Analyse und Auswertung großer heterogener Datenmengen

Größe: px
Ab Seite anzeigen:

Download "Analyse und Auswertung großer heterogener Datenmengen"

Transkript

1 Analyse und Auswertung großer heterogener Datenmengen Herausforderungen für die IT-Infrastruktur Richard Göbel

2 Inhalt Big Data Was ist das eigentlich? Was nützt mir das? Wie lassen sich solche großen Datenmengen effizient analysieren und auswerten? Ideen Konzepte Welche Produkte gibt es?

3 Big Data In einigen Bereichen "explodieren" die Datenmengen Herausforderungen für die Verwaltung Auswertung Nutzung 4V-Definition von Big Data Volume sehr große Datenmenge Variety verschiedene Typen von Daten Velocity enge zeitliche Rahmenbedingungen Veracity ungenaue Daten

4 Vergangenheit Manuelle Dateneingabe Manuelle Verarbeitung Datennutzung

5 Gegenwart Manuelle Dateneingabe Automatische Verarbeitung Datennutzung

6 Zukunft Automatisierte Dateneingabe Automatische Verarbeitung Datennutzung Sensoren (Text-) Scanner Mikrofone Kameras Manuelle Eingabe

7 Automatisierte Eingaben: Big Data Automatisierte Eingaben ermöglichen die Akquisition und Auswertung von Daten in Echtzeit die Erfassung von mehr Details eine deutliche höhere zeitliche Auflösung Neben strukturierten Daten werden auch unstrukturierte Daten erfasst Texte Bilder Audio- und Videodaten Konventionelle IT-Strukturen sind nicht ausreichend für die Verwaltung großer heterogener Datenmengen!

8 Konkrete Anwendungsbeispiele Verbesserte Absatzprognosen der Otto Gruppe aus Daten zu Bewerbungsgrad der Artikel, Artikeleigenschaften sowie Informationen aus dem Umfeld Verkehrsmanagement in Stockholm zur Verkehrsleitung auf der Basis von Verkehrs- und Wetterdaten (GPS, Sensoren, Unfall- und Staumeldungen, Videos ) Nebenwirkungen von Medikamenten sowie Patientenzufriedenheit mit Behandlungsmethoden durch Analyse von Internet Foren und Blogs durch die Treato / First Life Ltd Erkennen von Betrugsversuchen bei der Paymint AG bei Kreditkartentransaktionen

9 Weitere Beispiele für Anwendungen Ausfallwahrscheinlichkeiten von Anlagen Betriebsdaten, Protokolle, s, Kundenmeinungen über eigene und Konkurrenzprodukte Kunden s, Blogs, soziale Netzwerke, Markforschung: Was wollen Kunden? CRM, Kunden s, Vertriebsberichte, Erkennen von Unregelmäßigkeiten in Finanztransaktionen Daten Rechnungswesens, Kommunikation, Korrespondenz, Effizienz von Geschäftsprozessen Protokolle, Verbesserungsvorschläge, interne s,

10 Beispielszenario Aufzeichnung von Telefongesprächen im Vertrieb/Support Stimmanalyse Umwandlung der Gespräche in Texte Text Mining Warum ruft der Kunde an? Topic Detection Welches Produkt? Named Entity Recognition Welches Problem hat der Kunde? Ontology Bewertung des Produkts Opinion Mining Auswertung der Telefongespräche in Echtzeit Anzahl Probleme pro Produkt Veränderung der Kundenmeinung

11 Eine Beispielanwendung Überwachung einer Vielzahl von Anlagen in einer Produktionsumgebung Erfassung von Daten im Millisekundentakt Stromverbrauch Betriebstemperatur Betriebsmodus Beispielanwendungen Ausfallwahrscheinlichkeiten von Anlagen Qualitätskontrolle

12 Relationale Datenbank Nummer Anlage Zeit Strom Temperatur Modus ,43 33,4 XC ,89 31,7 K ,50 25,4 B ,33 45, ,01 50,7 K/ ,99 42,0 K/6

13 Herausforderungen Anzahl neuer Werte pro Sekunde 1000 Messwerte / Sekunde 100 Anlagen 10 Parameter / Anlage Werte pro Sekunde Anzahl Werte pro Jahr: Schnelles Gruppieren und Auswerten von Daten Maximaler Stromverbrauch einer Anlage in einem Jahr Energieverbrauch jeder Anlage über die letzten 100 Tage Verschleiß als Funktion von Stromverbrauch, Temperatur und Betriebsmodus

14 Relationale Datenbanken - Probleme Einfügen von Daten Speicherung der Daten direkt auf der Festplatte Transaktionskonzept mit write-ahead logging Auswertung der Daten Laden der Daten von der Festplatte (Fast) alle Daten müssen für eine Auswertung angefasst werden

15 Idee - Vorausberechnung Anlagen Zeit 7,2 12 1, ,3 7, ,1 29,4 7,4 12 0,9 6 4,2 30,5 7,5 11 0,8 6 4,3 29,6 7,6 11 0,7 6 4,4 29, , ,5 Anordnung der Werte in einer Tabelle Vorausberechnen der Summen für alle Spalten und Zeilen Allgemein: OLAP-Hypercube Problem: nicht alle relevanten Funktionen sind vorher bekannt

16 Idee - Spaltendatenbank I Zeilendatenbank A B C D Spaltendatenbank A B C D

17 Idee - Spaltendatenbank II Hauptspeicher Cache CPU

18 Idee - Datenkompression Wenige unterschiedliche Werte Speicherung kurzer Codes anstatt der langen Werte Wiederholung von Werten Speicherung von Werten mit Wiederholungsfaktor Geringe Differenzen zwischen Werten Start mit einem Basiswert Speicherung von Differenzen Einige Kompressionsverfahren beschleunigen die Auswertung der Daten!

19 Idee - Clustercomputer Verteilung der Daten auf unterschiedliche Server Parallele Verarbeitung und Analyse der Daten möglich Aggregation eines Gesamtergebnis aus den Teilergebnissen Verwaltung der Daten im Hauptspeicher Speicherung der Daten auf Festplatten nur für die Persistenz Redundante Speicherung von Daten Transparenter Zugriff für Anwender auch über Schnittstellen wie SQL

20 Konzept - Map Zuordnung Schlüssel (Key) als beliebiger Datentyp Wert (Value) als beliebiger Datentyp Operationen Put: ordne einem Schlüssel einen Wert zu Get: den Wert eines Schlüssels abfragen

21 Konzept - Sorted String Table Datei mit Schlüssel-Wertepaaren sortiert nach dem Schlüssel Key Value Key Value Index Key Key Offset Offset

22 Konzept - Hauptspeicher Lesen Schreiben Löschen Ändern MEMTABLE SSTABLE

23 Konzept Tabellenstruktur I Aufbau Zeilen (Row) Spalten (Column) Zeilenschlüssel () Spaltengruppen Gruppe von Spalten mit identischen Inhaltstyp Jede Zeile kann unterschiedliche Spalten haben Es können unterschiedliche Versionen von Spaltenwerten existieren

24 Konzept - Tabellenstruktur Column Group Column Column Column Column Group Column Column Group Column Column Value Value Value Value Value Value Value Value Value Value Value Value

25 Konzept - Tablets Sortierung Tablet Server Row Data Row Data Row Data Row Data Row Data Tablet Server Row Data Row Data Row Data Row Data Row Data Row Data Row Data Tablet Server Row Data Row Data

26 Konzept - Locality Group Locality Group Column Group Locality Group Column Group Column Group Column Column Column Column Column Column Value Value Value Value Value Value Value Value Value Value Value Value

27 Aufgaben des Datenbankentwicklers Datenmodell entwerfen Tabellen Spalten/Spaltengruppen (erweiterbar) Versionsverwaltung für Werte Abbildung des Datenmodells definieren Verteilung der Daten auf verschiedene Rechner Redundante Datenhaltung Gruppieren von Spaltengruppen Datenkompression Zugriff und Auswertung Klassisch deklarativ (z.b. mit SQL) Zusätzlich prozedurale Programme zur optimalen Nutzung der Abbildung des Datenmodell

28 Konzept - Datenkompression Identische Werte für konsekutive Schlüssel werden nicht redundant gespeichert Standardkompression zum Beispiel mit dem ZIP-Verfahren Anwendung kann zusätzlich eigene Verfahren definieren

29 Beispiel Spaltendatenbanken Kommmerziell Oracle 12c IBM DB2 with BLU Acceleration Microsoft SQL Server 2014 SAP Hana Sybase IQ Open Source Apache Accumulo Apache Cassandra MonetDB

30 Zusammenfassung Schnelle Erfassung und Auswertung sehr großer Datenmengen mit neuen Technologien möglich Größere Freiheiten und höherer Aufwand zur Anpassung der Datenbanken an Anwendungen Aktuell noch sehr unterschiedliche Konzepte und Produkte (kein Standard in Sicht!) Kontakt

31 Vielen Dank für ihre Aufmerksamkeit!

Industrie 4.0 und Smart Data

Industrie 4.0 und Smart Data Industrie 4.0 und Smart Data Herausforderungen für die IT-Infrastruktur bei der Auswertung großer heterogener Datenmengen Richard Göbel Inhalt Industrie 4.0 - Was ist das? Was ist neu? Herausforderungen

Mehr

Industrie 4.0 und Smart Data

Industrie 4.0 und Smart Data Industrie 4.0 und Smart Data Herausforderungen für die IT-Infrastruktur bei der Auswertung großer heterogener Datenmengen Richard Göbel Inhalt Industrie 4.0 - Was ist das? Was ist neu? Herausforderungen

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Allgemeines zu Datenbanken

Allgemeines zu Datenbanken Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Softwaretool Data Delivery Designer

Softwaretool Data Delivery Designer Softwaretool Data Delivery Designer 1. Einführung 1.1 Ausgangslage In Unternehmen existieren verschiedene und häufig sehr heterogene Informationssysteme die durch unterschiedliche Softwarelösungen verwaltet

Mehr

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Dateiname: ecdl5_01_00_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 5 Datenbank - Grundlagen

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Definition Informationssystem

Definition Informationssystem Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation

Mehr

Rekonstruktion von Verkehrsunfällen aus Messungen mit Fahrzeug Sensoren. Genauigkeit und Fehler

Rekonstruktion von Verkehrsunfällen aus Messungen mit Fahrzeug Sensoren. Genauigkeit und Fehler Rekonstruktion von Verkehrsunfällen aus Messungen mit Fahrzeug Sensoren Genauigkeit und Fehler H. Steffan 1 2 Mögliche Daten im Fahrzeug PKW Geschwindigkeit Beschleunigung Giergeschwindigkeiten Positionen

Mehr

Industrie 4.0 und Smart Data

Industrie 4.0 und Smart Data LEITFADEN Industrie 4.0 und Smart Data Die Welt der großen Datenmengen in Unternehmen Neue Möglichkeiten zur Erfassung und Auswertung großer Datenmengen am Beispiel der Qualitätssicherung von Konsumgütern

Mehr

Kommunikation und Datenhaltung

Kommunikation und Datenhaltung Kommunikation und Datenhaltung Datenhaltungsteil Frank Eichinger, Mirco Stern Charakteristika von Datenbanken Eine Bank: Langfristige Aufbewahrung von Werten (hier: Daten) Werte werden zur Sicherheit vor

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Data Mining mit Microsoft SQL Server

Data Mining mit Microsoft SQL Server Data Mining mit Microsoft SQL Server Analyse und Mustererkennung in Daten mit Excel 2007 und SQL Server 2005/2008 von Jan Tittel, Manfred Steyer 1. Auflage Data Mining mit Microsoft SQL Server Tittel /

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering Datenbanken Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea Institut für Informatik Software & Systems Engineering Agenda 1. Datenbanken 2. SQL 3. ADO.NET DataProvider (providerabhängig)

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Inhalt. TEIL I Grundlagen. 1 SAP HANA im Überblick... 31. 2 Einführung in die Entwicklungsumgebung... 75

Inhalt. TEIL I Grundlagen. 1 SAP HANA im Überblick... 31. 2 Einführung in die Entwicklungsumgebung... 75 Geleitwort... 15 Vorwort... 17 Einleitung... 19 TEIL I Grundlagen 1 SAP HANA im Überblick... 31 1.1 Softwarekomponenten von SAP HANA... 32 1.1.1 SAP HANA Database... 32 1.1.2 SAP HANA Studio... 34 1.1.3

Mehr

Self Service BI mit Office 2013 Raúl B. Heiduk

Self Service BI mit Office 2013 Raúl B. Heiduk 1 Self Service BI mit Office 2013 Raúl B. Heiduk Partner: 2 Agenda Begrüssung Vorstellung Referent Inhalt F&A Weiterführende Kurse 3 Vorstellung Referent Name: Raúl B. Heiduk Ausbildung: Dipl. Ing. (FH),

Mehr

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 CARL HANSER VERLAG Christopher Allen Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 www.hanser.de Inhaltsverzeichnis Danksagung...XI Einleitung...XIII

Mehr

ISTEC.MIP Messdaten-Integrations-Plattform

ISTEC.MIP Messdaten-Integrations-Plattform ISTEC.MIP Messdaten-Integrations-Plattform Dr.-Ing. Carsten Folie 1 ISTEC Firmenprofil unabhängiges Software- und Systemhaus seit 1982 erfolgreich am Markt ca. 60 festangestellte Mitarbeiter (Informatiker,

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008 MS SQL Server: Index Management Stephan Arenswald 10. Juli 2008 Agenda 1. Einführung 2. Grundlagen Tabellen 3. Grundlagen Indexe 4. Indextypen 5. Index-Erstellung 6. Indexe und Constraints 7. Und Weiter...?

Mehr

Vorlesung 30.03.2009 1) Einführung

Vorlesung 30.03.2009 1) Einführung Vorlesung 30.03.2009 1) Einführung Was versteht man unter dem Begriff Datenbank? - Eine Datenbank ist eine Struktur zur Speicherung von Daten mit lesendem und schreibendem Zugriff - Allgemein meint man

Mehr

Kopplung von Datenbanken

Kopplung von Datenbanken Kopplung von Datenbanken Die Kopplung von ACCESS-Datenbanken (ZEUHA, ZEUSEM) an andere Datenbanksysteme (MS-SQL, ORACLE) September 2000 19/04/2005 Bert Schöneich Zeuthen 1 ACCESS (ZEUHA MS-SQL SMS) 19/04/2005

Mehr

Dieses System kann wachsen und sich anpassen, wenn die Anwender entsprechende Anforderungen definieren.

Dieses System kann wachsen und sich anpassen, wenn die Anwender entsprechende Anforderungen definieren. cadsfm Raumbuch Übersicht CADSFM bedeutet Facility Management der Firma CADS Support GmbH und ist eine Applikation zur Pflege und Verwaltung von Metadaten für AutoCAD-Gebäude- und Flächenpläne. Die bietet

Mehr

Gliederung und Einordnung

Gliederung und Einordnung Gliederung und Einordnung 1. Objektorientierte Programmierung mit Object Pascal (5. Studienbrief, Kapitel 5) 9.4. + 16.4. 2. Software-Bausteine am Beispiel der Delphi-Komponenten (5. Studienbrief, Kapitel

Mehr

Whitepaper. Produkt: combit Relationship Manager / address manager. FILESTREAM für Microsoft SQL Server aktivieren

Whitepaper. Produkt: combit Relationship Manager / address manager. FILESTREAM für Microsoft SQL Server aktivieren combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager / address manager FILESTREAM für Microsoft SQL Server aktivieren FILESTREAM für Microsoft SQL Server aktivieren

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

HANA. TOBA-Team Dresden 19.05.2012

HANA. TOBA-Team Dresden 19.05.2012 HANA TOBA-Team Dresden 19.05.2012 Kunde droht mit Auftrag! Ein großer Discounter schickt Anfrage: Bis wann und zu welchem Preis können Sie 30.000 Stück liefern? Die Hektik beginnt! Bis wann Welche und

Mehr

Eclipse und EclipseLink

Eclipse und EclipseLink Eclipse und EclipseLink Johannes Michler Johannes.Michler@promatis.de PROMATIS, Ettlingen Zugriff auf Oracle Datenbanken aus Eclipse RCP Anwendungen via EclipseLink 18.09.2009 1 Gliederung Eclipse als

Mehr

www.informatik-aktuell.de

www.informatik-aktuell.de www.informatik-aktuell.de Flashback Reise in die Vergangenheit einfach. gut. beraten. Warum Oracle Zeitreisen anbieten kann, der Microsoft SQL Server aber leider nicht. IT-Tage Datenbanken 18.12.2015,

Mehr

OP-LOG www.op-log.de

OP-LOG www.op-log.de Verwendung von Microsoft SQL Server, Seite 1/18 OP-LOG www.op-log.de Anleitung: Verwendung von Microsoft SQL Server 2005 Stand Mai 2010 1 Ich-lese-keine-Anleitungen 'Verwendung von Microsoft SQL Server

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Datenbanken. Ein DBS besteht aus zwei Teilen:

Datenbanken. Ein DBS besteht aus zwei Teilen: Datenbanken Wikipedia gibt unter http://de.wikipedia.org/wiki/datenbank einen kompakten Einblick in die Welt der Datenbanken, Datenbanksysteme, Datenbankmanagementsysteme & Co: Ein Datenbanksystem (DBS)

Mehr

Technische Beschreibung: EPOD Server

Technische Beschreibung: EPOD Server EPOD Encrypted Private Online Disc Technische Beschreibung: EPOD Server Fördergeber Förderprogramm Fördernehmer Projektleitung Projekt Metadaten Internet Foundation Austria netidee JKU Linz Institut für

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Datenbankstammtisch. Replikation in heterogenen Datenbankumgebungen am Beispiel des Sybase Replication Servers. 1. Februar 2006

Datenbankstammtisch. Replikation in heterogenen Datenbankumgebungen am Beispiel des Sybase Replication Servers. 1. Februar 2006 Datenbankstammtisch Replikation in heterogenen Datenbankumgebungen am Beispiel des Sybase Replication Servers 1. Februar 2006 Autoren: Andreas Reis, Sebastian Mehl Dipl.-Phys. Thomas Richter Gliederung

Mehr

Arbeiten mit einem lokalen PostgreSQL-Server

Arbeiten mit einem lokalen PostgreSQL-Server Arbeiten mit einem lokalen PostgreSQL-Server Download für das Betriebssystem Windows PostgreSQL-Server und pgadmin: http://www.enterprisedb.com/products-servicestraining/pgdownload#windows pgadmin: http://www.pgadmin.org/download/windows.php

Mehr

Architektur und Implementierung von Apache Derby

Architektur und Implementierung von Apache Derby Architektur und Implementierung von Apache Derby Das Zugriffssystem Carsten Kleinmann, Michael Schmidt TH Mittelhessen, MNI, Informatik 16. Januar 2012 Carsten Kleinmann, Michael Schmidt Architektur und

Mehr

Data Flow One Engine V 3.1

Data Flow One Engine V 3.1 Data Flow One Engine V 3.1 Data Flow One Engine V3.1 Für eine gute Performance Data Flow One ist eine Standardsoftware im EAI-Bereich, welche es dem Benutzer ermöglicht, auf einfache, graphisch unterstützte

Mehr

O/R Mapper. O/R Mapper anhand von NHibernate & Entity Framework Thomas Mentzel März 2010

O/R Mapper. O/R Mapper anhand von NHibernate & Entity Framework Thomas Mentzel März 2010 O/R Mapper O/R Mapper anhand von NHibernate & Entity Framework Thomas Mentzel März 2010 Agenda Object-relational impedance mismatch Mapping Session Abfragen No. 2 Object-relational impedance mismatch Object-relational

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Whitepaper Externe Speicherung von Binary Large Objects (BLOBs) mit SharePoint 2007 sowie SQL Server 2005 / 2008

Whitepaper Externe Speicherung von Binary Large Objects (BLOBs) mit SharePoint 2007 sowie SQL Server 2005 / 2008 Externe Speicherung von Binary Large Objects (BLOBs) mit SharePoint 2007 sowie SQL Andreas Glaser, 23. September 2008 Teufenerstrasse 19 CH 9001 St.Gallen t [+41] 71 228 67 77 f [+41] 71 228 67 88 info@namics.com

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

Grundlagen relationaler Datenbanken... 2. Access 2010 - Grundlagenseminar... 3. Access 2010 - Aufbauseminar... 4. Von Excel 2010 zu Access 2010...

Grundlagen relationaler Datenbanken... 2. Access 2010 - Grundlagenseminar... 3. Access 2010 - Aufbauseminar... 4. Von Excel 2010 zu Access 2010... Inhalt Grundlagen relationaler Datenbanken... 2 Access 2010 - Grundlagenseminar... 3 Access 2010 - Aufbauseminar... 4 Von Excel 2010 zu Access 2010... 5 Access 2010 - Programmierung Teil 1... 6 Access

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

é.visor Energiemonitoring, Energiemanagement und Effizienzbewertung in einer Software Klimaschutz und Energiemanagement mit System

é.visor Energiemonitoring, Energiemanagement und Effizienzbewertung in einer Software Klimaschutz und Energiemanagement mit System é.visor Energiemonitoring, Energiemanagement und Effizienzbewertung in einer Software é.visor - Energiemonitoring und Energiemanagement in einer Software é.visor ist eine integrierte Softwarelösung zum

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

Java Persistence API 2.x. crud + relationships + jp-ql

Java Persistence API 2.x. crud + relationships + jp-ql Java Persistence API 2.x crud + relationships + jp-ql Grundprinzip 10.02.10 2 Problematik Man muss bei der Persistierung immer das Klassenmodell und dessen Umsetzung im Datenmodell (in der DB) berücksichtigen.

Mehr

Mobile Anwendungen im SAP-Umfeld

Mobile Anwendungen im SAP-Umfeld Erstes Symposium für neue IT in Leipzig 27. September 2013 Michael Rentzsch Informatik DV GmbH michael.rentzsch@informatik-dv.com +49.341.462586920 IT-Trend: Mobile Mobile might be one of the most interesting

Mehr

Analyse und praktischer Vergleich von neuen Access- Layer-Technologien in modernen Webanwendungen unter Java. Oliver Kalz

Analyse und praktischer Vergleich von neuen Access- Layer-Technologien in modernen Webanwendungen unter Java. Oliver Kalz Analyse und praktischer Vergleich von neuen Access- Layer-Technologien in modernen Webanwendungen unter Java Oliver Kalz Agenda Grundlagen Objektpersistenz Objektrelationales Mapping Performance Fazit

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich Agenda Einführung Key differentiators von ODI12c Effizienz Flexibilität Wartbarkeit & Beweglichkeit Schlussfolgerungen

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

Hardware- und Software-Anforderungen IBeeS.ERP

Hardware- und Software-Anforderungen IBeeS.ERP Hardware- und Software-Anforderungen IBeeS.ERP IBeeS GmbH Stand 08.2015 www.ibees.de Seite 1 von 8 Inhalt 1 Hardware-Anforderungen für eine IBeeS.ERP - Applikation... 3 1.1 Server... 3 1.1.1 Allgemeines

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Whitepaper. Produkt: combit Relationship Manager / address manager. Integration der Ansicht "Adressen" in eigene Solution

Whitepaper. Produkt: combit Relationship Manager / address manager. Integration der Ansicht Adressen in eigene Solution combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager / address manager Integration der Ansicht "Adressen" in eigene Solution Integration der Ansicht "Adressen" in

Mehr

datenfabrik.email Validieren von Email-Adressen 1 www.datenfabrik.com

datenfabrik.email Validieren von Email-Adressen 1 www.datenfabrik.com datenfabrik.email Validieren von Email-Adressen Erstellen eines neuen SSIS Projektes. Wählen Sie das Template Integration Services Project aus.. Geben Sie einen Namen für das Projekt an und wählen Sie

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Integration Services - Dienstarchitektur

Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Dieser Artikel solle dabei unterstützen, Integration Services in Microsoft SQL Server be sser zu verstehen und damit die

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

Oracle Database Firewall

Oracle Database Firewall Oracle Database Firewall Suvad Sahovic Senior Systemberater suvad.sahovic@oracle.com Agenda Oracle Database Firewall im Überblick Oracle Database Firewall im Einsatz Verfügbarkeit

Mehr

TELEMETRIE EINER ANWENDUNG

TELEMETRIE EINER ANWENDUNG TELEMETRIE EINER ANWENDUNG VISUAL STUDIO APPLICATION INSIGHTS BORIS WEHRLE TELEMETRIE 2 TELEMETRIE WELCHE ZIELE WERDEN VERFOLGT? Erkennen von Zusammenhängen Vorausschauendes Erkennen von Problemen um rechtzeitig

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen C3: Structured Query Language Lernziele: Nach der Bearbeitung dieser Lektion haben Sie folgende Kenntnisse erworben: Sie können elementaren

Mehr

Notes2DB. Machen Sie Ihre Notes-Datenbanken relational! Vortragender: Mag. Ing. Johannes Fiala, Fiala Web Development GmbH

Notes2DB. Machen Sie Ihre Notes-Datenbanken relational! Vortragender: Mag. Ing. Johannes Fiala, Fiala Web Development GmbH Notes2DB Machen Sie Ihre Notes-Datenbanken relational! Vortragender: Mag. Ing. Johannes Fiala, Fiala Web Development GmbH Domino 6 ist da aber wohin geht Domino 7? Wird in Domino 7 das NSF-Format auf IBM

Mehr

Anwendungbeispiel Entity Data Connector

Anwendungbeispiel Entity Data Connector Realisierung eines Artikel-Portals bei einem großen deutschen Hersteller von TK Produkten Mit dem Innovabee EDC für SharePoint wurde bei einem großen deutschen Hersteller von TK Produkten ein Artikel-Portal

Mehr

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN Isabella Eckel, BMW Group Dr. Christian Winkler, mgm technology partners GmbH EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN WISSENSEXTRAKTION AUS FAHRZEUG-SENSORDATEN

Mehr

1 Lieferantenbewertung

1 Lieferantenbewertung 1 Lieferantenbewertung Mit Hilfe der Lieferantenbewertung können alle aktiven Lieferanten nach ISO Kriterien bewertet werden. Die zur Bewertung hinterlegten Faktoren können individuell vorgegeben werden.

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Datenbanken. Produkte Dienstleistungen Referenzen

Datenbanken. Produkte Dienstleistungen Referenzen Datenbanken Produkte Dienstleistungen Referenzen Produkte: MS SQL Server MS SQL Server 2005 Datenbankmodul Berichtssysteme mit Reporting Services Data Warehousing/Data Mining mit Analysis Services Schnittstellen

Mehr

Verschiedene Arten des Datenbankeinsatzes

Verschiedene Arten des Datenbankeinsatzes 1 Beispiele kommerzieller DBMS: Kapitelinhalt Was charakterisiert und unterscheidet verschiedene Einsatzbereiche für. Welche prinzipiell unterschiedlichen Anforderungen ergeben sich für das DBMS bei Ein-

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Information-Design-Tool

Information-Design-Tool Zusatzkapitel Information-Design-Tool zum Buch»HR-Reporting mit SAP «von Richard Haßmann, Anja Marxsen, Sven-Olaf Möller, Victor Gabriel Saiz Castillo Galileo Press, Bonn 2013 ISBN 978-3-8362-1986-0 Bonn

Mehr