SS15 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen

Größe: px
Ab Seite anzeigen:

Download "SS15 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen"

Transkript

1 SS15 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen Martin Dietzfelbinger Juni 2015 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8

2 Ziele (des zweiten Teils) Kenntnis grundlegender Entwurfsmuster: Algorithmen-Paradigmen Kenntnis grundlegender, klassischer Algorithmen (und Datenstrukturen) Verständnis für die Bedeutung der Effizienz bei Algorithmen (Mathematisches) Nachdenken über Algorithmen: Korrektheitsanalyse: Wird das gestellte Problem gelöst? Laufzeitanalyse: Wie lange dauert es? Beherrschen von grundlegenden Techniken für diese beiden Aktivitäten. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 1

3 Themen: 8. Divide-and-Conquer Multiplikation ganzer Zahlen: Algorithmus von Karatsuba Matrixmultiplikation: Algorithmus von Strassen Mergesort, exakte Analyse Rekurrenz(un)gleichungen, insbesondere: Master-Theorem Schneller randomisierter Selection-Algorithmus: Quickselect Selection in Zeit O(n) Algorithmus von BFPRT (Blum, Floyd, Pratt, Rivest, Tarjan) Schnelle Fourier-Transformation FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 2

4 9. Durchsuchen und Strukturanalyse von Graphen Breitensuche Erweiterte Tiefensuche (Kantenklassifikation) Kreisfreiheitstest, Finden von Kreisen Topologische Sortierung Starke Zusammenhangskomponenten Tiefensuche in ungerichteten Graphen mit Kreisfreiheitstest FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 3

5 10. Greedy-Strategie allgemein Teilbares Rucksackproblem Schedulingprobleme Kürzeste Wege 1: Algorithmus von Dijkstra Adressierbare Priority-Queues mittels binärer Heaps Huffman-Kodierung Set Cover FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 4

6 11. Minimale Spannbäume: Greedy-Strategien, Hilfsstrukturen Union-Find-Datenstruktur MST: Schnitteigenschaft MST: Algorithmus von Kruskal MST: Algorithmus von Prim Minimale Schnitte FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 5

7 12. Dynamische Programmierung Editierdistanz Matrix-Ketten-Multiplikation Ganzzahliges Rucksackproblem Kürzeste Wege 2: Algorithmus von Floyd-Warshall, Transitive Hülle Kürzeste Wege 3: Algorithmus von Bellman-Ford FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 6

8 Kapitel 8 Divide-and-Conquer (D-a-C) Ein Algorithmenparadigma. Divide-and-Conquer divide et impera teile und herrsche Schema eines D-a-C-Algorithmus A für ein Problem P: Gegeben: Instanz/Input/Eingabe x der Größe x = n. ( Trivialitätstest ) Falls n = x n 0 : löse P auf x direkt. Sonst: ( Teile ) Gewinne aus x Teilinstanzen y 1,..., y a. Rufe A rekursiv für y 1,..., y a auf, mit Lösungen r 1,..., r a. ( Kombiniere ) Gewinne aus x, y 1,..., y a, r 1,..., r a eine Lösung r des Problems P für Instanz x. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 7

9 Standardbeispiele für D-a-C-Algorithmen: Mergesort, Quicksort, Binäre Suche FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 8

10 8.1 Multiplikation ganzer Zahlen Zahlen in Binärdarstellung. (Methoden funktionieren im Prinzip für jede beliebige Basis.) Bekannt: d c e s f Volladdierer (5 zweistellige Bitoperationen) liefert zu 3 Bits d, e, f die zwei Bits (c, s) = fulladd(d, e, f) mit c = (d e) (e f) (f d) (Übertragsbit, Carrybit) und s = d e f (Summenbit). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 9

11 Bekannt: Serielle Binäraddition. Input: Binärzahlen/-strings a n 1... a 0 und b n 1... b 0 c 0 0; // Carry, Übertrag for i from 0 to n 1 do (c i+1, s i ) fulladd(a i, b i, c i ); s n c n ; Ergebnis: s n... s 0. Kosten: Nicht mehr als 5n = O(n) Bitoperationen. Bekannt: Negative Zahlen, Subtraktion. Ganze Zahlen werden als Paar (Vorzeichen, Betrag) dargestellt, z. B. 10, 1001, , Additionen und Subtraktionen solcher Zahlen sind mittels Zweierkomplementdarstellung auf die Addition zurückführbar. Kosten: nicht mehr als 10n Bitoperationen. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 10

12 Multiplikation zweier natürlicher Zahlen Schulmethode Faktoren: Produkt: Multiplikation = Addition von n Binärzahlen. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 11

13 Allgemein: Input: Binärzahlen x = a n 1... a 0 und y = b n 1... b 0 Bilde n Binärzahlen d (0),..., d (n 1) : d (i) = (a n 1 b i )... (a 0 b i ) }{{} i Nullen und addiere alle diese. n 1 Additionen von Zahlen mit nicht mehr als 2n Bits: O(n 2 ) Bitoperationen. Überlege: Was ändert sich bei Ziffernsatz {0, 1,..., b 1} statt {0, 1}? Geht es billiger? FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 12

14 Multiplikation mit Divide-and-Conquer-Strategie: Eingabe: n-bit-binärzahlen x und y, eventuell Vorzeichen. Falls n n 0 : Benutze Schulmethode. Falls n > n 0 : ( Teile ) Setze k = n/2. Schreibe x = a n 1... a k }{{} A und y = a n 1... a k }{{} C a k 1... a 0 }{{} B a k 1... a 0 }{{} D Dann x = A 2 k + B und y = C 2 k + D. Also x y = (A 2 k +B)(C 2 k +D) = AC 2 2k +(AD+BC) 2 k +BD. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 13

15 Erste Idee: Berechne rekursiv A C, A D, B C, C D, und füge die Produkte durch einige Additionen zum Resultat x y zusammen. Kosten für n-bit-zahlen (für eine Konstante c): C(n) { 1 für n = 1 4 C(n/2) + c n für n > 1. Man kann zeigen (machen wir später, Master-Theorem ): Die Anzahl der Bitoperationen ist wieder O(n 2 ), nicht besser als Schulmethode. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 14

16 Wir haben: x y = A C 2 2k + (A D + B C) 2 k + B D. Trick: E := A B und F := C D (sieht sinnlos aus... ) Bemerke: E und F haben als Betrag der Differenz von zwei nichtnegativen k-bit-zahlen höchstens k Bits. Dann: E F = (A B) (C D) = A C +B D (A D + B C). Also: Eingesetzt: A D + B C = A C + B D E F. x y = A C 2 2k + (A C + B D E F ) 2 k + B D. Nur noch 3 Multiplikationen von k-bit-zahlen! FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 15

17 Algorithmus Ka (Algorithmus von Karatsuba) Eingabe: Zwei n-bit-zahlen x und y. if n n 0 then return SM(x, y) // Schulmethode else k := n/2 ; zerlege x = A 2 k + B und y = C 2 k + D; E := A B und F := C D; // auf n/2 Bits aufgefüllt G := Ka(A, C); // Rekursion H := Ka(B, D); // Rekursion I := Ka( E, F ); // Rekursion return G 2 2k + (G + H sign(e) sign(f ) I) 2 k + H. Dabei ist sign(a) das Vorzeichen von a. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 16

18 Beispiel: Mit Dezimalzahlen, n 0 = 2. (Methode funktioniert zu jeder Basis.) In der Informatik interessante Basiszahlen: 2, 8, 10, 16, 256, 2 16, 2 32,... n = 8, x = , y = A = 7649, B = 0358, C = 3502, D = E = A B = 7291, F = C D = Jeweils 4 Dezimalziffern. Rekursion für A C: a = 76, b = 49, c = 35, d = 02. e = a b = 27, f = c d = 33. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 17

19 Weil z.b. n 0 = 2 ist, wird direkt multipliziert: g = = 2660, h = 98, i = = Multiplikationen von 2-Bit-Zahlen. Ergebnis: G = AC = ( ) = Analog, rekursiv: H = BD = , I = E F = Ergebnis: x y = ( ( 1) ) = Multiplikation mit 10 k : Anhängen von Nullen. Beim Kombinationsschritt gibt es nur Additionen! FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 18

20 Für Input der Größe n > n 0 müssen wir (rekursiv) a = 3 Teilprobleme lösen, für Parametergröße n/b = n/2, also b = 2: rekursiv A C, B D, E F berechnen und müssen einige Additionen und Subtraktionen von Zahlen mit maximal 2n Bits durchführen: Zusätzlich O(n) Bitoperationen. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 19

21 Laufzeitanalyse: Es sei n 0 = 1 und n sei eine Zweierpotenz: n = 2 l. T Ka (n) = Anzahl der Bit-Operationen, die der Algorithmus von Karatsuba auf einer Eingabe aus zwei n-bit-zahlen macht, mit n 0 = 1. Rekurrenzungleichung: T Ka (n) { wobei c konstant ist. 1 für n = 1, 3 T Ka (n/2) + c n für n > 1, FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 20

22 Direkte Rechnung: T Ka (2 l ) 3 T Ka (2 l 1 ) + c 2 l 3 (3 T Ka (2 l 2 ) + c 2 l 1 ) + c 2 l = 3 2 T Ka (2 l 2 ) + c 3 2 l 1 + c 2 l 3 3 T Ka (2 l 3 ) + c l 2 + c 3 2 l 1 + c 2 l. 3 l T Ka (2 0 ) + c 3 j 2 l j 0 j<l FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 21

23 T Ka (2 l ) 3 l T Ka (2 0 ) + c 0 j l 1 3 j 2 l j ( ) l j 2 3 l 1 + c 3 0 j l 1 ( = 3 l 1 + c ) (2 3 )l = 3 l (1 + 2c). Beachte: 3 l = (2 log 2 3 ) l = (2 l log 2 3 ) = (2 l ) log 2 3 = n log 2 3. Dabei: log 2 3 1,58496, also n log 2 3 viel kleiner als n 2! T Ka (n) (1 + 2c)n log 2 3 = O(n 1,585 ). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 22

24 Satz Beim Karatsuba-Multiplikationsalgorithmus beträgt die Anzahl der Bitoperationen und die Rechenzeit O(n log 2 3 ) = O(n 1,585 ). In der Praxis (Implementierung in Software): Nicht n 0 = 1 wählen, sondern für Zahlen einer Länge bis zur Wortgröße des Rechners (z. B. w = 32) die eingebaute Multiplikations-Hardware benutzen, d. h. mit Basis 2 w rechnen. Für Zahlen bis zu einer Länge von n 0 Worten: Schulmethode. Nur für längere Zahlen Karatsuba-Rekursion benutzen. Welches n 0 optimal ist, hängt von der Hardware und eventuell von Programmierdetails ab. (Studie hierzu: Buch von D./Mehlhorn/Sanders.) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 23

25 Beispiele: 1024 Binärziffern, gut 300 Dezimalziffern. Will man mit so riesigen Zahlen rechnen? Ja! Kryptographie! Ignoriere Additionen, setze n 0 = 32. M Ka (n) = #(32-Bit-Mult. bei Karatsuba für zwei n-bit-zahlen), mit n 0 = 32. Rekurrenzgleichung: M Ka(n) = { 1 für n n 0, 3 M Ka (n/2) für n > n 0, Daraus: M Ka (2l ) = 3 l 5 M Ka (25 ) = 3 l 5. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 24

26 2 10 = 1024 Binärziffern, l = 10: Karatsuba: 3 5 = 243 Multiplikationen 32 ; Schulmethode: (2 l 5 ) 2 = 1024 Multiplikationen = Binärziffern, l = 15, ca Dezimalziffern: Karatsuba: 3 10 = Multiplikationen 32 ; Schulmethode: ( ) 2 = 2 20 Multiplikationen 32, mehr als 1 Million! Ersparnis: Faktor 18. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 25

27 Geht es noch besser? Theoretisch ja, praktisch eigentlich kaum. Mitteilung: Schönhage-Strassen (1971): Multiplikation zweier n-bit-zahlen mit O(n log n log log n) Gattern. Arnold Schönhage und Volker Strassen: Schnelle Multiplikation großer Zahlen, Computing 7, 1971, Springer Verlag, S Fürer (2007), De et al. (2008): Multiplikation zweier n-bit-zahlen mit O(n log n 2 log n ) Gattern. Martin Fürer: Faster integer multiplication, STOC 2007, S De/Saha/Kurur/Saptharishi: Fast integer multiplication using modular arithmetic. STOC 2008, S FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 26

28 Dabei ist log n definiert als die kleinste Zahl i mit log log... log n 1. }{{} i mal Also: log 2 = 1, log 4 = 2, log 16 = 3, log = 4, log ( ) = 5, log ( ) = ist schon eine sehr große Zahl. Zahlen n mit log n > 6 kommen in der Praxis nicht vor. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 27

29 Es sei R irgendein Ring Matrixmultiplikation A = (a ij ) 1 i,j n, B = (b ij ) 1 i,j n seien n n-matrizen über R. Aufgabe: Berechne C = A B, d.h. C = (c ij ) 1 i,j n mit c ij = 1 k n a ik b kj. Naive Implementierung gemäß dieser Formel kostet: n 3 Ring-Multiplikationen und n 2 (n 1) Ring-Additionen. Strassen (1969): Es geht mit weniger Multiplikationen! Ansatz: Divide-and-Conquer. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 28

30 1 Man kann addieren, subtrahieren, multiplizieren. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 29

31 Wir nehmen an: n = 2 l, Zweierpotenz. Eingabe: n n-matrizen A, B. Falls n n 0 : Berechne A B mit der direkten Methode. n 3 0 Multiplikationen. Falls n > n 0 : Zerlege A, B in jeweils 4 quadratische ( n 2 n 2 )-Teilmatrizen: ( ) ( ) C D G H A =, B =, E F K L Dann (leicht zu sehen): ( C G + D K C H + D L A B = E G + F K E H + F L ) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 30

32 Suggeriert rekursiven Ansatz, in dem 8 Multiplikationen von ( n 2 n 2 )-Teilmatrizen durchgeführt werden. Einfache Analyse ergibt: n 3 Multiplikationen in R, kein Gewinn. (Unten: Mit Master-Theorem: O(n 3 ).) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 31

33 Strassen-Trick: 7 Multiplikationen genügen. Dann: A B = P 1 = C (H L) P 5 = (C + F ) (G + L) P 2 = (C + D) L P 6 = (D F ) (K + L) P 3 = (E + F ) G P 7 = (C E) (G + H) P 4 = F (K G) ( P5 + P 4 P 2 + P 6 P 1 + P 2 P 3 + P 4 P 1 + P 5 P 3 P 7 ) Von Hand nachzukontrollieren! 18 Additionen von ( n 2 n 2 )-Matrizen. (Alternative Methode, etwas komplizierter: 15 Additionen.) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 32

34 Aufwandsanalyse: Rekurrenzungleichung für die Anzahl der Operationen: T Str (n) { 1 für n = 1, 7 T Str (n/2) + c n 2 für n > 1, wobei im Fall n = 1 eine Ringmultiplikation anfällt und im Fall n > 1 neben den rekursiven Aufrufen genau 18 Additionen von ( n 2 n 2 )-Matrizen ausgeführt werden, mit Kosten 18 (n/2) 2 = 4,5 n 2. Also ist c = 4,5 eine geeignete Konstante. Nun: Rechnung für n = 2 l wie bei Karatsuba. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 33

35 T Str (2 l ) 7 T Str (2 l 1 ) + c (2 2 ) l. 7 l 7 2 T Str (2 l 2 ) + c 7 (2 2 ) l 1 + c (2 2 ) l T Str (2 0 ) }{{} = 1 = 7 l + 7 l c < 7 l + 7 l c c 0 j l 1 0 j l 1 Wie vorher: T Str (n) = T Str (2 l ) = O(7 l ). (2 2 /7) l j (2 2 /7) l j 1 1 (4/7) < (1 + 4c/3) 7l. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 34

36 Dabei: 7 l = 2 l log 2 7 = n log 2 7 mit log 2 7 2,81. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 35

37 Satz Beim Divide-and-Conquer-Algorithmus von Strassen für die Matrixmultiplikation beträgt die Anzahl der Ringmultiplikationen etwa n log 2 7 und die Anzahl der Ringadditionen und -subtraktionen O(n log 2 7 ). Dabei ist log 2 7 2,81. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 36

38 8.3 Erinnerung: Mergesort (Alte AuD-Vorlesung bzw. hier: Kap. 6.2) Prozedur r MergeSort(a, b): A: a m b Rekur Rekur sion sion A: a m b Aufteilen von A[a... b] in A[a... m] und A[m b]. Rekursives Sortieren der beiden Segmente. Dann: Merge(a, m, b). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 37

39 Rekurrenzgleichung für Vergleichsanzahl C(n): C(1) = 0, C(n) = C( n/2 ) + C( n/2 ) + n 1 für n 1. Gezeigt: C(n) = n log n (2 log n 1). (Mit ad-hoc-beweis.) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 38

40 8.4 Das Master-Theorem Wir betrachten Rekurrenzungleichungen der folgenden Form: B(n) { g, falls n = 1 a B(n/b) + f(n), sonst. Dabei: a 1 eine ganze Zahl, b > 1 ist eine Konstante, f(n) ist eine monoton wachsende Funktion. Falls n/b keine ganze Zahl ist, sollte man sich an Stelle von B(n/b) z. B. B( n/b ) denken. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 39

41 Ergibt sich bei Divide-and-Conquer-Algorithmus mit: Trivialer Basisfall (Größe 1) hat höchstens Kosten g, aus Instanz der Größe n > 1 werden a Teilinstanzen der Größe n/b (passend gerundet) gebildet ( teile ), es erfolgen a rekursive Aufrufe, und die a Lösungen werden zusammengesetzt ( kombiniere ). Kosten für das Aufspalten und das Kombinieren: f(n). O.B.d.A.: B(n) monoton wachsend. Sonst definiere: ˆB(n) = max{b(i) 1 i n}. ˆB(n) ist monoton und erfüllt die Rekurrenzungleichung. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 40

42 Vereinfachende Annahmen (nicht wesentlich): n = b l. b > 1 ist ganzzahlig. Level 0: Wurzel, hat Eintrag f(n) und hat a Kinder auf Level 1. Knoten v auf Level i < l hat Eintrag f(n/b i ) und hat a Kinder auf Level i + 1. Knoten auf Level l sind Blätter, sie haben Eintrag g. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 41

43 f(n) f(n) a f(n/b) f(n/b) a f(n/b) a l f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) a 2 f(n/b 2 ) g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g a l g FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 42

44 Lemma Wenn v ein Knoten auf Level i ist, dann gilt: B(n/b i ) Summe der Einträge im Unterbaum unter v. (Beweis durch Induktion über l i.) Also: B(n) Summe aller Einträge im Baum. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 43

45 Auf Level i gibt es a i Knoten mit Eintrag f(n/b i ). Summation liefert: B(n) 0 i<l a i f(n/b i ) + a l g. Erster Term B 1 : Beitrag zu Gesamtkosten aus dem Inneren des Baums. Zweiter Term B 2 : Beitrag von den Blättern. (Algorithmisch: Die a l Basisfälle.) Leicht: B 2 (n) = a l g = (b log b a ) l g = (b l ) log b a g = n log b a g. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 44

46 Erster Term: B 1 (n) = 0 i<l ai f(n/b i ). 3 Fälle, je nach Verhalten des Gesamtaufwandes a i f(n/b i ) auf Level i, für i = 0,..., l 1. Intuitiv: 1. Fall: a i f(n/b i ) wächst mit i an. 2. Fall: a i f(n/b i ) bleibt in etwa gleich über alle i. 3. Fall: a i f(n/b i ) schrumpft mit i. Genaueres folgt. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 45

47 1. Fall: f(n) = O(n α ) mit b α < a. Die Beiträge aus den unteren Baumebenen (kleine Instanzen) dominieren, nicht wegen ihrer Größe, sondern wegen ihrer Anzahl. f(n) f(n/b) f(n/b) f(n/b) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 46

48 Wir benutzen mehrfach die Summenformel für geometrische Reihen: ( ) 0 i<l q i = ql 1 q 1, für q 0, q 1. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 47

49 B 1 (n) = 0 i<l = O ( 0 i<l = O ( n α = O = O ( n α = O(a l ). a i f(n/b i ) a i 0 i<l ( n α a l ( n b i ) α ) ( a b α ) i ) (a/b α ) l ) (a/b α ) 1 ) 1 (b l ) α FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 48

50 Also: B(n) B 1 (n) + B 2 (n) = O(a l ) = O(n log b a ). Typische Beispiele: Karatsuba-Algorithmus, Strassen-Algorithmus. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 49

51 2. Fall: f(n) = O(n log b a ). f(n/b i ) wächst mit n/b i, i = l 1,..., 0, höchstens mit einer Rate, die durch das Schrumpfen der Größe der Baumebene ausgeglichen wird. Der Gesamtaufwand ist beschränkt durch den Aufwand für die Ebene direkt über den Blättern, multipliziert mit der Anzahl der Levels. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 50

52 f(n) f(n/b) f(n/b) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 51

53 B 1 (n) = = O = O 0 i<l a i f(n/b i ) 0 i<l 0 i<l a i = O ( l n log b a). ( n ) logb a b i a i nlog b a a i Also: B(n) B 1 (n) + B 2 (n) = O(l n log b a ) + O(n log b a ) = O((log n) n log b a ). Typische Beispiele: Mergesort, Binäre Suche. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 52

54 3. Fall: f(n) = Ω(n α ), mit b α > a UND (Regularitätsbedingung: f wächst stets mit der entsprechenden Rate) Es gibt ein c < 1 mit: f(n) (a/c) f(n/b). Wenn man die Größe des Inputs von n/b auf n erhöht, wachsen die Kosten im Knoten von f(n/b) auf f(n), mindestens um den Faktor a/c > a. f(n) wächst sehr rasch mit n, so dass der Beitrag der oberen Baumebenen und insbesondere der Wurzel überwiegt. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 53

55 f(n) f(n/b) f(n/b) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 54

56 Aus der Regularitätsbedingung erhalten wir: f(n/b) c a f(n) ( c ) 2 f(n/b 2 ) f(n) a. f(n/b i ) ( c a ) i f(n), also: FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 55

57 B 1 (n) = 0 i<l 0 i<l = 0 i<l = f(n) a i f(n/b i ) a i = O(f(n)), weil 0 i<l ci = 1 cl 1 c = O(1). ( c a c i f(n) 0 i<l ) i f(n) c i FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 56

58 Satz Das Master-Theorem (Einfache Form) { g, falls n = 1 Es gelte B(n) a B(n/b) + f(n), sonst, wobei b > 1 und a ganzzahlige Konstante sind. Dann gilt für n = b l : 1. Falls f(n) = O(n α ) mit α < log b a, dann ist B(n) = O(n log b a ). 2. Falls f(n) = O(n log b a ), dann ist B(n) = O(n log b a log n). 3. Falls f(n) = Ω(n α ) mit α > log b a und f(n) a c f(n/b), für c < 1 konstant, dann ist B(n) = O(f(n)). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 57

59 Erweiterungen, dieselben Formeln gelten: Beliebige n, nicht nur n = b l. Verallgemeinerte Relation B(n) a B(n ) + f(n), n n/b + d. b > 1 nicht ganzzahlig. Analoge untere Schranken. Genaueres im Buch von D./Mehlhorn/Sanders. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 58

60 8.5 Das Selektionsproblem Gegeben ist eine Folge (a 1,..., a n ) von n Objekten aus einer totalen Ordnung (D, <) (in Array oder als Liste), sowie eine Zahl k, 1 k n. O.B.d.A.: Alle Einträge verschieden. Aufgabe: Finde das Element der Folge, das Rang k hat, d. h. ein Objekt x in der Liste mit {i a i x} = k. Spezialfall: Der Median einer Folge mit n Einträgen ist das Element mit Rang n/2. (Median({2, 4, 7, 9}) = 4, Median({4, 7, 9}) = 7.) Einfache Lösung: Sortiere, mit Ergebnis (b 1,..., b n ), dann wähle x = b k. Kosten: n log n Vergleiche, Zeit O(n log n). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 59

61 1 C. A. R. Hoare ( 1934), brit. Informatiker, erfand Quicksort, Quickselect & Korrektheitskalkül. I conclude that there are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult. (Dankesrede für den Turingpreis 1980) I think Quicksort is the only really interesting algorithm that I ve ever developed. Quelle: Wikipedia FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 60

62 Zunächst: Ein randomisierter Algorithmus für das Auswahlproblem. Quickselect (Hoare) Ansatz: Wie bei Quicksort. Gegeben: Folge (a 1,..., a n ), Zahl k, 1 k n. O.B.d.A.: Die a i sind verschieden. Falls n = 1, ist nichts zu tun. Falls n = 2, sortiere mit einem Vergleich, Ergebnis (b 1, b 2 ), gib Element b k zurück. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 61

63 Falls n 3: Wähle ein Element x aus {a 1,..., a n } als partitionierendes Element zufällig. Zerlege (a 1,..., a n ) mit n 1 Vergleichen in eine Teilfolge b 1,..., b p 1, alle < x, in das Element x, und eine Teilfolge c p+1,..., c n, alle > x. 1. Fall: k = p. Das Ergebnis ist x. 2. Fall: k < p. Finde (rekursiv) in (b 1,..., b p 1 ) das Element vom Rang k. 3. Fall: k > p. Finde (rekursiv) in (c p+1,..., c n ) das Element vom Rang k p. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 62

64 Prozedur quickselect(a, b, k) // Rekursive Prozedur im Quickselect-Algorithmus, 1 a < b n, a k b. // Vorbed.: Alle Einträge vom Rang < a [> b] links [rechts] von A[a..b] // Nachbed.: Eintrag vom Rang k in A[k], // kleinere links davon, größere rechts davon. (1) s ein zufälliges Element von {a,..., b}; (2) if (a < s) then vertausche A[a] und A[s]; (3) partition(a, b, p); // p: Ausgabeparameter (4) if k = p then return (5) elseif k < p then quickselect(a, p 1, k); (6) else quickselect(p + 1, b, k). Mögliche Anpassungen: (a) Sortiere z.b. mit Einfügesortieren, wenn b a sehr klein ist. (b) Anstelle von Rekursion benutze Iteration, analog zu der halbrekursiven Variante von Quicksort. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 63

65 Korrektheit: Klar. Zu analysieren: (Erwartete) Rechenzeit. Klar: Die Rechenzeit ist proportional zur Anzahl C k Vergleichen. Wir berechnen den Erwartungswert E(C k ). Eingabezahlen, sortiert: b 1 < < b n. Beobachtung: Es werden niemals zwei Zahlen mehrfach verglichen. (Bei Vergleich ist eines das Pivotelement; es kommt im rekursiven Aufruf nicht mehr vor.) von FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 64

66 Definiere X ij = { 1, falls bi und b j verglichen werden 0, sonst. Dann gilt: C k = X ij. 1 i<j n Also (Linearität des Erwartungswertes): E(C k ) = E(X ij ). 1 i<j n Weil die X ij 0-1-wertig sind: E(X ij ) = Pr(X ij = 1) = Pr(b i und b j werden verglichen). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 65

67 Was ist E(X ij ) = Pr(b i und b j werden verglichen)? Wir stellen uns den Ablauf des Algorithmus mit Auswahl von Pivotelementen und rekursiven Aufrufen für Teilarrays vor. Man beachte, dass die gebildeten Teilarrays stets einen Abschnitt {b s, b s+1,..., b t } der sortierten Folge enthalten und dass jedes Element dieser Teilfolge dieselbe Wahrscheinlichkeit hat, als Pivot gewählt zu werden. Setze I i,j = {b i,..., b j }. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 66

68 1. Fall: k i < j. Solange kein Eintrag aus I k,j = {b k, b k+1,..., b j } als Pivot gewählt wird, passiert nichts bezüglich b i, b j. Es kommt auf die Position p des ersten als Pivotelement gewählten Eintrags b p in I k,j an. Wenn p < j ist, werden die Einträge in I i,j = {b i,..., b j } im Weiteren ignoriert. Wenn p = j oder p = i ist, werden b i und b j verglichen. Wenn i < p < j ist, kommt entweder b i oder b j in der Rekursion nicht mehr vor. Also: Pr(X ij = 1) = 2 j k + 1. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 67

69 2. Fall: i < k < j: Es kommt darauf an, ob b i oder b j vor allen anderen Einträgen in {b i, b i+1,..., b j } Pivot wird. Also: Pr(X ij = 1) = 2 j i Fall: i < j k: Es kommt darauf an, ob b i oder b j vor allen anderen Einträgen in {b i, b i+1,..., b k } Pivot wird. Also: Pr(X ij = 1) = 2 k i + 1. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 68

70 Also: E(C k ) = 2 ( k i<j n 1 j k i<k<j n 1 j i i<j k 1 k i+1 ). Erste Summe: 1 j k + 1 = k i<j n n j=k+1 j k j k + 1 < n j=k+1 1 = n k. Dritte Summe: 1 i<j k k 1 1 k i + 1 = i=1 k 1 k i k i + 1 < i=1 1 = k 1. Beitrag dieser beiden Summen zu E(C k ) ist höchstens 2(n 1). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 69

71 Die Terme der mittleren Summe S = 1 i<k<j n 1 j i + 1 stellen wir in der nachfolgenden (k 1) (n k)-matrix dar (für k n/2): 1 k+1 1 k 1 1 k n k+1 1 k+1 1 n k k n k n k+3... n n k+2... n k k 1 1 k n k+1 1 k+1 1 n k k n k+1 1 n 1 n 1 1 n k+3 1 n k+2 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 70

72 Wir betrachten die Diagonalen der Matrix. Auf jeder Diagonalen sind die Einträge konstant, und die Summe der Einträge auf jeder Diagonalen ist kleiner als 1. Es gibt genau n 2 Diagonalen, also gilt: 1 i<k<j n 1 j i + 1 < n 2. Im Falle k > n/2 funktioniert das Argument genauso; die Matrix sieht nur etwas anders aus. Man kann jedoch auch o. B. d. A. k n/2 annehmen, da aus Symmetriegründen C k = C n k+1 gilt. Zusammen: E(C k ) 4n. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 71

73 Satz Algorithmus Quickselect löst das Auswahlproblem und hat eine erwartete Vergleichsanzahl von 4n und eine erwartete Laufzeit von O(n). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 72

74 Mitteilungen: (a) Eine genauere Analyse ergibt für α = k/n konstant eine erwartete Vergleichsanzahl von 2(1 + H(α) ln 2 + o(1))n < ( o(1)) n. Dabei ist H(α) = α log α (1 α) log(1 α) die binäre Entropie der Wahrscheinlichkeitsverteilung (α, 1 α). H(α) liegt zwischen 0 und 1; das Maximum 1 ist bei α = 1 2, was der Suche nach dem Median entspricht. (b) Die beste Schranke für die erwartete Vergleichsanzahl bei einem Algorithmus für das Auswahlproblem, nämlich 3 2n + o(n), erreicht ein anderer randomisierter Algorithmus (siehe Vorlesung Randomisierte Algorithmen ). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 73

75 Nun: Ein deterministischer Algorithmus mit Aufwand O(n). (Erfinder: M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan: lauter Pioniere der Algorithmik!) Stufenweises Divide-and-Conquer. Wie bei Quickselect: Finde ein partitionierendes Element x. Verschiebe Einträge im Array, so dass alle Elemente < x links von x stehen, alle Elemente > x rechts. Lese ab, in welchem Teil das Element vom Rang k sitzt. Rufe den Algorithmus rekursiv auf diesem Teil auf. Zentrales Problem: Wie kann man deterministisch ein günstiges Element x bestimmen? FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 74

76 Algorithmus BFPRT(a 1,..., a n, k) //O.B.d.A.: a 1,..., a n verschieden (0) Falls k = 1 oder k = n: Bestimme Minimum/Maximum direkt. Sonst: (1) Falls n n 0 : Sortiere mit Mergesort, fertig. Sonst: (2) Teile (a 1,..., a n ) in m = n/5 Gruppen mit 4 bzw. 5 Elementen auf. (3) Bestimme in jeder Gruppe den Median (z. B. mit Mergesort). Sei (a 1,..., a m) die Liste dieser Mediane. (4) Suche mit BFPRT rekursiv den Median x von (a 1,..., a m). (5) Zerlege (a 1,..., a n ) in eine Teilfolge b 1,..., b p 1, alle < x, in das Element x, und eine Teilfolge c p+1,..., c n, alle > x. (6) Falls k = p: Rückgabe x. (7) Falls k < p: BFPRT(b 1,..., b p 1, k). // Rekursion (8) Falls k > p: BFPRT(c p+1,..., c n, k p) // Rekursion Das Pivotelement x bezeichnet man als Median der Mediane. Dieses partitionierende Element wird in den Schritten (2) (4) gefunden. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 75

77 Korrektheit: Klar, durch Induktion über rekursive Aufrufe. Laufzeit: Die Laufzeit ist proportional zur Anzahl der durchgeführten Vergleiche. Wir definieren: C(n) := maximale Anzahl der Vergleiche bei Aufruf BFPRT(a 1,..., a l, k), l n, 1 k l. (Durch Maximieren über l n wird die Funktion C(n) monoton.) FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 76

78 Zeile (0) (Fall k {1, n}) benötigt n 1 Vergleiche, und wir sind fertig. Zeile (1) (Fall n n 0 ) benötigt höchstens n log n Vergleiche. Zeile (3): Der Median von 5 Einträgen lässt sich mit Mergesort in 8 Vergleichen bestimmen. Direktes Verfahren (Übung) erlaubt es, mit 6 Vergleichen auszukommen. Für 4 Einträge genügen 4 Vergleiche. Zeile (3) benötigt daher höchstens 6n 5 Vergleiche für die n 5 Fünfergruppen und 4n 4 Vergleiche für die n 4 Vierergruppen. Da n = 5n 5 + 4n 4, ist die Anzahl der benötigten Vergleiche nicht größer als 6n/5. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 77

79 Zeile (4): Höchstens C( n/5 ) Vergleiche. Zeile (5): Exakt n 1 Vergleiche, ebenso wie bei Quickselect. Zeilen (7)/(8): Es wird nur eine dieser beiden Zeilen ausgeführt. Wir zeigen, dass in beiden Fällen die Anzahl der beteiligten Einträge nicht größer als 7n/ ist. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 78

80 1. Fall: p > k. Bei der rekursiven Suche nach dem Eintrag mit Rang k werden alle Einträge x weggelassen. Wie viele Einträge sind dies mindestens? Definiere A := {a i j : a i in Gruppe G j und a j x und a i a j }. Dann sind alle Elemente von A mindestens so groß wie x (s. Bild). Also n p + 1 A 3( m/2 + 1) 3n/10, also p 1 7n/10. Die Kosten für den rekursiven Aufruf in Zeile (7) sind also maximal C( 7n/10 ). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 79

81 Spalten: Gruppen nach Umsortieren, Kriterium: a * j </=/> x Innerhalb jeder Spalte: unten kleiner als der Median, oben größer A : garantiert >= x x B : garantiert <= x FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 80

82 2. Fall: p < k. Bei der rekursiven Suche nach dem Eintrag mit Rang k werden alle Einträge x weggelassen. Definiere B := {a i j : a i in Gruppe G j und a j x und a i a j }. Dann sind alle Elemente von B höchstens so groß wie x (s. Bild). Weil es mindestens m/2 Gruppen G j mit a j x und maximal 4 Gruppen mit 4 Elementen gibt, folgt: p B 3 m/2 4 3n/10 4, also betrifft der rekursive Aufruf in Zeile (8) höchstens n p 7n/ Einträge. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 81

83 Die Kosten sind also maximal C( 7n/10 + 4). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 82

84 Wir erhalten die folgende Rekurrenzungleichung: C(n) { n log n für n n0, C( n/5 ) + C( 7n/10 + 4) + 11n/5 für n > n 0. Dabei schätzt der Term 11n/5 die Beiträge von Zeilen (3) und (5) zusammen ab. Leider: Unser Mastertheorem nicht anwendbar. Wir lösen diese Rekurrenz direkt, indem wir eine passende Induktionsbehauptung beweisen. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 83

85 Behauptung: C(n) cn für alle n und eine passende Konstante c. Die n n 0 werden erledigt, indem man c log n 0 wählt. Konkret: n 0 = 500; jedes c 9 erfüllt die Behauptung in diesem Fall. Nun sei n > n 0. Wir rechnen: C(n) C( n/5 ) + C( 7n/10 + 4) + 11n/5, I.V. c n/5 + c(7n/10 + 4) + 11n/5 cn/5 + c + 7cn/10 + 4c + 11n/5 cn + ( cn/10 + 5c + 11n/5). Entscheidend: C(n) 9 10cn + O(n). FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 84

86 Wir wählen c so, dass cn/10 5c + 11n/5 ist, was für c 25 und n n 0 = 500 der Fall ist (nachrechnen!). Für ein solches c lässt sich der Induktionsschritt durchführen; damit gilt die Behauptung C(n) cn für alle n. Wir haben gezeigt: Satz Der BFPRT-Algorithmus löst das Auswahlproblem und hat eine Laufzeit von O(n) im schlechtesten Fall. Bemerkung: (a) Durch eine viel genauere Analyse kann die Konstante in der Vergleichsanzahl noch verbessert werden. (b) Der beste bekannte deterministische Algorithmus für das Auswahlproblem (anderer Ansatz!) benötigt (2,95 + o(1))n Vergleiche. Es ist bekannt, dass jeder deterministische Algorithmus 2n Vergleiche benötigt. FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS15 Kapitel 8 85

SS18 Algorithmen und Datenstrukturen 9. Kapitel Divide-and-Conquer-Algorithmen

SS18 Algorithmen und Datenstrukturen 9. Kapitel Divide-and-Conquer-Algorithmen SS18 Algorithmen und Datenstrukturen 9. Kapitel Divide-and-Conquer-Algorithmen Martin Dietzfelbinger Juni 2018 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS18 Kapitel 9 Ziele (des zweiten Teils)

Mehr

1.3 Erinnerung: Mergesort

1.3 Erinnerung: Mergesort Mergesort 1.3 Erinnerung: Mergesort Um n Zahlen/Objekte a 1,..., a n zu sortieren, geht der Mergesort-Algorithmus so vor: Falls n n 0 : Sortiere mit einem naiven Algorithmus (z. B. Insertion Sort). Sonst:

Mehr

SS16 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen

SS16 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen SS16 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen Martin Dietzfelbinger Juni 2016 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS16 Kapitel 8 Ziele (des zweiten Teils)

Mehr

SS14 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen

SS14 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen SS14 Algorithmen und Datenstrukturen 8. Kapitel Divide-and-Conquer-Algorithmen Martin Dietzfelbinger Mai 2014 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS14 Kapitel 8 Team: Vorlesung: Effiziente

Mehr

SS10 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel

SS10 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel SS10 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel Martin Dietzfelbinger April 2010 FG KTuEA, TU Ilmenau Effiziente Algorithmen SS10 Kapitel 0+1 Hörer: Informatikstudierende (Bachelor) im 4. Semester,

Mehr

SS13 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel

SS13 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel SS13 Effiziente Algorithmen Vorbemerkungen und 1. Kapitel Martin Dietzfelbinger April 2013 FG KTuEA, TU Ilmenau Effiziente Algorithmen SS13 Kapitel 0+1 Hörer: Informatikstudierende (Bachelor) im 4. Semester,

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Vorüberlegungen und Divide-and-Conquer-Algorithmen Vorlesender: Martin Aumüller (nach Folien von Prof. Martin Dietzfelbinger) April 2012 FG KTuEA, TU Ilmenau Effiziente Algorithmen

Mehr

1 Divide-and-Conquer-Algorithmen

1 Divide-and-Conquer-Algorithmen 1 Divide-and-Conquer-Algorithmen 1.1 Multiplikation ganzer Zahlen Wir multiplizieren zwei ganze Zahlen x und y, die in Binärdarstellung gegeben sind. Der Einfachheit halber nehmen wir an, die beiden Zahlen

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Vorüberlegungen und Divide-and-Conquer-Algorithmen Vorlesender: Martin Aumüller (nach Folien von Prof. Martin Dietzfelbinger) April 2012 FG KTuEA, TU Ilmenau Effiziente Algorithmen

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] Heapsort 211 Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Wiederholung. Divide & Conquer Strategie

Wiederholung. Divide & Conquer Strategie Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` '

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' Sortieren & Co 164 165 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' 166 Anwendungsbeispiele Allgemein: Vorverarbeitung

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Christian Scheideler + Helmut Seidl SS 2009 28.06.09 Kapitel 12 1 Generische Optimierungsverfahren Techniken: Systematische Suche lass nichts aus

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode

Mehr

G. Zachmann Clausthal University, Germany Die wichtigsten Entwurfsverfahren für Algorithmen:

G. Zachmann Clausthal University, Germany Die wichtigsten Entwurfsverfahren für Algorithmen: lausthal Informatik II Divide & onquer. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Algorithmen-Design-Techniken Die wichtigsten Entwurfsverfahren für Algorithmen: 1. Divide and onquer

Mehr

3.2. Divide-and-Conquer-Methoden

3.2. Divide-and-Conquer-Methoden LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE 3.2. Divide-and-Conquer-Methoden Divide-and-Conquer-Methoden Einfache Sortieralgorithmen reduzieren die Größe des noch

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 4 (30.4.2018) Sortieren IV Algorithmen und Komplexität Analyse Merge Sort Laufzeit T(n) setzt sich zusammen aus: Divide und Merge: O n

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind. Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort

Mehr

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4)

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4) Datenstrukturen und Algorithmen Vorlesung 3: (K4) 1 e für rekursive Algorithmen Prof. Dr. Erika Ábrahám 2 Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Sortieren: Quicksort und Mergesort Charles Antony Richard Hoare 2007 Martin v. Löwis Geboren 11. 1. 1934 in Colombo (Sri Lanka) Studium in Oxford (Philosophie, Latein, Griechisch)

Mehr

Beispiel-Prüfungsfragen für Effiziente Algorithmen M. Dietzfelbinger, 15. Juli 2011, leicht korrigiert 27. Juli 2011

Beispiel-Prüfungsfragen für Effiziente Algorithmen M. Dietzfelbinger, 15. Juli 2011, leicht korrigiert 27. Juli 2011 Beispiel-Prüfungsfragen für Effiziente Algorithmen M. Dietzfelbinger, 15. Juli 2011, leicht korrigiert 27. Juli 2011 Vorbemerkung: Die Liste der Beispielfragen soll bei der Vorbereitung helfen. Sie definiert

Mehr

Proseminar Effiziente Algorithmen

Proseminar Effiziente Algorithmen Proseminar Effiziente Algorithmen Kapitel 4: Sortieren, Selektieren und Suchen Prof. Dr. Christian Scheideler WS 2017 Übersicht Sortieren Selektieren Suchen 08.11.2017 Proseminar EA 2 Sortierproblem 5

Mehr

Beispiel-Prüfungsfragen Effiziente Algorithmen M. Dietzfelbinger, Stand 29. Juli 2013.

Beispiel-Prüfungsfragen Effiziente Algorithmen M. Dietzfelbinger, Stand 29. Juli 2013. Beispiel-Prüfungsfragen für Effiziente Algorithmen M. Dietzfelbinger, Stand 29. Juli 2013. Vorbemerkung: Die Liste der Beispielfragen soll bei der Vorbereitung helfen. Sie definiert nicht den Prüfungsstoff

Mehr

Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt.

Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Abschätzung für die Rekursion von SELECT Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Wir nehmen erst einmal an, dass eine Konstante d existiert,

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Grundlegende Algorithmen

Grundlegende Algorithmen ST 430k HEUH (ä.) Volker Heun Grundlegende Algorithmen Einführung in den Entwurf und die Analyse effizienter Algorithmen 2., verbesserte und erweiterte Auflage >( "4.? Einleitung und Grundlagen 1 1.1 Ziele

Mehr

Sortieren & Co. KIT Institut für Theoretische Informatik

Sortieren & Co. KIT Institut für Theoretische Informatik Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50

Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50 Heapsort Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen 27.6.2007 / 50 Heapsort - Wiederholung Definition Array A[..n] mit Einträgen aus (U,

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Geometrisches Problem: Problem: Nächstes Paar Eingabe: n Punkte in der Ebene Ausgabe: Das Paar q,r mit geringstem Abstand

Mehr

Kapitel 2. Weitere Beispiele Effizienter Algorithmen

Kapitel 2. Weitere Beispiele Effizienter Algorithmen Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 2 (23.4.2018) Sortieren II, Asymptotische Analyse, O-Notation Algorithmen und Komplexität Laufzeit Zeitmessung SelectionSort n 2 Laufzeit/n

Mehr

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Untere Schranken für Sortieren Sortieren mit linearem Aufwand Mediane und Ranggrössen 2 Wie schnell können wir sortieren?

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren Ordnung ist das halbe Leben Antonios Antoniadis (Basierend auf Folien von Kurt Mehlhorn und Konstantinos Panagiotou) 6. November 2017 6. November

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Proseminar Effiziente Algorithmen

Proseminar Effiziente Algorithmen Proseminar Effiziente Algorithmen Kapitel 4: Sortieren Prof. Dr. Christian Scheideler WS 2016 Übersicht Sortieren Selektieren Suchen 09.11.2016 Proseminar EA 2 Sortierproblem 5 10 19 1 14 3 7 12 2 8 16

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 2 (22.4.2016) Sortieren II Algorithmen und Komplexität SelectionSort: Programm Schreiben wir doch das gleich mal als Java/C++ - Programm

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach

Mehr

Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Klausur Informatik 2: Algorithmen und Datenstrukturen Donnerstag, 9. März 21, 2017, 9:00 bis 12.00 Uhr Name:.....................................................................

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation

Mehr

5. Übungsblatt zu Algorithmen I im SoSe 2016

5. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16

Mehr

5.4 Das Rucksackproblem

5.4 Das Rucksackproblem Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Beispiel: Quicksort. Theoretische Informatik III (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. quicksort(a 1,...,a n ): IF n 2 THEN

Beispiel: Quicksort. Theoretische Informatik III (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. quicksort(a 1,...,a n ): IF n 2 THEN Als zweites Beispiel betrachten wir ein weiteres Sortierverfahren, das unter dem Namen quicksort bekannt ist. Eingabe ist wieder ein Array a 1,...,a n AUFGABE: Sortiere a 1,...,a n nach vorgegebenem Schlüssel!

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web:

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: Algorithmen I Prof. Jörn Müller-Quade 24.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Übungen zu Algorithmentechnik WS 09/10

Übungen zu Algorithmentechnik WS 09/10 Übungen zu Algorithmentechnik WS 09/10 1. Kurzsitzung Thomas Pajor 22. Oktober 2009 1/ 25 Eure Übungsleiter Tanja Hartmann t.hartmann@kit.edu Raum 306, Gebäude 50.34 Thomas Pajor pajor@kit.edu Raum 322,

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Technische Universität München SoSe 2017 Fakultät für Informatik, I-16 Lösungsblatt 4 Dr. Stefanie Demirci 31. Mai 2017 Rüdiger Göbl, Mai Bui Algorithmen und Datenstrukturen Aufgabe 1 Komplexität Berechnung

Mehr

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n)

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) ( ( ) n 3 T + T m ) 4 n n 3 c + m 4 n c + n n + C m + cn; dies gilt, falls m 2 n m C m + n 2 (bis auf, ) c m + 3

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik [Ordnung ist das halbe Leben] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Gerechtigkeit?

Mehr

2.4 Starke Zusammenhangskomponenten in Digraphen

2.4 Starke Zusammenhangskomponenten in Digraphen Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Algorithmen und Datenstrukturen Teil 3 Suchen in Listen Version vom: 15. November 2016

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Modul Algorithmik, T-Katalog

Modul Algorithmik, T-Katalog Modul Algorithmik, T-Katalog Sommersemester 2017 Steffen Lange 1/1, Folie 1 2017 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches u Vorlesung Folien im Netz u Übung eine Übung alle 14 Tage

Mehr

Algorithmische Techniken für Geometrische Probleme

Algorithmische Techniken für Geometrische Probleme Algorithmische Techniken für Geometrische Probleme Berthold Vöcking 14. Juni 2007 Inhaltsverzeichnis 1 Die Sweepline-Technik 2 1.1 Schnitte orthogonaler Liniensegmente............... 2 1.2 Schnitte beliebiger

Mehr

6.1. Ein Approximationsalgorithmus für das Rucksackproblem

6.1. Ein Approximationsalgorithmus für das Rucksackproblem 6.1. Ein Approximationsalgorithmus für das Rucksackproblem Wir erinnern uns an das 0-1-Rucksackproblem: Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke

Mehr

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt Divide and Conquer Das Divide - and - Conquer Prinzip Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt 2 Quicksort: Sortieren durch Teilen

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise

Mehr

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1

Mehr

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren Algorithmen und Datenstrukturen 74 3 Rekursionen Vor allem bei rekursiven Algorithmen besitzt die Laufzeitfunktion eine naheliegende rekursive Formulierung, d.h. die Laufzeitfunktion ist konstant für den

Mehr

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick

Mehr