierungsansätze Black-Box-Löser Greedy Dynamische Programmierung Systematische Suche Lokale Suche Evolutionäre Algorithmen KIT Institut für Theoretische Informatik 2

3 Durchgehendes Beispiel: Rucksackproblem M n Gegenstände mit Gewicht w i N und Prot p i Wähle eine Teilmenge x von Gegenständen derart, dass i x w i M und maximiere den Prot i x p i KIT Institut für Theoretische Informatik 3

4 Allgemein: Maximierungsproblem (L, f ) L U : zulässige Lösungen f : L R Zielfunktion x L ist optimale Lösung falls f (x ) f (x) für alle x L Minimierungsprobleme: analog Problem: variantenreich, meist NP-schwer KIT Institut für Theoretische Informatik 4

5 Black-Box-Löser (Ganzzahlige) Lineare Programmierung Aussagenlogik Constraint-Programming Verallgemeinerung von beidem KIT Institut für Theoretische Informatik 5

6 Lineare Programmierung Ein lineares Programm mit n Variablen und m Constraints (NB) wird durch das folgende Minimierungs-/Maximierungsproblem deniert: Kostenfunktion f (x) = c x c ist der Kostenvektor m Constraints der Form a i x i b i mit i {,,=}, a i R n. Wir erhalten: L = {x R n : j 1..n : x j 0 i 1..m : a i x i b i }. KIT Institut für Theoretische Informatik 6

7 Ein einfaches Beispiel y feasible solutions v y<=6 x+y<=8 2x y<=8 o better solutions x KIT Institut für Theoretische Informatik 7

8 Beispiel: Kürzeste Wege maximiere d v v V so dass d s = 0 d w d v + c(v,w) für alle (v,w) E KIT Institut für Theoretische Informatik 8

9 Eine Anwendung Tierfutter n Futtersorten, Sorte i kostet c i Euro/kg. m Anforderungen an gesunde Ernährung (Kalorien, Proteine, Vitamin C,... ). Sorte i enthält a ji Prozent des täglichen Bedarfs pro kg bzgl. Anforderung j Sei a ji die i-te Komponente von Vektor a j. KIT Institut für Theoretische Informatik 9

10 Eine Anwendung Tierfutter n Futtersorten, Sorte i kostet c i Euro/kg. m Anforderungen an gesunde Ernährung (Kalorien, Proteine, Vitamin C,... ). Sorte i enthält a ji Prozent des täglichen Bedarfs pro kg bzgl. Anforderung j Sei a ji die i-te Komponente von Vektor a j. Deniere x i als zu beschaende Menge von Sorte i LP-Lösung gibt eine kostenoptimale gesunde Mischung. KIT Institut für Theoretische Informatik 9

11 Verfeinerungen Obere Schranken (Radioaktivität, Cadmium, Kuhhirn,... ) Beschränkte Reserven (z. B. eigenes Heu) bestimmte abschnittweise lineare Kostenfunktionen (z. B. mit Abstand wachsende Transportkosten) Minimale Abnahmemengen die meisten nichtlinearen Kostenfunktionen Ganzzahlige Mengen (für wenige Tiere) Garbage in, Garbage out KIT Institut für Theoretische Informatik 10

12 Algorithmen und Implementierungen LPs lassen sich in polynomieller Zeit lösen [Khachiyan 1979] ( ) Worst case O max(m,n) 7 2 In der Praxis geht das viel schneller Robuste, eziente Implementierungen sind sehr aufwändig Fertige freie und kommerzielle Pakete KIT Institut für Theoretische Informatik 11

13 Ganzzahlige Lineare Programmierung ILP: Integer Linear Program, lineares Programm mit der zusätzlichen Bedingung x i N. oft: 0/1 ILP mit x i {0,1} MILP: Mixed Integer Linear Program, lineares Programm bei dem einige Variablen ganzzahlig sein müssen. Lineare Relaxation: Entferne die Ganzzahligkeitsbedingungen eines (M)ILP KIT Institut für Theoretische Informatik 12

14 Beispiel: Rucksackproblem maximiere p x derart, dass w x M,x i {0,1} for 1 i n. x i = 1 gdw. Gegenstand i in den Rucksack kommt. 0/1 Variablen sind typisch für ILPs M KIT Institut für Theoretische Informatik 13

15 Umgang mit (M)ILPs NP-schwer + Ausdrucksstarke Modellierungssprache + Es gibt generische Lösungsansätze, die manchmal gut funktionieren + Viele Möglichkeiten für Näherungslösungen + Die Lösung der linearen Relaxation hilft oft, z. B. einfach runden. + Ausgefeilte Softwarepakete Beispiel: Beim Rucksackproblem gibt es nur eine fraktionale Variable in der linearen Relaxation Abrunden ergibt zulässige Lösung. Annähernd optimal, falls Gewichte und Prote Kapazität KIT Institut für Theoretische Informatik 14

16 Nie zurückschauen Greedy-Algorithmen (deutsch: gierige Algorithmen, Ausdruck wenig gebräuchlich) Idee: tree jeweils eine lokal optimale Entscheidung KIT Institut für Theoretische Informatik 15

17 Optimale Greedy-Algorithmen Dijkstras Algorithmus für kürzeste Wege Minimale Spannbäume Jarník-Prim Kruskal Selection-Sort (wenn man so will) Viel häuger, z.t. mit Qualitätsgarantien. Mehr: Vorlesungen Algorithmen II und Approximations- und Onlinealgorithmen KIT Institut für Theoretische Informatik 16

18 Beispiel: Rucksackproblem Procedure rounddownknapsack sort items by prot density p i { } w i nd min j : j w i=1 j > M output items 1..j 1 Procedure greedyknapsack sort items by prot density p i w i for i := 1 to n do if there is room for item i then insert it into the knapsack // critical item KIT Institut für Theoretische Informatik 17

19 Dynamische Programmierung Aufbau aus Bausteinen Anwendbar, wenn das Optimalitätsprinzip gilt: Optimale Lösungen bestehen aus optimalen Lösungen für Teilprobleme. Mehrere optimale Lösungen es ist egal, welche benutzt wird. KIT Institut für Theoretische Informatik 18

20 Beispiel: Rucksackproblem Annahme: ganzzahlige Gewichte P(i,C):= optimaler Prot für Gegenstände 1,...,i unter Benutzung von Kapazität C. P(0,C):= 0 Lemma: 1 i n : P(i,C) = max(p(i 1,C), P(i 1,C w i ) + p i ) KIT Institut für Theoretische Informatik 19

21 Dynamische Programmierung auszufüllende Tabelle Wdh. Lemma: 1 i n : P(i,C) = max(p(i 1,C), P(i 1,C w i ) + p i ) KIT Institut für Theoretische Informatik 20

22 Beweis des Lemmas P(i,C):= optimaler Prot für Gegenstände 1,...,i bei Kap. C. Lemma: P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) Beweis: Sei x optimale Lösung für Objekte 1..i, Kapazität C, d. h. c x = P(i,C). KIT Institut für Theoretische Informatik 21

23 Beweis des Lemmas P(i,C):= optimaler Prot für Gegenstände 1,...,i bei Kap. C. Lemma: P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) Beweis: Sei x optimale Lösung für Objekte 1..i, Kapazität C, d. h. c x = P(i,C). Fall x i = 0: x ist auch (opt.) Lösung für Objekte 1..i 1, Kapazität C. P(i,C) = c x = P(i 1,C) KIT Institut für Theoretische Informatik 21

24 Beweis des Lemmas P(i,C):= optimaler Prot für Gegenstände 1,...,i bei Kap. C. Lemma: P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) Beweis: Sei x optimale Lösung für Objekte 1..i, Kapazität C, d. h. c x = P(i,C). Fall x i = 0: x ist auch (opt.) Lösung für Objekte 1..i 1, Kapazität C. P(i,C) = c x = P(i 1,C) Fall x i = 1: x ohne i ist auch Lösung für Objekte 1..i 1, Kapazität C w i. Wegen Austauschbarkeit muÿ x ohne i optimal für diesen Fall sein. P(i,C) p i = P(i 1,C w i ) P(i,C) = P(i 1,C w i ) + p i KIT Institut für Theoretische Informatik 21

25 Beweis des Lemmas P(i,C):= optimaler Prot für Gegenstände 1,...,i bei Kap. C. Lemma: P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) Beweis: Sei x optimale Lösung für Objekte 1..i, Kapazität C, d. h. c x = P(i,C). Fall x i = 0: x ist auch (opt.) Lösung für Objekte 1..i 1, Kapazität C. P(i,C) = c x = P(i 1,C) Fall x i = 1: x ohne i ist auch Lösung für Objekte 1..i 1, Kapazität C w i. Wegen Austauschbarkeit muÿ x ohne i optimal für diesen Fall sein. P(i,C) p i = P(i 1,C w i ) P(i,C) = P(i 1,C w i ) + p i Insgesamt, wegen Optimalität von x, P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) KIT Institut für Theoretische Informatik 21

26 Berechung von P(i, C) elementweise: P(i,C) = max(p(i 1,C),P(i 1,C w i ) + p i ) Procedure knapsack(p, c, n, M) array P[0...M] = [0,...,0] bitarray decision[1...n,0...m] = [(0,...,0),...,(0,...,0)] for i := 1 to n do // invariant: C {1,...,M} : P[C] = P(i 1,C) for C := M downto w i do if P[C w i ] + p i > P[C] then P[C] := P[C w i ] + p i decision[i,c] := 1 KIT Institut für Theoretische Informatik 22

27 Rekonstruktion der Lösung C := M array x[1...n] for i := n downto 1 do x[i] := decision[i,c] if x[i] = 1 then C := C w i endfor return x Analyse: Zeit: O(nM) pseudopolynomiell Platz: M + O(n) Maschinenwörter plus nm bits. KIT Institut für Theoretische Informatik 23

28 Beispiel Maximiere (10,20,15,20) x, so dass (1,3,2,4) x 5 P(i,C),(decision[i,C]) i \ C , (0) 10, (1) 10, (1) 10, (1) 10, (1) 10, (1) KIT Institut für Theoretische Informatik 24

29 Beispiel Maximiere (10,20,15,20) x, so dass (1,3,2,4) x 5 P(i,C),(decision[i,C]) i \ C , (0) 10, (1) 10, (1) 10, (1) 10, (1) 10, (1) 2 0, (0) 10, (0) 10, (0) 20, (1) 30, (1) 30, (1) 3 4 KIT Institut für Theoretische Informatik 24

30 Beispiel Maximiere (10,20,15,20) x, so dass (1,3,2,4) x 5 P(i,C),(decision[i,C]) i \ C , (0) 10, (1) 10, (1) 10, (1) 10, (1) 10, (1) 2 0, (0) 10, (0) 10, (0) 20, (1) 30, (1) 30, (1) 3 0, (0) 10, (0) 15, (1) 25, (1) 30, (0) 35, (1) 4 KIT Institut für Theoretische Informatik 24

31 Beispiel Maximiere (10,20,15,20) x, so dass (1,3,2,4) x 5 P(i,C),(decision[i,C]) i \ C , (0) 10, (1) 10, (1) 10, (1) 10, (1) 10, (1) 2 0, (0) 10, (0) 10, (0) 20, (1) 30, (1) 30, (1) 3 0, (0) 10, (0) 15, (1) 25, (1) 30, (0) 35, (1) 4 0, (0) 10, (0) 15, (0) 25, (0) 30, (0) 35, (0) KIT Institut für Theoretische Informatik 24

Erinnerung VL

Erinnerung VL Erinnerung VL 04.07.2016 Union-Find-Datenstruktur (für Kruskals Algorithmus) Ackermann-Funktion (in der Analyse) Optimierungsprobleme (Beispiel: Rucksackproblem) Im Allgemeinen (NP-)schwer Z.B. für unteilbare

Mehr

Analyse Pfadkompression + Union by rank

Analyse Pfadkompression + Union by rank Analyse Pfadkompression + Union by rank Satz: m nd + n link brauchen Zeit O(mα T (m,n)) mit und α T (m,n) = min{i 1 : A(i, m/n ) logn} A(1,j) = 2 j for j 1, A(i,1) = A(i 1,2) for i 2, A(i,j) = A(i 1,A(i,j

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 29.06.2016 Wichtige Eigenschaften von MSTs (Schnitt-/Kreiseigenschaft) Jarník-Prim-Algorithmus für MSTs Idee Kruskal-Algorithmus Heute: Union-Find-Datenstruktur (für Kruskals Algorithmus)

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 10.07.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Algorithmen I - Tutorium 28 Nr. 12

Algorithmen I - Tutorium 28 Nr. 12 Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

09. Übung zu Algorithmen I 12. Juli 2017

09. Übung zu Algorithmen I 12. Juli 2017 09. Übung zu Algorithmen I 12. Juli 2017 Björn Kaidel bjoern.kaidel@kit.edu mit Folien von Lukas Barth 1 / 67 Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

12 Generische Optimierungsansätze

12 Generische Optimierungsansätze Sanders / van Stee: Algorithmentechnik January 10, 2008 1 12 Generische Optimierungsansätze Black-Box-Löser Greedy Dynamische Programmierung Systematische Suche Lokale Suche Evolutionäre Algorithmen Sanders

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web:

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: Algorithmen I Prof. Jörn Müller-Quade 24.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Optimierung. Vorlesung 12

Optimierung. Vorlesung 12 Optimierung Vorlesung 12 Letze Woche Approximieren von ILP durch randomisiertes Runden. Beispiel Set Cove Relaxiertes LP lösen und runden. Probleme: 1. Zielfunktionswert 2. Zulässigkeit 1. Linearität des

Mehr

Systematische Suche. Alle (sinnvollen) Möglichkeiten ausprobieren. Anwendungen: Idee:

Systematische Suche. Alle (sinnvollen) Möglichkeiten ausprobieren. Anwendungen: Idee: Systematische Suche Idee: Alle (sinnvollen) Möglichkeiten ausprobieren. Anwendungen: I Ganzzahlige lineare Programmierung (Integer Linear Programming) (ILP) I Constraint Satisfaction I SAT (Aussagenlogik)

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl lisa.kohl@kit.edu mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. : Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO

Mehr

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18./20. VO A&D WS 08/09

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, 10.12.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick:

Mehr

Sortieren & Co. KIT Institut für Theoretische Informatik

Sortieren & Co. KIT Institut für Theoretische Informatik Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

21. Dynamic Programming III

21. Dynamic Programming III Approximation 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Sei ein ε (, 1) gegeben. Sei I eine bestmögliche Auswahl. Suchen eine gültige Auswahl I mit

Mehr

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016 Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II.

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II. Schulz, Gog, Sanders: Algorithmen II - 13. Februar 2017 Algorithmen II Peter Sanders, Christian Schulz, Simon Gog Übungen: Michael Axtmann Institut für Theoretische Informatik, Algorithmik II Web: http://algo2.iti.kit.edu/algorithmenii_ws16.php

Mehr

6.1. Ein Approximationsalgorithmus für das Rucksackproblem

6.1. Ein Approximationsalgorithmus für das Rucksackproblem 6.1. Ein Approximationsalgorithmus für das Rucksackproblem Wir erinnern uns an das 0-1-Rucksackproblem: Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke

Mehr

Das Rucksackproblem: schwache NP-Härte und Approximation

Das Rucksackproblem: schwache NP-Härte und Approximation Das Rucksackproblem: schwache NP-Härte und Approximation Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1. Februar 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Rückblick: divide and conquer

Rückblick: divide and conquer Rückblick: divide and conquer pi = (xi,yi) } p å } ' }d(p,p) p ''=min(, ') F 0/0 p./95 weitere Algorithmentechniken Greedy-Algorithmen dynamische Programmierung Backtracking branch and bound Heuristiken

Mehr

Erinnerung VL vom

Erinnerung VL vom Erinnerung VL vom 09.05.2016 Analyse von Hashtabellen mit verketteten Listen Erwartete Laufzeit O(1) bei zuf. Hashfkt. und falls M O(m) Guter Ersatz (hier) für zuf. Hashfkt.: universelle Hashfunktionen

Mehr

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Übersicht Greedy Algorithmen Einführung Aktivitäten-Auswahl-Problem Huffman Codierung Matthias Zwicker Universität Bern Frühling 2009 2 Greedy Algorithmen Entwurfsstrategie

Mehr

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` '

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' Sortieren & Co 164 165 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' 166 Anwendungsbeispiele Allgemein: Vorverarbeitung

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Zum Umgang mit NP-harten Problemen In manchen Anwendungen ist das garantierte Auffinden exakter

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Christian Scheideler + Helmut Seidl SS 2009 28.06.09 Kapitel 12 1 Generische Optimierungsverfahren Techniken: Systematische Suche lass nichts aus

Mehr

Klausur Algorithmen und Datenstrukturen II 10. August 2015

Klausur Algorithmen und Datenstrukturen II 10. August 2015 Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 30.05.2016 Radix-Sort, Abschluss Sortieren Prioritätslisten: Warteschlange mit Prioritäten deletemin: kleinstes Element rausnehmen insert: Element einfügen Binäre Heaps als Implementierung

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wiederholung TSP: Kurz:

Mehr

20. Dynamic Programming II

20. Dynamic Programming II Aufgabe 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen

Mehr

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 21. November 2012 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

20. Dynamic Programming II

20. Dynamic Programming II 536 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et

Mehr

Folien aus der Vorlesung Optimierung I SS2013

Folien aus der Vorlesung Optimierung I SS2013 Folien aus der Vorlesung Optimierung I SS2013 Dr. Jens Maßberg Institut für Optimierung und Operations Research, Universität Ulm July 10, 2013 Datenstrukturen für Graphen und Digraphen Graph Scanning Algorithmus

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13 1/34 Näherungsalgorithmen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

Funktioniert der Greedy-Algorithmus auch für Briefmarken aus Manchukuo?

Funktioniert der Greedy-Algorithmus auch für Briefmarken aus Manchukuo? Briefmarkensammeln (Folie 413, Seite 80 im Skript) Funktioniert der Greedy-Algorithmus auch für Briefmarken aus Manchukuo? Welche Briefmarken für einen 20 fen Brief? Der Greedy-Algorithmus führt nicht

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil XI Peter F Stadler & Konstantin Klemm Bioinformatics Group, Dept of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 16

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen lausthal Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Erinnerung: Dynamische Programmierung Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund ACHTUNG: Die VO

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 2.2 Entwurfsparadigmen Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 1 Top-Down Zerlege das gegebene Problem in Teilschritte Zerlege Teilschritte

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 7.06.016 Bellman-Ford-Algorithmus (Brute-Force-Suche) Varianten des Kürzeste-Wege-Problems (azyklische Graphen) Ausblick: Routenplanung in Straÿennetzwerken Motivation Minimale Spannbäume

Mehr

Dynamische Programmierung II

Dynamische Programmierung II Vorlesungstermin 10: Dynamische Programmierung II Markus Püschel David Steurer talks2.dsteurer.org/dp2.pdf Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für heute Dynamische Programmierung

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Klausur Algorithmen und Datenstrukturen II 01. Agust 2016

Klausur Algorithmen und Datenstrukturen II 01. Agust 2016 Technische Universität Braunschweig Sommersemester 2016 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

Algorithmen II. Peter Sanders, Thomas Worsch, Simon Gog. Übungen: Demian Hespe, Yaroslav Akhremtsev

Algorithmen II. Peter Sanders, Thomas Worsch, Simon Gog. Übungen: Demian Hespe, Yaroslav Akhremtsev Sanders, Worsch, Gog: Algorithmen II - 18. Dezember 2017 Algorithmen II Peter Sanders, Thomas Worsch, Simon Gog Übungen: Demian Hespe, Yaroslav Akhremtsev Institut für Theoretische Informatik, Algorithmik

Mehr

PG 534 Vehicle Routing Einführung. Markus Chimani & Karsten Klein LS11, TU Dortmund

PG 534 Vehicle Routing Einführung. Markus Chimani & Karsten Klein LS11, TU Dortmund PG 534 Vehicle Routing Einführung Markus Chimani & Karsten Klein LS11, TU Dortmund PG Ziele Framework Branch & Cut, Branch & Price, Auswählbare Zielfunktionen, Nebenbedingungen, Heuristiken, Ungleichungen,

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Wiederholung. Divide & Conquer Strategie

Wiederholung. Divide & Conquer Strategie Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 3 Gesamtübersicht Organisatorisches; Einführung Algorithmenanalyse:

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 17.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 208 (Algorithmen & Datenstrukturen) Vorlesung 4 (..208) Graphenalgorithmen III Algorithmen und Komplexität Bäume Gegeben: Zusammenhängender, ungerichteter Graph G = V, E Baum: Zusammenhängender,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen Safe

Mehr

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig?

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? 207 Auswahl (Selection) Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? // return an element of s with rank k

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut VO Graphenalgorithmen WiSe 2009/10 Markus Chimani TU Dortmund NP-schwere Probleme 2

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2013

Informatik II: Algorithmen und Datenstrukturen SS 2013 Informatik II: Algorithmen und Datenstrukturen SS 2013 Vorlesung 11b, Mittwoch, 3. Juli 2013 (Editierdistanz, dynamische Programmierung) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie Algorithmen 2 Algorithmen 2 Kapitel: Approximationsalgorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2017/2018 1 / 40 Einleitung Überblick Einleitung

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Lineare Programmierung

Lineare Programmierung Übung Algorithmische Geometrie Lineare Programmierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 14.05.2014 Übersicht Übungsblatt 4 Lineares

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Algorithmen I - Tutorium 28 Nr. 6

Algorithmen I - Tutorium 28 Nr. 6 Algorithmen I - Tutorium 28 Nr. 6 08.06.2017: Spaß mit Sortieren, Aufgaben und Wiederholung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN MÜLLER-QUADE

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2009 11. Vorlesung Uwe Quasthoff Universität Leipzig Institut für Informatik quasthoff@informatik.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 22 (20.7.2016) Greedy Algorithmen - Datenkompression Algorithmen und Komplexität Greedy Algorithmen Greedy Algorithmen sind eine Algorithmenmethode,

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013 Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 29.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr