Ableitung einer Polynomfunktion*
|
|
|
- Gisela Straub
- vor 6 Jahren
- Abrufe
Transkript
1 Ableitung einer Polynomfunktion* Aufgabennummer: 1_359 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Lückentext Grundkompetenz: AN 2.1 Gegeben sind eine reelle Polynomfunktion f und deren Ableitungsfunktion f. Aufgabenstellung: Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht! Für die 1. Ableitung der Funktion f mit f(x) = 1 gilt: f (x) = x³ 4x² + 7x 3 6x² 4x + 7 3x² 4x + 7 x³ 2x² + 7x 6x 4 6x² 4 * ehemalige Klausuraufgabe, Maturatermin: 17. September 2014
2 Ableitung einer Polynomfunktion 2 Lösungserwartung 1 2 6x 4 3x² 4x + 7 Lösungsschlüssel Ein Punkt ist genau dann zu geben, wenn für jede der beiden Lücken ausschließlich der laut Lösungserwartung richtige Satzteil angekreuzt ist.
3 Ableitung einer Winkelfunktion* Aufgabennummer: 1_432 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: offenes Format Grundkompetenz: AN 2.1 Eine Gleichung einer Funktion f lautet: f(x) = 5 cos(x) + sin(3 x) Aufgabenstellung: Geben Sie eine Gleichung der Ableitungsfunktion f der Funktion f an! * ehemalige Klausuraufgabe, Maturatermin: 21. September 2015
4 Ableitung einer Winkelfunktion 2 f (x) = 5 sin(x) + 3 cos(3 x) Lösungserwartung Lösungsschlüssel Ein Punkt für eine korrekte Funktionsgleichung. Äquivalente Funktionsgleichungen sind als richtig zu werten.
5 Reelle Funktion* Aufgabennummer: 1_456 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: AN 2.1 Eine reelle Funktion f ist durch die Funktionsgleichung f(x) = 4x 3 2x 2 + 5x 2 gegeben. Aufgabenstellung: Geben Sie eine Funktionsgleichung der Ableitungsfunktion f der Funktion f an! f (x) = * ehemalige Klausuraufgabe, Maturatermin: 15. Jänner 2016
6 Reelle Funktion 2 Lösungserwartung f (x) = 12x 2 4x + 5 Lösungsschlüssel Ein Punkt für eine korrekte Funktionsgleichung der Ableitungsfunktion f. Äquivalente Funktionsgleichungen sind als richtig zu werten.
7 Ableitungsregeln* Aufgabennummer: 1_504 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: AN 2.1 Über zwei Polynomfunktionen f und g ist bekannt, dass für alle x R gilt: g(x) = 3 f(x) 2 Aufgabenstellung: Welche der nachstehenden Aussagen ist jedenfalls für alle x R wahr? Kreuzen Sie die zutreffende Aussage an! g (x) = f (x) g (x) = f (x) 2 g (x) = 3 f (x) g (x) = 3 f (x) 2 g (x) = 3 f (x) 2 x g (x) = 2 f (x) * ehemalige Klausuraufgabe, Maturatermin: 20. September 2016
8 Ableitungsregeln 2 Lösungserwartung g (x) = 3 f (x) Lösungsschlüssel Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Aussage angekreuzt ist.
9 Sinusfunktion und Cosinusfunktion* Aufgabennummer: 1_580 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: AN 2.1 Gegeben sind die Funktionen f mit f(x) = sin(a x) und g mit g(x) = a cos(a x) mit a R. Aufgabenstellung: Welche Beziehung besteht zwischen den Funktionen f und g und deren Ableitungsfunktionen? Kreuzen Sie diejenige Gleichung an, die für alle a R gilt! a f (x) = g(x) g (x) = f(x) a g(x) = f (x) f(x) = a g (x) f (x) = g(x) g (x) = a f(x) * ehemalige Klausuraufgabe, Maturatermin: 28. September 2017
10 Sinusfunktion und Cosinusfunktion 2 Lösungserwartung f (x) = g(x) Lösungsschlüssel Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Gleichung angekreuzt ist.
11 Ableitung* Aufgabennummer: 1_603 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: AN 2.1 Gegeben sind sechs Funktionsgleichungen mit einem Parameter k, wobei k Z und k 0. Aufgabenstellung: Für welche der gegebenen Funktionsgleichungen gilt der Zusammenhang f (x) = k f(x) für alle x R? Kreuzen Sie die zutreffende Funktionsgleichung an! f(x) = k f(x) = k x f(x) = k x f(x) = x k f(x) = e k x f(x) = sin(k x) * ehemalige Klausuraufgabe, Maturatermin: 16. Jänner 2018
12 Ableitung 2 Lösungserwartung f(x) = e k x Lösungsschlüssel Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Funktionsgleichung angekreuzt ist.
13 Ableitung einer Polynomfunktion Aufgabennummer: 1_007 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: offenes Format Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Gegeben ist eine Polynomfunktion f mit f(x) = 7x³ 5x² + 2x 3. Aufgabenstellung: Bilden Sie die 1. und die 2. Ableitung der Funktion f!
14 Ableitung einer Polynomfunktion 2 f'(x) = 21x² 10x + 2 f''(x) = 42x 10 Möglicher Lösungsweg Lösungsschlüssel Die Aufgabe gilt nur dann als richtig gelöst, wenn die 1. und die 2. Ableitung richtig angegeben sind.
15 Ableitung von Sinus- und Cosinus-Funktion Aufgabennummer: 1_010 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Zuordnungsformat Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Gegeben sind vier Funktionen und sechs Ableitungsfunktionen. Aufgabenstellung: Ordnen Sie den Funktionen die richtige Ableitungsfunktion f' zu! f(x) = 2 cos(x) sin(x) A f'(x) = cos(x) + 2 sin(x) f(x) = cos(x) + 2 sin(x) B f'(x) = 2 cos(x) + sin(x) f(x) = 2 cos(x) sin(x) C f'(x) = 2 cos(x) sin(x) f(x) = cos(x) + 2 sin(x) D f'(x) = cos(x) 2 sin(x) E F f'(x) = cos(x) 2 sin(x) f'(x) = 2 sin(x) + cos(x)
16 Ableitung von Sinus- und Cosinus-Funktion 2 Lösungsweg f(x) = 2 cos(x) sin(x) D A f'(x) = cos(x) + 2 sin(x) f(x) = cos(x) + 2 sin(x) C B f'(x) = 2 cos(x) + sin(x) f(x) = 2 cos(x) sin(x) A C f'(x) = 2 cos(x) sin(x) f(x) = cos(x) + 2 sin(x) B D f'(x) = cos(x) 2 sin(x) E F f'(x) = cos(x) 2 sin(x) f'(x) = 2 sin(x) + cos(x) Lösungsschlüssel Die Aufgabe gilt nur dann als richtig gelöst, wenn die vier Zuordnungen richtig erfolgt sind.
17 Ableitungsregeln erkennen Aufgabennummer: 1_164 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Gegeben sind differenzierbare Funktionen f und g und a +. Aufgabenstellung: Welche der nachstehenden Ableitungsregeln sind korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an! [f(x) + a] = f(x) + a [a f(x)] = a f(x) [f(x) g(x)] = f(x) g(x) [f(a x)] = a f(x) [f(x) g(x)] = f(x) g(x)
18 Ableitungsregeln erkennen 2 Lösungsweg [a f(x)] = a f(x) [f(x) g(x)] = f(x) g(x) Lösungsschlüssel Ein Punkt ist nur dann zu geben, wenn nur zwei Aussagen angekreuzt sind und alle Kreuze richtig gesetzt sind.
19 Erste Ableitung einer Funktion Aufgabennummer: 1_177 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Gegeben ist die Funktion f mit f(a) = a2 b 3 mit b, c \{0}. c Aufgabenstellung: Kreuzen Sie denjenigen Term an, der die erste Ableitung f der Funktion f angibt! 2 a b 3 c a 2 b 3 c 2 2 a b 3 +3 a 2 b 2 c 2 2 a b 3 c 2 a 2 a b 3 c 2 2 a 3
20 Erste Ableitung einer Funktion 2 Lösungsweg 2 a b 3 c Lösungsschlüssel Ein Punkt ist nur dann zu geben, wenn genau ein Term angekreuzt ist und das Kreuz richtig gesetzt ist.
21 Ableitung von Funktionen Aufgabennummer: 1_178 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Zuordnungsformat Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Die Ableitungsfunktion einer Funktion kann mithilfe einfacher Regeln des Differenzierens ermittelt werden. Aufgabenstellung: Ordnen Sie den gegebenen Funktionen jeweils die entsprechende Ableitungsfunktion zu! f 1(x) = 2 x A f(x) = 4x + 2 f 2(x) = 2x 2 + 2x 2 B f(x) = 1 2x f 3(x) = 1 x 2 C f(x) = 2 2x f 4(x) = 2x D f(x) = 2 x 4 E f(x) = 2 x 3 F f(x) = 2 x 2
22 Ableitung von Funktionen 2 Lösungsweg f 1(x) = 2 x F A f(x) = 4x + 2 f 2(x) = 2x 2 + 2x 2 A B f(x) = 1 2x f 3(x) = 1 x 2 E C f(x) = 2 2x f 4(x) = 2x B D f(x) = 2 x 4 E f(x) = 2 x 3 F f(x) = 2 x 2 Lösungsschlüssel Ein Punkt ist nur dann zu geben, wenn alle vier Buchstaben richtig zugeordnet sind.
23 Ableitungsfunktion bestimmen Aufgabennummer: 1_179 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Gegeben ist die Funktion f mit f(y) = x2 y xy 2, x. Aufgabenstellung: Bestimmen Sie den Funktionsterm der Ableitungsfunktion f! 2 f(y) =
24 Ableitungsfunktion bestimmen 2 f(y) = x2 2xy 2 Möglicher Lösungsweg Lösungsschlüssel Die Aufgabe gilt nur dann als richtig gelöst, wenn der Term richtig angegeben wurde. Äquivalente Terme sind als richtig zu werten.
25 Ableitungsregel Aufgabennummer: 1_163 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: AN 2.1 keine Hilfsmittel gewohnte Hilfsmittel möglich besondere Technologie Für welche der folgenden Funktionen gilt der Zusammenhang f(x) = k f(x) mit k +? Aufgabenstellung: Kreuzen Sie die zutreffende Funktionsgleichung an! f(x) = k x f(x) = x 2 k f(x) = k sin(x) f(x) = k x f(x) = k x f(x) = k x
26 Ableitungsregel 2 Lösung f(x) = k x Lösungsschlüssel Ein Punkt ist nur dann zu geben, wenn nur eine Funktionsgleichung angekreuzt ist und das Kreuz richtig gesetzt ist.
Sinusfunktion* Aufgabenformat: halboffenes Format Grundkompetenz: FA 6.1
Sinusfunktion* Aufgabennummer: 1_410 Aufgabentyp: Typ 1 T Typ Aufgabenformat: halboffenes Format Grundkompetenz: FA 6.1 Die nachstehende Abbildung zeigt den Graphen einer Funktion f mit f(x) = a sin(b
Gleichung einer quadratischen Funktion*
Gleichung einer quadratischen Funktion* Aufgabennummer: 1_341 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: FA 3.1 Im nachstehenden Koordinatensystem ist der Graph einer
Exponentialfunktion*
Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +
Funktionsgraphen zuordnen
Funktionsgraphen zuordnen Typ 1 S Aufgabennummer: 1_064 Prüfungsteil: Aufgabenformat: Zuordnungsformat Grundkompetenz: FA 3.1 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel S möglich Typ 2 besondere
Ableitungs- und Stammfunktion*
Ableitungs- und Stammfunktion* Aufgabennummer: 1_57 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 3.1 Es sei f eine Polynomfunktion und F eine ihrer Stammfunktionen.
Nullstellen einer Polynomfunktion
Nullstellen einer Polynomfunktion Typ 1 S Aufgabennummer: 1_39 Prüfungsteil: Aufgabenformat: offenes Format Grundkompetenz: FA 4.4 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel S möglich Typ besondere
Ableitungsfunktion einer linearen Funktion
Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich
Breite eines Konfidenzintervalls*
Breite eines Konfidenzintervalls* Aufgabennummer: 1_446 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: WS 4.1 Bei einer Meinungsbefragung wurden 500 zufällig ausgewählte
Breite eines Konfidenzintervalls*
Breite eines Konfidenzintervalls* Aufgabennummer: 1_446 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: WS 4.1 Bei einer Meinungsbefragung wurden 500 zufällig ausgewählte
Änderungsmaße. möglich. Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung f(x) = 0,1x ².
Änderungsmaße Typ 1 S Aufgabennummer: 1_004 Prüfungsteil: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 1.3 keine Hilfsmittel S erforderlich Hilfsmittel S gewohnte möglich Typ Technologie
Lösungsweg. Lösungsschlüssel
Kugelschreiber Aufgabennummer: _05 Prüfungsteil: Typ S Typ 2 Aufgabenformat: Zuordnungsformat Grundkompetenz: WS 2.3 S keine Hilfsmittel S gewohnte Hilfsmittel möglich besondere Technologie Ein Kugelschreiber
Gleichung einer Funktion*
Gleichung einer Funktion* Aufgabennummer: 1_462 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: FA 2.1 Der Graph der Funktion f ist eine Gerade, die durch die Punkte P = (2
Quadratische Gleichungeii*?- v s
Bund»«Institut Quadratische Gleichungen Quadratische Gleichungeii*?- v s -'T Lösungsweg Aufgabennummer; 1_161 Aufgabenformat: Zuordnungsformat ~ gewohnte Hitfsmittet Prüfungsteil; 1 Typ2 Grundkompetenz:
Schnitt zweier Funktionen*
Schnitt zweier Funktionen* Aufgabennummer: 1_ Aufgabentyp: Typ 1 T Typ Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 4.1 Gegeben sind die beiden reellen Funktionen f und g mit den Gleichungen
Prozente* Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: AN 1.1
Prozente* Aufgabennummer: 1_337 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 1.1 Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar.
Trapez. A1 = 1 (a + c) b. (a c) b. A2 = b c + A3 = a b 0,5 (a c) b. A4 = 0,5 a b (a + c) b. A5 = 1 a b + b c. Aufgabennummer: 1_070.
Trapez Aufgabennummer: 1_070 Aufgabentyp: Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG.1 Typ 1 T Typ Die nachstehende Abbildung zeigt ein Trapez. c b a Aufgabenstellung: Mit welchen der
Trapez. Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 2.1
Trapez Aufgabennummer: 1_070 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 2.1 Die nachstehende Abbildung zeigt ein Trapez. c b Aufgabenstellung: Mit welchen der
Einheitskreis^ gewohnte Hilfsmittel möglich. Bestimmen Sie für den in der Abbildung markierten Winkel a den Wert von sin(q')!
Bundes Institut Einheitskreis^ Aufgabennummer: 1_160 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: AG 4.2 keine Hilfsmittel l, gewohnte Hilfsmittel möglich besondere Technologie
Zusammenhang zwischen Sinus- und Cosinusfunktion
Bundainstiiut Zusammenhang zwischen Sinus- und Cosinusfunktion Zusammenhang zwischen Sinus- und Cosinusfunktion Lösung Aufgabennummer 1_285 Prüfungstel: Typ 1 Typ 2 Aufgabenformat; Multiple Choice ^ aus
Änderungsmaße. möglich. Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung f(x) = 0,1x ².
Änderungsmaße Typ 1 S Aufgabennummer: 1_004 Prüfungsteil: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 1.3 keine Hilfsmittel S erforderlich Hilfsmittel S gewohnte möglich Typ Technologie
Antwortformate SRP Mathematik (AHS)
Antwortformate SRP Mathematik (AHS) Stand: 12. Februar 2019 1. Offenes Antwortformat Beim offenen Antwortformat kann die Bearbeitung der Aufgaben je nach Aufgabenstellung auf unterschied liche Weise erfolgen.
Prozente* Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar.
Prozente* Aufgabennummer: 1_337 Aufgabentyp: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 1.1 Typ 1 T Typ Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar.
Prozente* Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar.
Prozente* Aufgabennummer: _7 Aufgabentyp: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN. Typ T Typ Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar. Aufgabenstellung:
Volumen eines Drehkegels*
Volumen eines Drehkegels* Aufgabennummer: 1_415 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: FA 1.2 Das Volumen V eines Drehkegels hängt vom Radius r und von der
Exponentialfunktion*
Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R
Volumen eines Drehkegels*
Volumen eines Drehkegels* Aufgabennummer: _45 Aufgabentyp: Aufgabenformat: Multiple Choice ( aus 6) Grundkompetenz: FA. Typ T Typ Das Volumen V eines Drehkegels hängt vom Radius r und von der Höhe h ab.
2. Inhaltsbereich Funktionale Abhängigkeiten (FA)
2. Inhaltsbereich Funktionale Abhängigkeiten (FA) FA 1.1 FA 1.2 FA 1.3 FA 1.4 FA 1.5 FA 1.6 FA 1.7 FA 1.8 FA 1.9 FA 2.1 FA 2.2 FA 2.3 FA 2.4 FA 2.5 FA 2.6 FA 3.1 FA 3.2 Für gegebene Zusammenhänge entscheiden
Definition der Winkelfunktionen*
Definition der Winkelfunktionen* Aufgabennummer: 1_344 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AG 4.1 Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck
Definition der Winkelfunktionen*
Definition der Winkelfunktionen* Aufgabennummer: 1_344 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: AG 4.1 Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck
ll^pjl^sungsschiüssel
iinsuuii Exponentieller Zusammenhang _ 2 Exponentieller Zusammenhang^ Aiifgabennummen 1_272 Pmfungsteil: Typ 1 Typ2 Aufgabffliformat halboffenes Format Grundkompetenz; FA 5.1 keine Hilfsmittel besondere
Rechtwinkeliges Dreieck
Bundes institut bifie Rechtwinkeliges Dreieck Aufgabennummer: 1_134 Aufgabenformat: offenes Format keine Hilfsmittel P-l gewohnte Hilfsmittel ^ möglich Prüfungsteil: Typ 1 Typ 2 Grundkompetenz: AG 4.1
Prozente* Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: AN 1.1
Prozente* Aufgabennummer: 1_337 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: AN 1.1 Zahlenangaben in Prozent (%) machen Anteile unterschiedlicher Größen vergleichbar.
Exponentielle Abnahme
Exponentielle Abnahme Typ 1 S Aufgabennummer: 1_00 Prüfungsteil: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: FA 5.3 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel Typ besondere Technologie
Diskrete Zufallsvariable*
Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung
Ableitungsfunktion. Aufgabennummer: 1_031 Prüfungsteil: Typ 1 Typ 2. Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AN 3.
Ableitungsunktion Augabennummer: _0 Prüungsteil: Typ Typ Augabenormat: Multiple Choice (x aus ) Grundkompetenz: AN. keine Hilsmittel erorderlich gewohnte Hilsmittel möglich besondere Technologie erorderlich
Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS)
Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Inhalt Teil-1-Übungsaufgaben Inhaltsbereich Algebra und Geometrie (AG) 8 (1) Ganze
Rationale Zahlen* Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 1.1
Rationale Zahlen* Aufgabennummer: 1_129 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 1.1 Gegeben sind folgende Zahlen: 1 2 ; π 5 ; 3,5. ; 3; 16. Aufgabenstellung:
Lösungsschlüssel. Lösung. Schülerarbeit
sinsdo/i BkUigitoicluig, hoiaion & ErUMMfie Jwe wiufcjiaiscmiiwbnt SehQletarbait Aufgabennummen 1_294 Schülerarbeit Prüfungsteil: Typ 1 Typ 2 Lösung Aufgabenformat: Lückentext - g^ohnte Hilfsmittel Grundkompetenz:
Grundraum eines Zufallsversuchs*
Grundraum eines Zufallsversuchs* Aufgabennummer: 1_377 Aufgabentyp: Aufgabenformat: offenes Format Grundkompetenz: WS.1 Typ 1 T Typ In einer Urne befinden sich zwei Kugeln, die mit den Zahlen 0 bzw. 1
Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 20. September 2016 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Eigenschaften von Zahlen Jede natürliche Zahl kann als Bruch in
Algebraische Begriffe
Algebraische Begriffe Typ 1 Aufgabennummer: 1_001 Prüfungsteil: Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 1. keine Hilfsmittel erforderlich gewohnte Hilfsmittel möglich Typ besondere
Grundraum eines Zufallsversuchs*
Grundraum eines Zufallsversuchs* Aufgabennummer: 1_377 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: WS.1 In einer Urne befinden sich zwei Kugeln, die mit den Zahlen 0 bzw. 1
Die standardisierte schriftliche Reifeprüfung in Mathematik 27. Ermitteln Sie die Steigung der dieser Geraden entsprechenden linearen Funktion!
Die standardisierte schriftliche Reifeprüfung in Mathematik 27 1. Offenes Antwortformat Die Antwort soll mit eigenen Worten formuliert werden bzw. darf völlig frei erfolgen. Gegeben ist die Gleichung einer
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 28. September Mathematik. Teil-1-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 28. September 2017 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Zahlenmengen Jede natürliche Zahl ist eine rationale Zahl. Jede
Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS)
Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Inhalt Teil-1-Übungsaufgaben Inhaltsbereich Algebra und Geometrie (AG) 8 (1) Ganze
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 9. Mai Mathematik. Teil-1-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 9. Mai 2018 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Zusammenhang zweier Variablen Wenn a kleiner als null ist, dann ist auch
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 15. Jänner Mathematik. Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 15. Jänner 2016 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Aussagen über Zahlen Jede reelle Zahl ist eine komplexe Zahl. Jede
Mathematik. 21. September 2015 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 21. September 2015 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Gleichungen x = 2x x 2 = x x 3 = 1 Ein Punkt ist genau dann zu geben,
Algebraische Begriffe
Bundesinstitut Wien Zentrum für Innovation & QuaftätsentwIcMuno Algebraische Begriffe Aufgabennummer: 1_001 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Multiple Choice (x aus 5) Grundkompetenz: AG 1.2 m
Name: Klasse: Modellschularbeit. Mathematik. März Teil-1-Aufgaben
Name: Klasse: Modellschularbeit Mathematik März 2014 Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Schülerin! Sehr geehrter Schüler! Das vorliegende Aufgabenpaket zu Teil 1 enthält 10 Aufgaben.
Diskrete Zufallsvariable*
Diskrete Zufallsvariable* Aufgabennummer: 1_327 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung
Kompetenzcheck. Mathematik (AHS) Aufgabenheft
Kompetenzcheck Mathematik (AHS) Aufgabenheft Hinweise zur Aufgabenbearbeitung Die Aufgaben dieses Kompetenzchecks haben einerseits freie Antwortformate, die Sie aus dem Unterricht kennen. Dabei schreiben
Modellierung mittels linearer Funktionen*
Modellierung mittels linearer Funktionen* Augabennummer: _36 Prüungsteil: Typ Typ Augabenormat: Multiple Choice ( aus 5) Grundkompetenz: FA.5 keine Hilsmittel erorderlich gewohnte Hilsmittel möglich besondere
Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. 9. Mai Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik 9. Mai 2014 Teil-1-Aufgaben Korrekturheft Aufgabe 1 Positive rationale Zahlen 0,9 10 3 0,01 Ein Punkt ist nur dann zu geben, wenn
Technologieeinsatz schriftlichen Reifeprüfung
9 Technologieeinsatz bei der schriftlichen Reifeprüfung T 9.01 Maturaaufgabe: Gleichungen 1 Gegeben sind fünf Gleichungen in der Unbekannten x. Aufgabenstellung: Welche dieser Gleichungen besitzt/besitzen
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 28. September Mathematik. Teil-1-Aufgaben
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 28. September 2017 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Name: Klasse:
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 20. September 2016 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 20. September Mathematik. Teil-1-Aufgaben
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 20. September 2016 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Schulstatistik* Das nachstehende Diagramm stellt für das Schuljahr 2009/10 folgende Daten dar:
Schulstatistik* Aufgabennummer: 1_331 Aufgabentyp: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: WS 1.1 Typ 1 T Typ Das nachstehende Diagramm stellt für das Schuljahr 009/10 folgende Daten dar:
Ereignisse. Möglicher Lösungsweg. Lösungsschlüssel
Bundes Institui Ereignisse Aufgabennummer _304 Aufgabenformat offenes Format keine Hilfsmittel Ereignisse Prüfungsteil: In einer Schachtel befinden sich 3 rote Kugeln, 20 grüne Kugeln und 47 blaue Kugeln.
Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Korrekturheft zur Probeklausur März 2014.
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Korrekturheft zur Probeklausur März 2014 Teil-1-Aufgaben Aufgabe 1 Gleichung interpretieren + y = 24 = 2y Ein Punkt ist genau dann
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Kompetenzcheck. Mathematik (AHS) Oktober Aufgabenheft
Kompetenzcheck Mathematik (AHS) Oktober 2013 Aufgabenheft Hinweise zur Aufgabenbearbeitung Die Aufgaben dieses Kompetenzchecks haben einerseits freie Antwortformate, die Sie aus dem Unterricht kennen.
Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung 14 Angabe für Prüfer/innen Hinweise zur
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 16. Jänner Mathematik. Teil-1-Aufgaben. öffentliches Dokument
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 16. Jänner 2015 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Oktober 216 Mathematik Kompensationsprüfung 1 Angabe für Prüfer/innen Hinweise zur
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
Die standardisierte schriftliche Reifeprüfung Mathematik AHS. Informationen unter
Die standardisierte schriftliche Reifeprüfung Mathematik AHS Informationen unter https://www.bifie.at/node/80 Konzept Das der Prüfung zugrunde liegende Konzept findet sich unter: https://www.bifie.at/system/files/dl/srdp_ma_konzept_2013-03-11.pdf
M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x
Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt
Antwortformate SRDP Angewandte Mathematik (BHS) Stand: 5. Jänner 2017
Antwortformate SRDP Angewandte Mathematik (BHS) Stand: 5. Jänner 2017 Die Beschreibung der bei der schriftlichen standardisierten Reife- und Diplomprüfung (SRDP) in Angewandter Mathematik vorkommenden
Schulstatistik* Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: WS 1.1
Schulstatistik* Aufgabennummer: 1_331 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Grundkompetenz: WS 1.1 Das nachstehende Diagramm stellt für das Schuljahr 2009/10 folgende Daten
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 12. Jänner Mathematik. Teil-1-Aufgaben
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 12. Jänner 2017 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 17. September Mathematik. Teil-1-Aufgaben
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 17. September 2014 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!
Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur Mai Teil-1-Aufgaben
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur Mai 203 Teil--Aufgaben Beurteilung Werden im Teil weniger als 7 von 0 Aufgaben richtig gelöst, wird die Arbeit mit
Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R.
Aufgabe 1 Zahlenmengen, quadratische Gleichungen Gegeben ist eine quadratische Gleichung a 0 mit a R. Kreuzen Sie die beiden zutreffenden Aussagen an! Diese Gleichung hat für einige a nur Lösungen aus
Boxplot zeichnen. Typ 2
Boxplot zeichnen Typ 1 S Aufgabennummer: 1_05 Prüfungsteil: Aufgabenformat: Konstruktionsformat Grundkompetenz: WS 1.3 keine Hilfsmittel gewohnte Hilfsmittel S erforderlich Typ besondere Technologie S
Boxplots zuordnen. Lösungsweg. Lösungsschlüssel Die Aufgabe gilt nur dann als richtig gelöst, wenn die vier Zuordnungen richtig erfolgt sind.
Bundes Institut Boxptot Aufgabennummer 1_159 Boxplot* Piüfungstea: Typ 1 Typ 2 WrV. V.. Aufgabenformat: fulultiple Choice (2 aus 5 Grundkompetenz: WS 1.1 i-j gewohnte Hilfsmittel - besondere Technotogie
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Mai 2017 Mathematik Kompensationsprüfung 1 Angabe für Prüfer/innen Hinweise zur
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. 9. Mai Teil-1-Aufgaben. öffentliches Dokument
Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik 9. Mai 2014 Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat! Das
Medikamentenabbau (1)*
Aufgabennummer: A_251 Medikamentenabbau (1)* Technologieeinsatz: möglich erforderlich T Der Abbau von Medikamenten im Körper kann näherungsweise durch exponentielle Modelle beschrieben werden. a) Die nachstehende
Mathematikaufgaben > Analysis > Kurvendiskussion/Funktionsuntersuchung
Michael Buhlmann Mathematikaufgaben > Analysis > Kurvendiskussion/Funktionsuntersuchung Aufgabe: a) Führe für die Sinusfunktion f ( x) = sin( x ) eine Kurvendiskussion durch, wobei die Funktion auf Definitions-
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 10. Mai Mathematik. Teil-1-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 10. Mai 2017 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Ganze Zahlen a 2 3 a Ein Punkt ist genau dann zu geben, wenn ausschließlich
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Oktober 2017 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise
Der Satz von Taylor. Kapitel 7
Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Oktober 217 Mathematik Kompensationsprüfung 1 Angabe für Prüfer/innen Hinweise zur
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 8. Mai Mathematik. Teil-1- und Teil-2-Aufgaben.
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 8. Mai 2019 Mathematik Teil-1- und Teil-2-Aufgaben Korrekturheft Beurteilung der Klausurarbeit Gemäß 38 Abs. 3 SchUG (BGBl. Nr. 472/1986
Mathematik. 17. September 2014 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 17. September 2014 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Aussagen über Zahlenmengen Reelle Zahlen mit periodischer oder endlicher
Einkommensverteilung
Einkommensverteilung Aufgabennummer: 2_31 Prüfungsteil: Typ 1 Typ 2 Grundkompetenzen: AG 2.4, AN 4.2, AN 4.3, FA 1.4, FA 1.7, FA 3.2, FA 4.1, FA 5.6, WS 1.1, WS 1.2 Der Statistiker Max Lorenz beschrieb
Die standardisierte schriftliche Reifeprüfung Mathematik AHS. Informationen unter https://www.bifie.at/node/80
Die standardisierte schriftliche Reifeprüfung Mathematik AHS Informationen unter https://www.bifie.at/node/80 Konzept Das der Prüfung zugrunde liegende Konzept findet sich unter: https://www.bifie.at/system/files/dl/srdp_ma_konzept_2013-03-11.pdf
Hohlspiegel. Aufgabennummer: 2_023 Prüfungsteil: Typ 1 Typ 2. Grundkompetenzen: a) AG 2.1, FA 1.8 b) FA 1.7, FA 1.8 c) AG 2.1, FA 1.
Hohlspiegel Aufgabennummer: 2_023 Prüfungsteil: Typ Typ 2 Grundkompetenzen: a) AG 2., FA.8 b) FA.7, FA.8 c) AG 2., FA.2 keine Hilfsmittel erforderlich gewohnte Hilfsmittel möglich besondere Technologie
