3.6.4 Rekursive Funktionen

Größe: px
Ab Seite anzeigen:

Download "3.6.4 Rekursive Funktionen"

Transkript

1 Klassifizierung von Funktionen mit Hilfe der Abstützrelation (Wenn eine Funktionsdefinition für f eine Funktion g aufruft, dann besteht zwischen beiden Definitionen die Relation f benutzt g ) Klasse 0 Klasse 1 alle vordefinierten Funktionen (Elementaroperationen) alle Funktionen, die nur Funktionen der Klasse 0 benutzen Klasse k+1 g { f 1, f 2,, f n }, wobei das zur höchsten Klasse gehörende f i der Klasse k zugeordnet ist Eine Funktion ist einfacher als eine andere, wenn sie einer Klasse mit kleinerer Nummer angehört Dieses bisherige Berechnungsmodell erfasst offenbar nicht alle Funktionen 123

2 Rekursive Funktionen: Rekursivität ist keine Eigenschaft einer Funktion (im Sinn einer Beziehung zwischen Ein und Ausgabedaten), sondern eine Eigenschaft einer konkreten Funktionsdefinition Eine Funktionsdefinition heisst rekursiv, wenn entweder f f gilt oder es Funktionsdefinitionen für g 1,..., g n gibt mit f g 1 g n f Eine wichtige Frage bei rekursiven Funktionen ist ihre Terminierung 124

3 Beispiel: Multiplikation (von ganzen Zahlen) durch sukzessive Addition x y = y + y y = y + (x 1) y x-mal (define (mult x y) (if (= x 0) 0 (+ y (mult (- x 1) y)))) Auswertung für (mult 2 3): (mult 2 3) (if (= 2 0) 0 (+ 3 (mult (- 2 1) 3))) (+ 3 (mult 1 3)) (+ 3 (if (= 1 0) 0 (+ 3 (mult (- 1 1) 3)))) (+ 3 (+ 3 (mult 0 3))) (+ 3 (+ 3 (if (= 0 0) 0 (+ 3 (mult (- 0 1) 3)))) (+ 3 (+ 3 0)) (+ 3 3) 6 125

4 Wie funktioniert Rekursion? Grundlage ist der Prozedurmechanismus: Eine angefangene Berechnung wird an der Stelle des Prozeduraufrufs unterbrochen. Die Stelle wird (zum Beispiel in Form einer Adresse) auf einen Stack gelegt. Auf Maschinenebene findet ein Sprung zum Code der aufgerufenen Prozedur statt. Nach Beendigung der aufgerufenen Prozedur findet ein Rücksprung zur Stelle der Unterbrechung statt. Die Rücksprungadresse wird dabei vom Stack entfernt. Auf dem Stack werden bei einem Prozeduraufruf verschiedene Daten gespeichert, die zusammen als Aktivierungsblock bezeichnet werden. Er existiert für jeden angefangenen, nicht beendeten Prozeduraufruf und enthält u. a. Rücksprungadresse, Parameterwerte, lokale Variable, und Returnwert 126

5 Die Entwicklung des Stacks wird im Stackprofil (SP) einer Berechnung dargestellt: Die Prozedur A ruft zweimal E, dann sich mit einer Rekursionstiefe von maximal 5, und schließlich B und C auf. Bis zu fünf Aktivierungsblöcke von A liegen gleichzeitig auf dem Stack. 127

6 Aufruf von (mult -2 3) terminiert nicht, da die Bedingung(= x 0) nie erfüllt wird (mult -2 3) (if (= -2 0) 0 (+ 3 (mult (- -2 1) 3))) (+ 3 (mult -3 3)) (+ 3 (if (= -3 0) 0 (+ 3 (mult (- -3 1) 3)))) (+ 3 (+ 3 (mult -4 3))) (+ 3 (+ 3 (if (= -4 0) 0 (+ 3 (mult (- -4 1) 3))))) (+ 3 (+ 3 (+ 3 (mult -5 3)))) 128

7 Berechnung von n! = n (n 1) (n 2) Rekursive Formulierung: 0! = 1 n! = n (n 1)! (define (fak n) (if (= n 0) 1 ( n (fak (- n 1))))) terminiert nur für n 0! Diese Art von Nicht-Terminierung lässt sich problemlos durch Überprüfung der übergebenen Parameter vermeiden 129

8 Es gibt aber Funktionen, bei denen eine Terminierung nicht möglich ist Beispiel: Die Collatz Folge (auch 3n+1 Problem, Hasse Algorithmus, Syracuse Folge genannt). Grundlage ist folgende Funktion f : N N: Damit wird die Collatz Folge einer ganzen Zahl n definiert: Mit anderen Worten: Man erhält die Collatz Folge von n, indem man ausgehend von n, solange immer wieder die Funktion f anwendet, bis die Eins erreicht ist. Bsp. N=11:

9 (define (f n) (if (even? n) (/ n 2) (+ (* 3 n) 1))) (define (collatz n) (if (= n 1) '(1) (cons n (collatz (f n))))) > (collatz 11) (list ) Die Funktion terminiert für alle Zahlen n, von denen aus man durch wiederholtes Anwenden von f irgendwann die Eins erreicht. Das Erreichen der Eins kann dauern: > (collatz 27) ( einiges ausgelassen ) > (length (collatz 27))

10 Vermutung: Die Funktion collatz terminiert für alle n > 0 Das ist bis heute weder bewiesen noch widerlegt worden. Bis ca. n = ist die Vermutung bestätigt (Es lohnt sich also kaum, ein Gegenbeispiel zu suchen!) Paul Erdös bot 500 Pfund für eine Lösung, sagte aber über das Collatz-Problem: Mathematics is not yet ready for such problems Bruce Schechter: Mein Geist ist offen. Die mathematischen Reisen des Paul Erdős. Basel, Birkhäuser

11 Terminierende Rekursion: Kombination aus aufgerufenen Funktionen und ihren aktuellen Parameterwerten wird in jedem Schritt einfacher : Die Parameter werden schrittweise so verändert, dass sie immer näher an einen Wert kommen, der die Abbruchbedingung erfüllt Wesentlich für Rekursion: Abstraktion durch Verwendung von Namen für Funktionen: Sonst könnten rekursive Funktionen nicht beschrieben werden, da der Name erst das Bezugnehmen auf eine Funktion in ihrer eigenen Definition erlaubt Konditionale zur Sicherstellung der Terminierung: Sonst könnten keine Abbruchbedingungen für die Rekursion formuliert werden 133

12 Charakterisierung von Rekursion: Direkte vs. indirekte Rekursion Lineare vs. nicht-lineare Rekursion Linear rekursiver Prozess vs. linear iterativer Prozess Endrekursion (tail recursion) 134

13 Direkte vs. Indirekte Rekursion: Stützt sich eine Funktion f auf sich selbst ab, d.h. ruft f sich in seinem Rumpf selbst auf, so spricht man von direkter Rekursion: f f Stützt f sich indirekt auf sich selbst ab, d.h. gibt es eine endliche Folge von Abstützschritten f g 1 g 2 K g k so spricht man von indirekter Rekursion f Beispiel: (define (f x) (+ (g x) 1)) (define (g x) (- (f x) 2)) beschreibt eine nicht-terminierende, indirekte Rekursion 135

14 Beispiel: (define (h1 n) (if (<= n 0) 0 (+ n (h2 (- n 1))))) (define (h2 n) (+ n (h1 (- n 1)))) berechnet mittels einer terminierenden, indirekten Rekursion (h1 3) (+ 3 (h2 2)) (+ 3 (+ 2 (h1 1))) (+ 3 (+ 2 (+ 1 (h2 0)))) (+ 3 (+ 2 (+ 1 (+ 0 (h1 1))))) (+ 3 (+ 2 (+ 1 (+ 0 0)))) (+ 3 (+ 2 (+ 1 0))) (+ 3 (+ 2 1)) (+ 3 3) 6 n i =0 i 136

15 Beispiel: Indirekte Rekursion Der Aufruf (even l) listet die Elemente von l mit geradem Index (Index beginnt mit 0), (odd l) gibt die Elemente mit ungeradem Index zurück (define (even l) (define (odd l) (if (empty? l) empty (cons (first l) (odd (rest l))))) > (define l (list )) > (even l) (list 0 2) > (odd l) (list 1 3) (cond [(empty? l) empty] [(empty? (rest l)) empty] [else (even (rest l))])) 137

16 Ein wichtiges Beispiel für indirekte Rekursion sind Parser. Die Syntax vieler Programmiersprachen ist rekursiv definiert Beispiel: In Scheme ist ein Ausdruck ein atomarer Ausdruck oder eine Liste. Eine Liste wiederum ist ein Klammerpaar, zwischen dem eine Anzahl von Ausdrücken stehen Der Parser für die Syntax von Scheme enthält typischerweise zwei Funktionen parseexpr und parselist, die sich wechselseitig aufrufen 138

17 Lineare Rekursion: Eine Funktion heisst linear rekursiv, wenn jede Auswertung des Rumpfes zu höchstens einem weiteren rekursiven Aufruf führt. Entscheidend ist der während der Programmausführung ablaufende Prozess, nicht die textuelle Definition der Funktion. Enthält der Rumpf einer Funktion nur einen rekursiven Aufruf, so kann man statisch, d.h. ohne Berücksichtigung der Programmausführungen, lineare Rekursion feststellen Beispiel: (define (modulo in modul) (cond [(>= in modul) (modulo (- in modul) modul)] [(< in 0) (modulo (+ in modul) modul)] [else in])) Modulo-Funktion für modul N und beliebige Eingaben in Z linear rekursive Funktion mit mehreren statischen Aufrufmöglichkeiten 139

18 Nicht-lineare Rekursion: Erfolgen bei der Auswertung des Rumpfes einer Funktion mehrere rekursive Aufrufe, so spricht man von nichtlinearer oder Baumrekursion Beispiel: Berechnung der Folge der Fibonacci-Zahlen, in der jede Zahl die Summe der beiden vorhergehenden Zahlen ist: Allgemeine Definition der Fibonacci-Zahlen: fib(0) = 0, fib(1) = 1, n 2: fib(n) = fib(n 1) + fib(n 2) (define (fib n) (cond [(= n 0) 0] [(= n 1) 1] [else (+ (fib (- n 1)) (fib (- n 2)))])) 140

19 Auswertung im Substitutionsmodell Berechnungsprozess: (fib 5) (+ (fib 4) (fib 3)) (+ (+ (fib 3) (fib 2))(+ (fib 2) (fib 1))) (+ (+ (+ (fib 2) (fib 1))(+ (fib 1) (fib 0))) (+ (+ (fib 1) (fib 0)) 1)) (+ (+ (+ (+ (fib 1) (fib 0)) 1)(+ 1 0)) (+ (+ 1 0) 1)) (+ (+ (+ (+ 1 0) 1) 1) (+ 1 1)) (+ (+ (+ 1 1) 1) 2) (+ (+ 2 1) 2) (+ 3 2) 5 141

20 Baumdarstellung des Berechnungsprozesses: 1 0 fib 5 fib 4 fib 3 fib 3 fib 2 fib 2 fib 1 fib 2 fib 1 fib 1 fib 0 fib 1 fib 0 1 fib 1 fib Die bei der Auswertung auftretenden Aufrufe von fib verzweigen dabei und bilden eine Baumstruktur. Das führt in der Regel dazu, dass die Anzahl der Aufrufe von fib sehr schnell anwächst 142

21 Diese Implementierung ist extrem langsam. Wenn t n die Rechenzeit für (fib n) bezeichnet, dann gilt: Die Rechenzeit wächst also exponentiell mit n. Das Verfahren ist deshalb so ineffizient, weil für die Berechnung von (fib n) jeder Wert von (fib k), k < n-1, mehrfach berechnet wird. Z.B. wird (fib 1) genau (fib n) mal aufgerufen. 143

22 Man kann den Aufrufbaum von (fib n) auch explizit mittels desselben Prinzips der Baumrekursion berechnen (define (fibtree n) (cond [(= n 0) (list 0)] [(= n 1) (list 1)] [else (list n (fibtree (- n 2)) (fibtree (- n 1)))])) > (fibtree 5) (list 5 (list 3 (list 1) (list 2 (list 0) (list 1))) (list 4 (list 2 (list 0) (list 1)) (list 3 (list 1) (list 2 (list 0) (list 1))))) 144

23 Es existiert effizientere Realisierung der Fibonacci-Zahlen. Die ultimative Lösung besteht in der Anwendung der analytischen Formel: die mithilfe von Methoden aus der diskreten Mathematik (z.b. erzeugende Funktionen) hergeleitet werden kann 145

24 Exkurs: Goldener Schnitt Die Zahl (1+ 5)/2 ist auch als Goldener Schnitt bekannt. Betrachten wir ein Rechteck mit Seitenlängen s und r s Schneiden wir von diesem Rechteck ein Quadrat ab, so verbleibt ein Rechteck mit Seitenlängen r und s r. Besimmt man nun die Werte für s und r so, dass die beiden Rechtecke genau dasselbe Seitenverhältnis haben, also so erhält man genau s r = 1+ p 5 2 ¼ 1:6181::: 146

25 Exkurs: Goldener Schnitt Streckenverhältnisse im Goldenen Schnitt werden in der Kunst und Architektur oft als ideale Proportion und als Inbegriff von Ästhetik und Harmonie angesehen. Darüber hinaus tritt das Verhältnis auch in der Natur in Erscheinung und zeichnet sich durch eine Reihe interessanter mathematischer Eigenschaften aus. Beim Parthenontempel in Athen bildet der Säuleneingang hierbei ein goldenes Rechteck, also ein Rechteck, dessen Seiten sich genau wie der goldene Schnitt verhalten. Auch verhält sich die Höhe bis zum Dach zur Höhe der Säulen wie der goldene Schnitt. 147

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider

Mehr

Fallstudie: Nim Spiel

Fallstudie: Nim Spiel Fallstudie: Nim Spiel Angeblich chinesischen Ursprungs (Jianshizi) Interessant für Spieltheorie: vollständig analysierbar Frühzeitig computerisiert 1939 Nimatron (Weltausstellung New York) 1951 Nimrod

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public

Mehr

12. Rekursion Grundlagen der Programmierung 1 (Java)

12. Rekursion Grundlagen der Programmierung 1 (Java) 12. Rekursion Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 24. Januar 2006 Einordnung im Kontext der Vorlesung

Mehr

Software Entwicklung 1. Rekursion. Beispiel: Fibonacci-Folge I. Motivation. Annette Bieniusa / Arnd Poetzsch-Heffter

Software Entwicklung 1. Rekursion. Beispiel: Fibonacci-Folge I. Motivation. Annette Bieniusa / Arnd Poetzsch-Heffter Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter AG Softech FB Informatik TU Kaiserslautern Rekursion Bieniusa/Poetzsch-Heffter Software Entwicklung 1 2/ 27 Motivation Beispiel: Fibonacci-Folge

Mehr

Objektorientierte Programmierung (ZQ1u2B)

Objektorientierte Programmierung (ZQ1u2B) Objektorientierte Programmierung (ZQ1u2B) Woche 4 Rekursion Christopher Scho lzel Technische Hochschule Mittelhessen 4. November 2015 Inhalt Rekursion Lineare Rekursion Verzweigte Rekursion Verschränkte

Mehr

Fallstudie: Nim Spiel

Fallstudie: Nim Spiel Fallstudie: Nim Spiel Angeblich chinesischen Ursprungs (Jianshizi) Interessant für Spieltheorie: vollständig analysierbar Frühzeitig computerisiert 1939 Nimatron (Weltausstellung New York) 1951 Nimrod

Mehr

Mathematische Rekursion

Mathematische Rekursion Rekursion Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die Funktion erscheint in ihrer eigenen Definition. Mathematische Rekursion o Viele mathematische

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Funktionen; Rekursion

Funktionen; Rekursion restart; Der Operator - Funktionen; Rekursion Mit dem - -Operator definiert man eine Funktion (Abbildung. '-' hat (zunächst einen Namen (den Formalparameter als linken und einen Ausdruck als rechten Operanden.

Mehr

Inhalt Kapitel 2: Rekursion

Inhalt Kapitel 2: Rekursion Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

Großübung zu Einführung in die Programmierung

Großübung zu Einführung in die Programmierung Großübung zu Einführung in die Programmierung Daniel Bimschas, M.Sc. Institut für Telematik, Universität zu Lübeck https://www.itm.uni-luebeck.de/people/bimschas Inhalt 1. Besprechung Übung 4 Iteration

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (1)

Algorithmen & Programmierung. Rekursive Funktionen (1) Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden

Mehr

13 Berechenbarkeit und Aufwandsabschätzung

13 Berechenbarkeit und Aufwandsabschätzung 13 Berechenbarkeit und Aufwandsabschätzung 13.1 Berechenbarkeit Frage: Gibt es für jede Funktion, die mathematisch spezifiziert werden kann, ein Programm, das diese Funktion berechnet? Antwort: Nein! [Turing

Mehr

Programmieren 1 C Überblick

Programmieren 1 C Überblick Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen

Mehr

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010 Informatik I 9. Nachweis von Programmeigenschaften Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 2. Dezember 2010 Jan-Georg Smaus (Universität Freiburg) Informatik I 2. Dezember 2010 1 / 30 Informatik

Mehr

15. Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Aufrufstapel, Bau eines Taschenrechners, BNF, Parsen

15. Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Aufrufstapel, Bau eines Taschenrechners, BNF, Parsen 453 15. Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Aufrufstapel, Bau eines Taschenrechners, BNF, Parsen Mathematische Rekursion 454 Viele mathematische Funktionen sind sehr natürlich rekursiv

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

26 Hierarchisch strukturierte Daten

26 Hierarchisch strukturierte Daten Algorithmik II Peter Wilke Sommersemester 2005 Teil III Funktionale Programmierung 26 Hierarchisch strukturierte Daten Peter Wilke Algorithmik II Sommersemester 2005 1 Peter Wilke Algorithmik II Sommersemester

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Grundlagen der Programmierung (Vorlesung 15)

Grundlagen der Programmierung (Vorlesung 15) Grundlagen der Programmierung (Vorlesung 15) Ralf Möller, FH-Wedel Vorige Vorlesung Blöcke, Funktionen Auswertestrategien Inhalt dieser Vorlesung Prozeduren Rekursion Lernziele Grundlagen der systematischen

Mehr

... direkte Umsetzung in Scheme. Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion

... direkte Umsetzung in Scheme. Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion Stand: Wir kennen Elementare ( primitive ) Operationen Kombination dieser Operationen Abstraktion zusammengesetzter Operationen

Mehr

Lösung Probeklausur Informatik I

Lösung Probeklausur Informatik I Lösung Probeklausur Informatik I 1 Lösung Aufgabe 1 (5 Punkte) Algorithmen und Programme Was ist der Unterschied zwischen einem Algorithmus und einem Programm? Ein Algorithmus ist eine Vorschrift zur Durchführung

Mehr

11. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Mathematische Rekursion. Rekursion in Java: Genauso! Unendliche Rekursion. n!

11. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Mathematische Rekursion. Rekursion in Java: Genauso! Unendliche Rekursion. n! Mathematische Rekursion 11. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration, Lindenmayer Systeme Viele mathematische Funktionen sind sehr natürlich

Mehr

12. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Lernziele. Mathematische Rekursion. Rekursion in Java: Genauso! n! =

12. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Lernziele. Mathematische Rekursion. Rekursion in Java: Genauso! n! = Lernziele Sie verstehen, wie eine Lösung eines rekursives Problems in Java umgesetzt werden kann. Sie wissen, wie Methoden in einem Aufrufstapel abgearbeitet werden. 12. Rekursion Mathematische Rekursion,

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 18 Einstieg in die Informatik mit Java Klassenvariablen, Klassenmethoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 18 1 Klassenmethoden 2 Besonderheiten von Klassenmethoden

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Rekursive Prozeduren zu charakterisieren. Terminierung von rekursiven Prozeduren mit Hilfe von geeigneten Abstiegsfunktionen

Mehr

Verwendung Vereinbarung Wert einer Funktion Aufruf einer Funktion Parameter Rekursion. Programmieren in C

Verwendung Vereinbarung Wert einer Funktion Aufruf einer Funktion Parameter Rekursion. Programmieren in C Übersicht Funktionen Verwendung Vereinbarung Wert einer Funktion Aufruf einer Funktion Parameter Rekursion Sinn von Funktionen Wiederverwendung häufig verwendeter nicht banaler Programmteile Wiederverwendung

Mehr

Informatik für Schüler, Foliensatz 18 Rekursion

Informatik für Schüler, Foliensatz 18 Rekursion Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 26. März 2009 1/10 Informatik für Schüler, Foliensatz 18 Rekursion Prof. G. Kemnitz Institut für Informatik, Technische Universität

Mehr

Kapitel 7. Rekursionsgleichungen. Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen

Kapitel 7. Rekursionsgleichungen. Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen Kapitel 7 Rekursionsgleichungen p. /38 Kapitel 7 Rekursionsgleichungen Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen Kapitel 7 Rekursionsgleichungen p. 2/38 Allgemeines

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (2)

Algorithmen & Programmierung. Rekursive Funktionen (2) Algorithmen & Programmierung Rekursive Funktionen (2) Arten von Rekursion Direkte Rekursion Den Aufruf einer Funktion direkt aus ihrem Funktionskörper heraus bezeichnet man als direkte Rekursion (so haben

Mehr

Klassenvariablen, Klassenmethoden

Klassenvariablen, Klassenmethoden Einstieg in die Informatik mit Java, Vorlesung vom 11.12.07 Übersicht 1 Klassenmethoden 2 Besonderheiten von Klassenmethoden 3 Aufruf einer Klassenmethode 4 Hauptprogrammparameter 5 Rekursion Klassenmethoden

Mehr

Kontrollfluss. man Verzweigungen und Sprünge. o bisher linear (von oben nach unten) o Für interessante Programme braucht

Kontrollfluss. man Verzweigungen und Sprünge. o bisher linear (von oben nach unten) o Für interessante Programme braucht Kontrollanweisungen Kontrollfluss o bisher linear (von oben nach unten) o Für interessante Programme braucht man Verzweigungen und Sprünge Kontrollfluss o bisher linear (von oben nach unten) o Für interessante

Mehr

Methoden. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom

Methoden. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom Einstieg in die Informatik mit Java, Vorlesung vom 2.5.07 Übersicht 1 2 definition 3 Parameterübergabe, aufruf 4 Referenztypen bei 5 Überladen von 6 Hauptprogrammparameter 7 Rekursion bilden das Analogon

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

8 Programmieren mit Akkumulatoren

8 Programmieren mit Akkumulatoren 8 Programmieren mit Akkumulatoren Bei den rekursiven Prozeduren der vergangenen Kapitel war der Wert eines rekursiven Aufrufs stets unabhängig vom Kontext: Die Fakultät von 4 wußte nicht, daß sie später

Mehr

Folgen und Funktionen in der Mathematik

Folgen und Funktionen in der Mathematik Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird

Mehr

Speicher und Adressraum

Speicher und Adressraum Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode

Mehr

Überblick. Notwendigkeit der Rekursion (1)

Überblick. Notwendigkeit der Rekursion (1) Überblick 1. Die Prozedur als Kernbegriff der Programmierung 2. Prozeduren zur Bildung von Abstraktionsbarrieren: Lokale Deklarationen 3. Prozeduren versus Prozesse 4. Ressourcenbedarf Größenordnungen

Mehr

FHZ. K13 Rekursion. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt

FHZ. K13 Rekursion. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt Inhalt 1. Einführung 1. Beispiel: Fakultät 2. Beispiel: Zahlenfolge 3. Beispiel: Formale Sprache 4. Unterschied Iteration/Rekursion 2. Rekursive Methoden 1. Beispiel: Fakultät 2. Beispiel: "Türme

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Zusammengesetzte Datentypen in Haskell WS 2012/2013 Zusammengesetzte Datentypen Tupel List String Zusammengesetzte Datentypen Tupel-Datentyp Ein Tupel ist eine Ansammlung

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 11 Rekursion Jun.-Prof. Dr.-Ing. Anne Koziolek Version 1.1 ARBEITSGRUPPE ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING (ARE) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Methoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Methoden 2 Methodendefinition 3 Parameterübergabe, Methodenaufruf

Mehr

Grundlagen der Programmierung 2 (1.B)

Grundlagen der Programmierung 2 (1.B) Grundlagen der Programmierung 2 (1.B) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 20. April 2011 Aufrufhierarchie und Rekursive Definitionen f, g, f i seien Haskell-definierte

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

Grundlagen der Programmierung 2. Operationale Semantik

Grundlagen der Programmierung 2. Operationale Semantik Grundlagen der Programmierung 2 Operationale Semantik Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 29. April 2009 Semantik von Programmiersprachen Semantik = Bedeutung

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing

Mehr

C.3 Funktionen und Prozeduren

C.3 Funktionen und Prozeduren C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Matthias Wieczorek Computer-Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Dienstag, den 08.04.03 Kapitel 4 Laufzeit 4.1 Vorbemerkungen Im folgenden betrachten

Mehr

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Die Natur rekursiver Funktionen SS 2011 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Rekursive Algorithmen

Rekursive Algorithmen Rekursive Algorithmen In der Mathematik sind viele Funktionen rekursiv definiert. Der Begriff der Rekursion beinhaltet, dass zur Definition einer Funktion diese selbst wieder mit benutzt wird, allerdings

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.

Mehr

Stackmaschine; Speicheradressierung

Stackmaschine; Speicheradressierung Stackmaschine; Speicheradressierung Erweiterung um globalen Speicher (Heap, Halde) pro Speicherplatz eine Zahl. Notation ist als Array SP [0..]. Zugriff mittels Adresse (Index): eine Zahl i.a.: Zahlen

Mehr

Kapitel 08: Rekursion und Terminierung Software Entwicklung 1

Kapitel 08: Rekursion und Terminierung Software Entwicklung 1 Kapitel 08: Rekursion und Terminierung Software Entwicklung 1 Annette Bieniusa, Mathias Weber, Peter Zeller Rekursion ist eine elegante Strategie zur Problemlösung, die es erlaubt eine Problemstellung

Mehr

Grundlagen der Programmierung 2 (1.B)

Grundlagen der Programmierung 2 (1.B) Grundlagen der Programmierung 2 (1.B) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 27. April 2012 Beispiel: Aufrufhierarchie quadrat x = x*x quadratsumme x y = (quadrat

Mehr

1 Erste Schritte in Scheme

1 Erste Schritte in Scheme 1 Erste Schritte in Scheme Die Programmiersprache Scheme geboren 1975 Eltern: Gerald Jay Sussman and Guy Lewis Steele Jr. Ort: Massachusetts Institute of Technology aktuelle Beschreibung: R6RS (September

Mehr

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 5. Algorithmen K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 21. Okt. 2015 1. Berechne 2 n. Zu lösende Probleme 2. Berechne die Fakultät einer nat. Zahl: n! = 1 * 2 *... n 3. Entscheide,

Mehr

Brückenkurs Programmieren

Brückenkurs Programmieren Brückenkurs Programmieren Funktionen, Dokumentation, Rekursion Christopher Schölzel Technische Hochschule Mittelhessen 02.10.2013 Christopher Schölzel (THM) Brückenkurs Programmieren 02.10.2013 1 / 31

Mehr

Beispiele: Funktionsabstraktion (3) Funktionsdeklaration. Funktionsdeklaration (2) Funktionsdeklaration (3) 3. Abstraktion über Funktionsbezeichner:

Beispiele: Funktionsabstraktion (3) Funktionsdeklaration. Funktionsdeklaration (2) Funktionsdeklaration (3) 3. Abstraktion über Funktionsbezeichner: Beispiele: Funktionsabstraktion (3) Funktionsdeklaration 3. Abstraktion über Funktionsbezeichner: Ausdruck: f (f x) Abstraktion: \ f x -> f (f x) Mit Bezeichnervereinbarung: twice = \ f x -> f (f x) erg

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Projekt Systementwicklung

Projekt Systementwicklung Projekt Systementwicklung Effiziente Codierung: Laufzeitoptimierung Prof. Dr. Nikolaus Wulff Effiziente Codierung Der Wunsch effizienten Code zu schreiben entstammt mehreren Quellen: Zielplattformen mit

Mehr

Algorithmen und Datenstrukturen"

Algorithmen und Datenstrukturen Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen

Mehr

EINI WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12

EINI WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12 EINI WiMa Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 11/12 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16 C++ Teil 4 Sven Groß IGPM, RWTH Aachen 30. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 4 30. Apr 2015 1 / 16 Themen der letzten Vorlesung Funktionen: Definition und Aufruf Wert- und Referenzparameter,

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Rekursive Funktionen (1)

Rekursive Funktionen (1) Rekursive Funktionen (1) Rekursive Algorithmen Wenn Gesamtlösung durch Lösen gleichartiger Teilprobleme erzielbar: Rekursion möglich Beispiel: Fakultät einer ganzen Zahl n: n i n! = i=1 für n > 0 1 für

Mehr

2.5 Listen. Kurzschreibweise: [42; 0; 16] Listen werden mithilfe von [] und :: konstruiert.

2.5 Listen. Kurzschreibweise: [42; 0; 16] Listen werden mithilfe von [] und :: konstruiert. 2.5 Listen Listen werden mithilfe von [] und :: konstruiert. Kurzschreibweise: [42; 0; 16] # let mt = [];; val mt : a list = [] # let l1 = 1::mt;; val l1 : int list = [1] # let l = [1;2;3];; val l : int

Mehr

Rekursive Funktionen (1)

Rekursive Funktionen (1) Rekursive Funktionen (1) Rekursive Algorithmen Wenn Gesamtlösung durch Lösen gleichartiger Teilprobleme erzielbar: Rekursion möglich Beispiel: Fakultät einer ganzen Zahl n: nn ii nn! = ii=1 für nn > 0

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

CS1005 Objektorientierte Programmierung

CS1005 Objektorientierte Programmierung CS1005 Objektorientierte Programmierung Bachelor of Science (Informatik) Funktionen / statische Methoden - Definition - Verwendung - Ausführung Seite 1 Th Letschert Funktionen: Definition und Verwendung

Mehr

Stack. Seniorenseminar Michael Pohlig

Stack. Seniorenseminar Michael Pohlig Stack Seniorenseminar 21.06.2013 Michael Pohlig (pohlig@kit.edu) Übersicht 1. Axiomatik eins Kellers und seine Software- Realisierung 2. Bedeutung der Rekursion in der Mathematik 3. Rekursive Programmierung.

Mehr

Algorithmen und Datenstrukturen"

Algorithmen und Datenstrukturen Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen

Mehr

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte:

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte: Klausur Informatik 1 SS 08 Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte Gesamtpunkte: Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x Rekursive Definition der Fibonacci-Zahlen Erste Werte f 0 = 0, f 1 = 1, f n = f n 1 + f n 2 (n 2) n 0 1 2 3 4 5 6 7 8 9 10... 25... f n 0 1 1 2 3 5 8 13 21 34 55... 75025... Exakte Formel (de Moivre, 1718)

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

Teil 7: Rekursion; Imperative Programme

Teil 7: Rekursion; Imperative Programme 1 Teil 7: Rekursion; Imperative Programme Terminierend rekursive Funktionen Im Tutorial: Kap. 3.5 / 9.2 Definition mit recdef, Nachweis der Terminierung Beweise über rekursive Funktionen Imperative Programme

Mehr

8 Anwendung: Suchen. Folge a ganzer Zahlen; Element x. Wo kommt x in a vor?

8 Anwendung: Suchen. Folge a ganzer Zahlen; Element x. Wo kommt x in a vor? 8 Anwendung: Suchen Gegeben: Gesucht: Folge a ganzer Zahlen; Element x Wo kommt x in a vor? Naives Vorgehen: Vergleiche x der Reihe nach mit a[0], a[1], usw. Finden wir i mit a[i] == x, geben wir i aus.

Mehr

Kapitel 2. Funktionale Programmierung. Programmieren 1 G. Wittum, G-CSC, Universität Frankfurt

Kapitel 2. Funktionale Programmierung. Programmieren 1 G. Wittum, G-CSC, Universität Frankfurt Kapitel 2 Funktionale Programmierung Kapitel 2 Funktionale Programmierung Die Welt als Ausdruck Funktionales Programmieren Erstes Programmierparadigma: - einfache Prinzipien - sehr sauber (klare Semantik)

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I SS 2011 Funktionstypen Funktionen haben einen Datentyp, der folgende allgemeine Form hat: functionname :: T 1 -> T 2, wobei T 1, T 2 wiederum beliebige Datentypen sind Beispiel: T 1 T 2 Der Datentyp

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Bisher. Programme, Sequenzen von Formen. Ausdrücke und ihre Auswertung (Substitutionsmodell)

Bisher. Programme, Sequenzen von Formen. Ausdrücke und ihre Auswertung (Substitutionsmodell) Bisher Programme, Sequenzen von Formen Ausdrücke und ihre Auswertung (Substitutionsmodell) Konstruktionsanleitung für Prozeduren Kurzbeschreibung Sorten und Verträge Gerüst Testfälle Rumpf ausfüllen Testen

Mehr

3AA. Prozeduren und Rekursion Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006

3AA. Prozeduren und Rekursion Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006 3AA Prozeduren und Rekursion 29.11.05 Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006 3AA Prozeduren Berechnete Sprungadresse Ausführung bestimmter Anweisungen durch Schleifen Stattdessen:

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr