Emulation. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg

Größe: px
Ab Seite anzeigen:

Download "Emulation. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg"

Transkript

1 Emulation Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Emulation (WS15/16) 1 22

2 Definition: Emulation Wikipedia: Als Emulation wird in der Computertechnik das funktionelle Nachbilden eines Systems durch ein anderes bezeichnet. Das nachbildende System erhält die gleichen Daten, führt die gleichen Programme aus und erzielt die gleichen Ergebnisse wie das originale System. V. Sieh Emulation (WS15/16) Definition 2 22

3 Emulation V. Sieh Emulation (WS15/16) Definition 3 22

4 Emulation Beispiel: System mit einem Bus mit angeschlossener CPU, RAM, ROM, einem seriellen Terminal und einer Platte. V. Sieh Emulation (WS15/16) Emulation 4 22

5 Emulation CPU Idee System-Simulationsschleife: for (;;) { /* bus_step(); */ cpu_step(); /* ram_step(); */ /* rom_step(); */ ser_step(); disk_step(); V. Sieh Emulation (WS15/16) Emulation 5 22

6 Emulation CPU cpu_step() { if (! power) { /* Do nothing... */ else if (ieflag && interrupt_pending) { cpu_exec_interrupt(); else { cpu_exec_instruction(); V. Sieh Emulation (WS15/16) Emulation 6 22

7 Emulation CPU cpu_exec_instruction() { inst = load(ip++); /* Get Instruction */ switch (inst) { case ADD: /* add $imm, %accu */ imm = load(ip++); /* Get Op */ accu += imm; break; case OUT: /* out %accu, port */ port = load(ip++); /* Get Port */ out(port, accu); break; case JMP: /* jmp addr */ ip = load(ip); /* Get Address */ break;... V. Sieh Emulation (WS15/16) Emulation 7 22

8 Emulation CPU cpu_exec_interrupt() { interrupt_pending = 0; store(--sp, ip); store(--sp, ieflag); ieflag = 0; ip = load(0); V. Sieh Emulation (WS15/16) Emulation 8 22

9 Emulation CPU cpu_interrupt() { interrupt_pending = 1; V. Sieh Emulation (WS15/16) Emulation 9 22

10 Emulation Bus uint8_t load(uint32_t addr) { if (ROMSTART <= addr && addr < ROMSTART + ROMSIZE) { return rom_load(addr - ROMSTART); else if (RAMSTART <= addr && addr < RAMSTART + RAMSI return ram_load(addr - RAMSTART); else { return 0; store(uint32_t addr, uint8_t val) { if (RAMSTART <= addr && addr < RAMSTART + RAMSIZE) { ram_store(addr - RAMSTART, val); else { /* Do nothing... */ V. Sieh Emulation (WS15/16) Emulation 10 22

11 Emulation Bus out(uint16_t port, uint8_t val) { if (SERSTART <= port && port < SERSTART + SERSIZE) { ser_out(port - SERSTART, val); else if (DISKSTART <= port && port < DISKSTART + DIS disk_out(port - DISKSTART, val); else... uint8_t in(uint16_t port) { if (SERSTART <= port && port < SERSTART + SERSIZE) { return ser_in(port - SERSTART); else if (DISKSTART <= port && port < DISKSTART + DIS return disk_in(port - DISKSTART); else... V. Sieh Emulation (WS15/16) Emulation 11 22

12 Emulation Bus interrupt() { cpu_interrupt(); V. Sieh Emulation (WS15/16) Emulation 12 22

13 Emulation ROM static const uint8_t rom[romsize] = {... ; uint8_t rom_load(uint32_t addr) { addr %= ROMSIZE; return rom[addr]; V. Sieh Emulation (WS15/16) Emulation 13 22

14 Emulation RAM static uint8_t mem[ramsize]; uint8_t ram_load(uint32_t addr) { addr %= RAMSIZE; return mem[addr]; ram_store(uint32_t addr, uint8_t val) { addr %= RAMSIZE; mem[addr] = val; V. Sieh Emulation (WS15/16) Emulation 14 22

15 Emulation serielle Schnittstelle ser_out(uint16_t port, uint8_t val) { host_print_char(val); V. Sieh Emulation (WS15/16) Emulation 15 22

16 Emulation serielle Schnittstelle static uint8_t key, avail; uint8_t ser_in(uint16_t port) { switch (port) { case 0: avail = 0; return key; case 1: return avail; ser_step() { if (host_key_avail()) { key = host_get_key(); avail = 1; interrupt(); V. Sieh Emulation (WS15/16) Emulation 16 22

17 Emulation Disk static uint8_t disk[size], buf, pos, status; disk_out(uint16_t port, uint8_t val) { switch (port) { case 0: buf = val; break; case 1: pos = val; break; case 2: if (pos < SIZE) { if (val) disk[pos] = buf; else buf = disk[pos]; status = OK; else { status = BAD; break; V. Sieh Emulation (WS15/16) Emulation 17 22

18 Emulation Disk uint8_t disk_in(uint16_t port) { switch (port) { case 0: val = buf; break; case 1: val = pos; break; case 2: val = status; break; return val; V. Sieh Emulation (WS15/16) Emulation 18 22

19 Emulation MMU Emulation der MMU muss sehr effizient sein: jeder Code-Zugriff braucht MMU jeder Daten-Zugriff braucht MMU ca. 20% der Befehle lesen/schreiben Speicher Grafikaufbau i.a. über mov-befehle V. Sieh Emulation (WS15/16) Emulation 19 22

20 Emulation MMU Aufgabe der MMU: Suchen der virtuellen Adresse im Translation-Lookaside-Buffer (TLB) nicht gefunden: Umrechnung der virtuellen Adresse in eine physikalische durch Lookup in Tabellen im Hauptspeicher Eintragen der virtuellen und der dazugehörigen physikalischen Adresse im TLB Weitergabe der zur virtuellen Adresse gehörenden physikalischen Adresse an den Hauptspeicher V. Sieh Emulation (WS15/16) Emulation 20 22

21 Emulation MMU uint8_t virt_load(uint32_t vaddr) { uint32_t paddr; again: found = tlb_lookup(vaddr & ~0xfff, &paddr); if (! found) { tlb_fill(vaddr & ~0xfff); goto again; return phys_load(paddr (vaddr & 0xfff)); tlb_lookup sollte blitzschnell ausführbar sein und nahezu immer TRUE zurückliefern! V. Sieh Emulation (WS15/16) Emulation 21 22

22 Emulation MMU struct { uint32_t vaddr, paddr; tlb[size]; int tlb_lookup(uint32_t vaddr, uint32_t *paddrp) { unsigned int hash = (vaddr >> 12) % SIZE; if (vaddr == tlb[hash].vaddr) { *paddrp = tlb[hash].paddr; return 1; else { return 0; Entspricht einem Direct-Mapped Cache. V. Sieh Emulation (WS15/16) Emulation 22 22

Komponenten/Busse. Dr.-Ing. Volkmar Sieh. Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2009

Komponenten/Busse. Dr.-Ing. Volkmar Sieh. Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2009 Komponenten/Busse Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2009 Komponenten/Busse 1/34 2009-05-05 Übersicht 1 Praxis 2 Motivation

Mehr

Komponenten/Busse. Dr.-Ing. Volkmar Sieh

Komponenten/Busse. Dr.-Ing. Volkmar Sieh Komponenten/Busse Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 V. Sieh Komponenten/Busse (WS14/15)

Mehr

Komponenten/Busse. Dr.-Ing. Volkmar Sieh. Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011

Komponenten/Busse. Dr.-Ing. Volkmar Sieh. Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011 Komponenten/Busse Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011 Komponenten/Busse 1/29 2010-09-28 Komponenten/Busse Praxis

Mehr

Hinweise C-Programmierung

Hinweise C-Programmierung Hinweise C-Programmierung Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2016/2017 V. Sieh Hinweise C-Programmierung

Mehr

Just-In-Time-Compiler (2)

Just-In-Time-Compiler (2) Just-In-Time-Compiler (2) Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Just-In-Time-Compiler

Mehr

Just-In-Time-Compiler (2)

Just-In-Time-Compiler (2) Just-In-Time-Compiler (2) Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2011/2012 Just-In-Time-Compiler (2) 1/13 2011-09-12 Just-In-Time-Compiler

Mehr

Just-In-Time-Compiler (1)

Just-In-Time-Compiler (1) Just-In-Time-Compiler (1) Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2017/2018 V. Sieh Just-In-Time-Compiler

Mehr

Architektur/Chip/Komponente

Architektur/Chip/Komponente Architektur/Chip/Komponente Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 V. Sieh Architektur/Chip/Komponente

Mehr

Assembler Kontrollstrukturen

Assembler Kontrollstrukturen Assembler Kontrollstrukturen Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Kontrollstrukturen 1/21 2008-04-03 Kontrollstrukturen

Mehr

Aufgabe 1 Entwicklung einer Virtuellen Maschine

Aufgabe 1 Entwicklung einer Virtuellen Maschine Aufgabe 1 Entwicklung einer Virtuellen Maschine Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Entwicklung

Mehr

Assembler - Einleitung

Assembler - Einleitung Assembler - Einleitung Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Einleitung 1/19 2008-04-01 Teil 1: Hochsprache

Mehr

Cache II. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Cache II. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache II Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache II 1/14 2012-02-29 Schreibstrategien Es sind verschiedene Fälle

Mehr

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009 Einführung Übungen zur Vorlesung Virtuelle Maschinen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg SoSe 2009 Übungsaufgaben 1 Entwickeln

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab...

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 2 1 1 2 0 2 1 0 Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 1 2 1 1 3 2 2 3 212 Um solche Tabellen leicht implementieren zu können, stellt Java das switch-statement

Mehr

Assembler. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg

Assembler. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg Assembler Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2017/2018 V. Sieh Assembler (WS16/17) 1 15 Einleitung

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Dominik Schoenwetter Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Klasse Label. class Label { Code code; List<Integer> fixuplist; // code positions to patch int adr; // address of label in code

Klasse Label. class Label { Code code; List<Integer> fixuplist; // code positions to patch int adr; // address of label in code Klasse Label class Label { Code code; List fixuplist; // code positions to patch int adr; // address of label in code // inserts offset to label at current void put (); // defines label to be

Mehr

Einführung Sprachfeatures Hinweise, Tipps und Styleguide Informationen. Einführung in C. Patrick Schulz

Einführung Sprachfeatures Hinweise, Tipps und Styleguide Informationen. Einführung in C. Patrick Schulz Patrick Schulz patrick.schulz@paec-media.de 29.04.2013 1 Einführung Einführung 2 3 4 Quellen 1 Einführung Einführung 2 3 4 Quellen Hello World in Java Einführung 1 public class hello_ world 2 { 3 public

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Hinweise Dekodierung

Hinweise Dekodierung Hinweise Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2017/2018 V. Sieh Hinweise (WS16/17) 1 15 Beispiel CPU

Mehr

"Organisation und Technologie von Rechensystemen 4"

Organisation und Technologie von Rechensystemen 4 Klausur OTRS-4, 29.09.2004 Seite 1 (12) INSTITUT FÜR INFORMATIK Lehrstuhl für Rechnerarchitektur (Informatik 3) Universität Erlangen-Nürnberg Martensstr. 3, 91058 Erlangen 29.09.2004 Klausur zu "Organisation

Mehr

Herzlich willkommen!

Herzlich willkommen! Programmiertechnik 1 Herzlich willkommen! Dozent: Dipl.-Ing. Jürgen Wemheuer Teil 6: Zusammenfassung und Beispiele Mail: wemheuer@ewla.de Online: http://cpp.ewla.de/ Zusammenfassung (1) 2 1. Programm in

Mehr

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Cache-Speicher Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Cache-Speicher Warum Cache-Speicher? Cache-Strukturen Aufbau und Organisation von Caches Cache-Architekturen Cache-Strategien

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Übung zu Betriebssysteme

Übung zu Betriebssysteme Übung zu Betriebssysteme Interruptsynchronisation 22. & 24. November 2017 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Homogene Multi-Core-Prozessor-Architekturen

Homogene Multi-Core-Prozessor-Architekturen Homogene Multi-Core-Prozessor-Architekturen Praktikum Parallele Rechnerarchitekturen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009

Mehr

Herbst Theoretische 1998 Uebung 2 Technische Informatik II Seite 1. Aufgaben: Prozesse

Herbst Theoretische 1998 Uebung 2 Technische Informatik II Seite 1. Aufgaben: Prozesse Herbst Theoretische 1998 Uebung 2 Technische Informatik II Seite 1 Aufgaben: Prozesse a) Prozess/Thread Scheduling a.1) Erklären Sie den Unterschied zwischen non-preemptive und preemptive Scheduling. Weshalb

Mehr

Bibliotheks-basierte Virtualisierung

Bibliotheks-basierte Virtualisierung Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Bibliotheks-basierte Virtualisierung (WS15/16)

Mehr

Ein- und Ausgabegeräte

Ein- und Ausgabegeräte Blockorientiert Jeder Block kann unabhängig gelesen und geschrieben werden. Festplatten, CD-ROMs, USB-Sticks, etc. Zeichenorientiert Keine Struktur, nicht adressierbar, Daten werden als Folge von Zeichen

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

C++ Templates - eine kleine Einführung

C++ Templates - eine kleine Einführung C++ Templates - eine kleine Einführung Peter Ulbrich, Martin Hoffmann Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme) www4.informatik.uni-erlangen.de

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Seminar Ausgewählte Komponenten von Betriebssystemen. IDL4 Compiler

Seminar Ausgewählte Komponenten von Betriebssystemen. IDL4 Compiler Seminar Ausgewählte Komponenten von Betriebssystemen IDL4 Compiler IDL4 Compiler Hristo Pentchev Überblick CORBA IDL Allgemein IDL4 Compiler Beispiele CORBA Common Objekt Request Broker Architecture Gemeinsame

Mehr

HelvePic32 Breadboard. Internet Data Logger

HelvePic32 Breadboard. Internet Data Logger 2016/04/03 21:14 1/10 HelvePic32 Breadboard Alle Beispiele, welche beim Helvepic32 angegeben sind, können unverändert natürlich auch beim HelvePic32 Breadboard verwendet werden. Daher nutzen wir die Gelegenheit,

Mehr

Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System

Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System Florian Lukas Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich Alexander Universität Erlangen

Mehr

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13.

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13. DOSEMU Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren Matthias Felix filo@icip.de FAU 13. Juni 2007 Matthias Felix (FAU) DOSEMU 13. Juni 2007 1 / 22 Inhalt 1 Einführung

Mehr

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins 5 Main Memory Hauptspeicher Memories 2 Speichermodule SIMM: single inline memory module 72 Pins DIMM: dual inline memory module 68 Pins 3 Speichermodule 4 Speichermodule 5 Speichermodule 6 2 Hauptspeicher

Mehr

Einschub: HW-Zugriff aus dem Userspace

Einschub: HW-Zugriff aus dem Userspace Einschub: HW-Zugriff aus dem Userspace Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011 Einschub: HW-Zugriff aus dem

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7 Dominik Schoenwetter Erlangen, 16. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache 1/53 2012-02-29 Einleitung Hauptspeicherzugriffe sind langsam die

Mehr

Legen Sie den Ausweis (mit Lichtbild!) griffbereit auf den Platz! Dieses Aufgabenheft umfasst 24 Seiten. Überprüfen Sie die Vollständigkeit!

Legen Sie den Ausweis (mit Lichtbild!) griffbereit auf den Platz! Dieses Aufgabenheft umfasst 24 Seiten. Überprüfen Sie die Vollständigkeit! Department Informatik Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 25.09.2013 Klausur zu Grundlagen der Rechnerarchitektur

Mehr

Übung zu Betriebssystemtechnik

Übung zu Betriebssystemtechnik Übung zu Betriebssystemtechnik Paging in StuBSmI 14. Mai 2018 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte Systeme

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

Übungen zu Grundlagen der systemnahen Programmierung in C (GSPiC) im Sommersemester 2018

Übungen zu Grundlagen der systemnahen Programmierung in C (GSPiC) im Sommersemester 2018 Übungen zu Grundlagen der systemnahen Programmierung in C (GSPiC) im Sommersemester 2018 2018-05-29 Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl

Mehr

Aufgabe 2 - Erweiterung um PIC und Interrupts

Aufgabe 2 - Erweiterung um PIC und Interrupts Aufgabe 2 - Erweiterung um PIC und Interrupts Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Erweiterung

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

Computergrundlagen Geschichte des Computers

Computergrundlagen Geschichte des Computers Computergrundlagen Geschichte des Computers Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2010/11 1641: Rechenmaschine von B. Pascal B. Pascal, 1632-1662 mechanische Rechenmaschine

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

Vorlesung 3: Verschiedenes

Vorlesung 3: Verschiedenes Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 3: Verschiedenes Peter B. Ladkin Vorlesung 3 - Inhalt Busarchitektur Virtuelle Maschine 2 Busarchitektur - das

Mehr

Intelligenter Modemadapter für den PC

Intelligenter Modemadapter für den PC Intelligenter Modemadapter für den PC Jürgen Hasch, DG1SCR, Meisenstr. 23, 73066 Uhingen Motivation Möchte man an einem PC mehrere Modems betreiben, so hat man die Wahl zwischen einer quasi-passiven Lösung

Mehr

Die UART-Schnittstelle

Die UART-Schnittstelle Ein einfaches Terminal Seite 1 von 5 Die UART-Schnittstelle Bei einer seriellen Datenübertragung werden binäre Daten bitweise hintereinander über eine Leitung übertragen. Die serielle Schnittstelle eines

Mehr

Hardware und Gerätetreiber

Hardware und Gerätetreiber Hardware und Gerätetreiber Betriebssysteme Hermann Härtig TU Dresden Übersicht Übersicht Kommunikation zwischen Hardware und CPU Interrupts I/O-Ports I/O-Speicher Busse Verwaltung von Geräten Dynamisches

Mehr

Übung zu Betriebssysteme

Übung zu Betriebssysteme Übung zu Betriebssysteme Threadumschaltung 6. & 8. Dezember 2017 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte Systeme

Mehr

Klausur Betriebssysteme I

Klausur Betriebssysteme I Prof. Dr. Michael Jäger FB MNI Klausur Betriebssysteme I 14.3.2008 Bitte bearbeiten Sie die Aufgaben auf den Aufgabenblättern. Die Benutzung von Unterlagen oder Hilfsmitteln ist nicht erlaubt. Die Bearbeitungszeit

Mehr

Computergrundlagen Geschichte des Computers

Computergrundlagen Geschichte des Computers Computergrundlagen Geschichte des Computers Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2011/12 1641: Rechenmaschine von B. Pascal B. Pascal, 1623-1662 mechanische Rechenmaschine

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren 1/29 2011-06-16 Multiprozessoren Leistungsfähigkeit

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Konzepte von Betriebssystemkomponenten. Gerätetreiber. Mario Körner

Konzepte von Betriebssystemkomponenten. Gerätetreiber. Mario Körner Konzepte von Betriebssystemkomponenten Gerätetreiber Mario Körner 26.01.2004 Übersicht Einordnung in die Betriebssystemarchitektur Schnittstelle zur Hardware Schnittstelle zum Betriebssystem am Beispiel

Mehr

Einführung in C. Alexander Batoulis. 5. Mai Fakutltät IV Technische Universität Berlin

Einführung in C. Alexander Batoulis. 5. Mai Fakutltät IV Technische Universität Berlin Fakutltät IV Technische Universität Berlin 5. Mai 2014 Inhaltsverzeichnis 1 2 3 4 5 6 7 Überblick Beispielprogramm in Java Beispielprogramm in C 1 2 3 4 5 6 7 Beispielprogramm in Java Beispielprogramm

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Rechnersysteme Studiengang: Bachelor (PF CSE / IF; WPF CV / WIF) am: 30. Juli 2008 Bearbeitungszeit: 120 Minuten

Mehr

x86 Open Source Virtualisierungstechniken Thomas Glanzmann <thomas@glanzmann.de>

x86 Open Source Virtualisierungstechniken Thomas Glanzmann <thomas@glanzmann.de> x86 Open Source Virtualisierungstechniken März 2006 Zu meiner Person Informatik Student an der Universität Erlangen im 9. Semester 4 jährige Mitarbeit an dem Projekt FAUmachine der

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Hardware PCI-Bus. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg

Hardware PCI-Bus. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Hardware PCI-Bus Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Hardware PCI-Bus 1/23 2008-08-06 Übersicht Inhalt:

Mehr

Hardware PCI-Bus. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg

Hardware PCI-Bus. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Hardware PCI-Bus Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2007/2008 Hardware PCI-Bus 1/23 2007-10-26 Übersicht Inhalt:

Mehr

Assembler - Variablen

Assembler - Variablen Assembler - Variablen Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Variablen 1/30 2008-04-21 Variablen Variablen

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14 BS-S Betriebssysteme SS 2015 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz S: Speicherverwaltung v1.0, 2015/04/14 Betriebssysteme, SS 2015 Hans-Georg Eßer Folie S-1 Übersicht: BS Praxis und BS

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 11 am 06.07.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem. Klaus Kusche Dezember 2015

Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem. Klaus Kusche Dezember 2015 Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem Klaus Kusche Dezember 2015 Inhalt Ziele & Voraussetzungen Grundidee & Beispiele von Caches Bedeutung effizienter

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Einführung in die Programmierung Wintersemester 2008/09

Einführung in die Programmierung Wintersemester 2008/09 Einführung in die Programmierung Wintersemester 28/9 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund : Darstellung von Information Inhalt Einfache Datentypen

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Übung Simon Wacker Karlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundbegriffe der Informatik Karlsruher Institut für Technologie 1 / 13 Programmiersprachen

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur 0. Assembler-Programmierung Datenstrukturen des ATMega32 Literatur mikrocontroller.net avr-asm-tutorial.net asm Alles über AVR AVR-Assembler-Einführung Assembler AVR-Aufbau, Register, Befehle 2008: ouravr.com/attachment/microschematic/index.swf

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Busse. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Busse. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Busse Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Busse 1/40 2008-10-13 Übersicht 1 Einleitung 2 Bus-Konfiguration

Mehr

Interruptverarbeitung

Interruptverarbeitung Interruptverarbeitung Ein Interruptaufruf unterbricht die gerade ablaufende Befehlsfolge in der Weise, daß nach Beendigung des laufenden Befehls nicht der nächste Befehl des Hauptprogramms ausgeführt,

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer Aufgabe 10.1 Gegeben sei folgendes Code-Fragment, das zwei geschachtelte Schleifen implementiert: addi $t0, $a0, 100 outer: addi $t1, $a1, 200 inner: lw $t4, 0($t0) lw $t5, 0($t1) add $t2, $t0, $t1 add

Mehr