3.2 Arbeitspunkteinstellung
|
|
|
- Lucas Solberg
- vor 9 Jahren
- Abrufe
Transkript
1 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung Arbeitspunkteinstellung Wiederholung: Der Arbeitspunkt legt die Großsignalgrößen,,,,, und U CE, sowie die Kleinsignalgrößen r BE, S und g EA fest. bestimmt maximal möglichen Aussteuerbereich soll für große Aussteueramplituden in die Mitte des Aussteuerbereiches (U CE, min...u ) gelegt werden Weiters soll der Arbeitspunkt einer Transistorschaltung möglichst stabil sein! Für uns ist es an dieser Stelle ausreichend zu fordern, dass der Kollektorstrom im Arbeitspunkt (, ) sich zufolge schwankender äußerer Einflüsse (z.b. Temperaturschwankungen) nicht ändert und möglichst unabhängig von Parameterstreuungen des Transistors einzustellen ist. Temperaturabhängigkeit der Transistorkennlinie Die Parameter I S und U T in der Transistorgleichung sind temperaturabhängig. Es gilt: = I S (e U T 1) (3.1) I S = I S e W G k B T und U T = k B T e (3.5) wobei W G =1.1 ev in Silizium, k B = J/K und e = C. Diese Temperaturabhängigkeit bewirkt, dass sich die Transferkennlinie Glg. 3.1 und die Eingangskennlinie = ( )/B um ca. 2 mv/k hin zu niedrigeren Spannungen verschieben. Der Einfluss der Temperatur auf die Transferkennlinie und ein Ersatzschaltbild eines temperaturabhängigen Transistors, der durch die Hintereinanderschaltung eines temperaturunbhängigen Transistors und einer temperaturabhängigen Spannungsquelle modelliert wird, sind in Abb. 3.4 dargestellt.
2 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 29 Transistor auf Temperatur Transistor auf Bezugstemperatur Abbildung 3.4: Temperaturabhängigkeit des Transistors Streuung der Großssignalverstärkung Bei Transistoren vom selben Typ kann die Stromverstärkung B in großen Bereichen schwanken. (Üblicherweise Schwankungen im Bereich von B ist /B nom = 3%...+5%). Zusätzlich ist B i.a. nicht konstant, sondern z.b. auch und temperaturabhängig. Die Auswirkung dieser Bauteilstreuung auf den möglichen Basisstrombereich bei gegebener Transferkennlinie sowie der daraus resultierende Streubereich in der Stromsteuerkennlinie sind in Abb. 3.5 dargestellt. Abbildung 3.5: Streuung der Großsignalverstärkung B Spannungs- und Stromeinstellung Die Temperaturabhängigkeit der Transistorkennlinien und die Streuung der Großsignalverstärkung werfen gewissermaßen Schwierigkeiten auf, wenn man fordert, dass der Kollektorstrom im AP bei sich ändernder Temperatur konstant bleibt und sich unabhängig von der tatsächlichen Großsingalverstärkung und fixer Beschaltung des Transistors auf einen vorgegebenen Wert, soll einstellt. (Bei Großserienproduktion z.b. kann allein aus Kostengründen nicht jede Transistorschaltung entsprechend des tatsächlichen B ist nachkalibriert werden.) Die Auswirkung der Temperaturabhängigkeit der Transistorkennlinien und der Streuung
3 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 3 der Großsignalverstärkung auf den Arbeitspunkt soll nun für zwei verschiedene Möglichkeiten der AP-Einstellung (Spannungs- und Stromeinstellung) diskutiert werden. Spannungseinstellung Stromeinstellung - starke Temperaturabhängigkeit + keine Temperaturabhängigkeit + keine Abhängigkeit - starke Abhängigkeit Basis-Spannungsteiler und Basis-Vorwiderstand Der zusätzliche schaltungstechnische Aufwand zur Realisierung der Basisspannungsquelle bzw. der Basisstromquelle kann durch einen Basis-Spannungsteiler bzw. Basis-Vorwiderstand eliminiert werden. Im Folgenden zeichnen wir die Spannungsquelle zur Versorgung U nicht mehr explizit ein sondern zeichnen an den Punkten in der Schaltung, die auf Potential U liegen einen Pfeil ein. Die Punkte, die auf Bezugspotential liegen werden mit einem waagrechten Strich eingezeichnet. Um den Arbeitspunkt (,,,,, ) grafisch zu ermitteln müssen Lastgeraden in die Transfer bzw. in die Eingangskennlinie eingezeichnet werden. (Es wird dabei angenommen, dass U CE, >U CE, min.)
4 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 31 Basis-Spannungsteiler Basis-Vorwiderstand Beide Schaltungen können in folgende Ersatzschaltung übergeführt werden. Funktionen der Arbeitsgeraden Die Arbeitsgeraden werden für die jeweilige Schaltung in die Transfer- bzw. in die Eingangskennlinie eingezeichent: + geringe Abhängigkeit - starke Temperaturabhängigkeit + kaum Temperaturabhängigkeit - starke Abhängigkeit
5 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 32 Strom- und Spannungsgegenkopplung Regelung des AP Stromgegenkopplung Spannungsgegenkopplung Durch eine Ersatzspannungsquelle anstatt des Basisspannungsteilers erhält man: Die Arbeitsgeraden werden wieder für die jeweilige Schaltung in die Transfer- bzw. in die Eingangskennlinie eingezeichent: Flache AG zf. + geringe Temperaturabhängigkeit + geringe Abhängigkeit + kaum Temperaturabhängigkeit + geringe Abhängigkeit In beiden Fällen schön zu sehen: Regelung von (Kompensierung von B-Streuung) Durch die Gegenkopplung stellt sich für zu große B ein kleinerer ein und umgekehrt.
6 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 33 Aufgabe 13 Arbeitspunkteinstellung für den Bipolartransistor BC 546 B In diesem Beispiel sollen anhand des Bipolartransistors BC 546 B (siehe Datenblatt in Anhang B auf Seite 46) die soeben beschriebenen Varianten der Arbeitspunkteinstellung dimensioniert werden. In diesem Beispiel soll mit den Größen aus dem Datenblatt gerechnet werden. Kennlinien, die nicht im Datenblatt enthalten sind wurden mit einem CAD Programm für den BC 546 B aufgenommen. In den folgenden Beispielen soll, = 1 ma eingestellt werden. Wenn nötig, nehmen Sie (in Analogie zum Datenblatt) U CE, = 5 V an. Überlegen Sie, für welche Fälle die Annahme,.7 V zulässig ist und wenden Sie diese Annahme in den jeweiligen Fällen an. a) Spannungs- und Stromeinstellung (a) Zeichnen Sie die Schaltungen zur Spannungs- und Stromeinstellung (b) Welche Spannung, bzw. welchen Strom, müssen Sie (nominell) einprägen, um einen Strom, = 1 ma einzustellen? - Welcher Großsignalverstärkung entspricht das? (c) Bestimmen Sie jeweils die Ströme,, min und,, max grafisch (d) Welche Vor- und Nachteile haben diese Schaltungen und welche Probleme können bei dieser Art der Arbeitspunkteinstellung auftreten? 1 1 IC[mA], COLLECTOR CURRENT 1 1 VCE = 5V C 5 C IB IC V BE[V], BASE-EMITTER VOLTAGE
7 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung C 2 C C 2 C b) Basis-Spannungsteiler und Basis-Vorwiderstand (a) Zeichnen Sie die Schaltungen für mit Basisspannungsteiler und Basisvorwiderstand (b) Für welche Schaltung ist die Annahme,.7 V zulässig? Warum (nicht)? (c) Dimensionieren Sie die Widerstände R 1, R 2 und R. Nehmen sie für den Bassis- Spannungsteiler I 2 =1. Welche Vorteile und Nachteile hat dies z.b. gegenüber der Annahme I 2 =1?
8 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 35 (d) Bestimmen Sie jeweils die Ströme,, min und,, max grafisch (e) Welche Vor- und Nachteile haben diese Schaltungen und welche Probleme können bei dieser Art der Arbeitspunkteinstellung auftreten? 4 5 C 2 C 4 5 C 2 C c) Strom- und Spannungsgegenkopplung (a) Zeichnen Sie die Schaltungen für Strom- und Spannungsgegenkopplung (b) Für welche Schaltung ist die Annahme,.7 V zulässig? Warum (nicht)? (c) Dimensionieren Sie die Widerstände R 1, R 2 und R E (Annahme U RE =1V) sowie R und R C. Nehmen sie für den Bassis-Spannungsteiler I 2 =1. Welche Vorteile und Nachteile hat dies z.b. gegenüber der Annahme I 2 =1?
9 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 36 (d) Bestimmen Sie jeweils die Ströme,, min und,, max grafisch 2 5 C 2 C 2 5 C 2 C
Fragenkatalog zur Übung Halbleiterschaltungstechnik
Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,
3 Der Bipolartransistor
3 Der Bipolartransistor 3.1 Einführung Aufbau Ein Bipolartransistor (engl.: Bipolar Junction Transistor, BJT) besteht aus zwei gegeneinander geschalteten pn-übergängen (Dioden) mit einer gemeinsamen, sehr
Fragenkatalog zur Übung Halbleiterschaltungstechnik
Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2018/19 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,
5.3 Möglichkeiten zur Arbeitspunkteinstellung
5 Einfache Verstärkerschaltungen 5.3. Arbeitspunkteinstellung 50 Verschiebung des AP zufolge Temperaturschwankungen Schwankungen der Versorgungsspannung U 0 Aufgabe 22 Berechnung des Temperatureinflusses
Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)
Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen
Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte)
1. PROBETEST ZU HALBLEITER-SCHALTUNGSTECHNIK, WS 2017/18 DATUM Punktemaximum: 100 Testdauer: 90 min Vorname: Nachname: Matr. Nr.: Kennzahl: Hinweis zum Test: Alle nötigen Zwischenschritte angeben! Ergebnisse
TNF. Musterlösungen Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel
TNF Musterlösungen Übung Halbleiterschaltungstechnik WS 212/13 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 44 Linz, Internet:
TNF. Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel
TNF Übung Halbleiterschaltungstechnik WS 2012/13 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet: www.ime.jku.at
Transistorverstärker in Emitterschaltung
Transistorverstärker in Emitterschaltung Bild 1 zeigt den Transistor BD139 in Emitterschaltung, der die Wechselspannung u e verstärken und über einen Lautsprecher (R C = 16 Ω) ausgeben soll. Weitere Daten:
1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4
1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung
Übung Halbleiterschaltungstechnik
Übung Halbleiterschaltungstechnik WS 2016/17 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:
2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12
2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 Aufgabe 6 Serienschaltung von Dioden Geg.: Diodenkennlinien für T =5 C und T =1 C U =1.2V Ges.: U 1,min und U 1,max für gegebenen Temperaturbereich
Musterloesung. Name:... Vorname:... Matr.-Nr.:...
1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der
Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten
1. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit
7 Stromquellen und Stromspiegel
7 Stromquellen und Stromspiegel 7.1 Prinzip einer Stromquelle Stromquelle Abbildung 7.1: Stromquelle Stromquellen sollen möglichst unabhängig von der Last (d.h. unabhängig von der Spannung, die an der
6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)
6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise
7 Stromquellen und Stromspiegel
7 Stromquellen und Stromspiegel 7.1 Prinzip einer Stromquelle Stromquelle Abbildung 7.1: Stromquelle Stromquellen sollen unabhängig von der Last (d.h. unabhängig von der Spannung, die an der Last abfällt)
ELEKTRONIK 2 SCHALTUNGSTECHNIK L9-1/19 Prof. Dr.-Ing. Johann Siegl. L9 Arbeitspunkteinstellung von Transistoren
1 von 19 15.03.2008 11:41 ELEKTRONIK 2 SCHALTUNGSTECHNIK L9-1/19 Damit in einer Anwendung ein Transistor bestimmte, geforderte Eigenschaften aufweist, muss der Bipolartransistor oder Feldeffekttransistor
Grundlagen der Schaltungstechnik
Technische Universität Ilmenau 25. Juli 2007 Fakultät für Elektrotechnik und Informationstechnik FG Elektronische Schaltungen und Systeme Prof. Dr.-Ing. R. Sommer AUFGABE 1 (15MIN): Klausur Grundlagen
Transistor als Analogverstärker: rker: die Emitterschaltung
Transistor als Analogverstärker: rker: die Emitterschaltung a.) Wahl der Versorgungsspannung b.) Arbeitspunkteinstellung, Wahl des Transistors c.) Temperaturabhängigkeit des Arbeitspunkts d.) Einfügen
11. Übung Grundlagen der analogen Schaltungstechnik
11. Übung Grundlagen der analogen Schaltungstechnik 1 Aufgabe (Klausur WS07/08: 40 min, 22 Punkte) - die Killeraufgabe, aber warum? Bootstrapschaltung und Kleinsignal-Transistormodell Gegeben ist die in
Aufgabe 2 Nichtlineares Zweitor
Name:.................................. Matrikel-Nr.:................... 5 Aufgabe 2 Nichtlineares Zweitor (16 Punkte) Gegeben sei die Hybridbeschreibung eines nichtlinearen ZweitorsH: ] u 1 = i 2 U T
Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten.
1. Beispiel: Kleinsignalschalter/Diodenarbeitspunkt (33Punkte) Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten. Gegeben: Boltzmann-Konstante: k=1.38*10-23 J/K
A1 A2 A3 A4 A5 A6 Summe
1. Klausur Grundlagen der Elektrotechnik I-B 25. Mai 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen
Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4
Technische Informatik Prof. Dr. M. Bogdan Institut für Informatik Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Abgabe: bis zum 06.01.2016 im weißen Briefkasten der TI Nähe Raum P 518 1 Hinweise: -
Diplomvorprüfung WS 2009/10 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10 Fach: Elektronik,
Name:... Vorname:... Matr.-Nr.:...
1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Steffen Rohner Karsten Gänger Lars Thiele
1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise
Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt
Dimensionierung vom Transistor Wechselspannungsverstärkern
Dimensionierung vom Transistor Wechselspannungsverstärkern mit NPN Transistor Schaltung Werte: V 1 = BC141; R L = 1 kω U B = 15 V Vorgaben: Der Arbeitspunkt des Transistors ist so einzustellen, dass U
Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Reihenschaltung von Halbleiterdioden
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Reihenschaltung von Halbleiterdioden In integrierten
HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr.
HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum bistabiler Multivibrator Datum: WS/SS 201.. Gruppe: S Teilnehmer Name Matr.-Nr. 1 2 3 Testat R verwendete
U L. Energie kt ist groß gegenüber der Aktivierungs-
Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider!
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider! 1 Na, wie sieht es aus mit Eurem Schaltungsblick? Schade, das spart Rechenarbeit, aber Sie müssen sich natürlich sicher sein. 2 Aufgabe
E29 Operationsverstärker
E29 Operationsverstärker Physikalische Grundlagen Ein Operationsverstärker (OPV) ist im Wesentlichen ein Gleichspannungsverstärker mit sehr hoher Verstärkung und einem invertierenden (E-) sowie einem nichtinvertierenden
Unterschrift: Hörsaal: Platz-Nr.:
FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:
I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker
1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker Eine Verstärkung von kleinen Gleichspannungssignalen (1-10mV) ist mit einem Transistor nicht möglich, da einerseits die Arbeitspunkteinstellung
A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.
Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage
Spannungs- und Stromquellen
Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4
Klausur "Elektronik" am 11.03.2001
Name, Vorname: Matr.Nr.: Klausur "Elektronik" 6037 am 11.03.2001 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner Formelsammlung auf maximal
Vorbereitung zum Versuch Transistorschaltungen
Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.
RC - Breitbandverstärker
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll
1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12
Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten
Kenngrößen von Transistoren und Eintransistorschaltungen. Protokoll. Von Jan Oertlin und Julian Winter. 7. Dezember 2012.
Kenngrößen von Transistoren und Eintransistorschaltungen Protokoll Von Jan Oertlin und Julian Winter 7. Dezember 2012 Inhaltsverzeichnis 1 Einleitung 3 2 Transistorkenngrößen 3 2.1 Schaltung...........................................
Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung
Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet
Übungsaufgaben zum 5. Versuch 13. Mai 2012
Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell
Probeklausur Elektronik (B06)
Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:
Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:
Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009
Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2
Wintersemester 2012/13
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,
DHBW-MaEp EL1 Bayer r110
DHBW-MaEp EL Bayer 206-2 r0 Matrikel-Nr.: EL Angewandte Elektronik Klausur 206-2 Bayer Blatt / 0 Anzahl Blätter inkl. Deckblatt, Anhang 0 DHBW Mannheim, Außenstelle Eppelheim MA-TMT5AM2 EL Angewandte Elektronik
Aufgabe 2 Nichtlineares Zweitor
Name:.................................. Matrikel-Nr.:................... 5 Aufgabe Nichtlineares Zweitor (6 Punkte) Gegeben sei die Hybridbeschreibung eines nichtlinearen Zweitors H: 6 u = i U T ln β 0
Operationsverstärker. 24. Mai Martin Albert
Operationsverstärker - Martin Albert - - 24. Mai 2006 - Gliederung Einführung Grundlagen Grundlegende Schaltungen spezielle Typen 2 Gliederung Einführung Begriff OPV Grundlagen Transistor Grundschaltungen
Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen
GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von
Laborübung, NPN-Transistor Kennlinien
15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später
Übungsserie, Bipolartransistor 1
13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.
Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1
Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5
7. Aufgabenblatt mit Lösungsvorschlag
+ - Grundlagen der echnertechnologie Sommersemester 200 Wolfgang Heenes. Aufgabenblatt mit Lösungsvorschlag 0.06.200 Schaltungen mit Bipolartransistoren Aufgabe : Analyse einer Schaltung mit Bipolartransistor
VORBEREITUNG: TRANSISTOR
VORBEREITUNG: TRANSISTOR FREYA GNAM, GRUPPE 26, DONNERSTAG 1. TRANSISTOR-KENNLINIEN Ein Transistor ist ein elektronisches Halbleiterbauelement, das zum Schalten und zum Verstärken von elektrischen Strömen
Kapitel 3. Arbeitspunkteinstellung
Kapitel 3 Arbeitspunkteinstellung Bei den bislang erfolgten Analysen wurde der Transistor um einen Arbeitspunkt AP herum ausgesteuert. Durch flankierende Schaltungsmaßnahmen wird erst das Einstellen dieses
Transistorschaltungen
Transistorschaltungen V DD in Volt 3 2 V Ein - UTh,P V Ein - UTh,N 1-1 0 1 2 3 U Th,P U Th,N V Ein in Volt a) Schaltung b) Übertragungsfunktion Bipolar Transistorschaltung im System I Ein C Ein? V CC I
C03 Transistor. 2. Zur Vorbereitung: Die Kennlinien des Transistors. 1 Eingangskennlinie Ausgangskennlinie Rückwirkungskennlinie
C03 Transistor 1 Ziele In diesem Versuch werden Eigenschaften und Anwendungen eines npn-transistors (BD 135) untersucht. Dazu werden Sie Schaltungen aufbauen und ausprobieren und seine Kennlinien nutzen
(Operationsverstärker - Grundschaltung)
Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine
AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand
Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe
Transistorkennlinien und -schaltungen
ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik
Transistor- und Operationsverstärkerschaltungen
Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild
Institut für Informatik. Aufgaben zum Seminar Technische Informatik
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.4.. - Berechnung einer Transistorschaltung mit Emitterwiderstand
6. Vorverstärkerschaltungen
6.1 Transistorkennlinien und Arbeitsbereich 6.1.1 Eingangskennlinie I B =f(u BE ) eines NPN-Transistors Die Eingangskennlinie beschreibt das Verhalten des Transistors zwischen der Basis und dem Emitter.
0Elementare Transistorschaltungen
Teilanfang E1 0Elementare Transistorschaltungen VERSUCH Praktikanten: Rainer Kunz Rolf Paspirgilis Links Versuch E1 Elementare Transistorschaltungen Q In diesem Protokoll: O»Einleitung«auf Seite 3 O»Transistoren«auf
Geregelte Stabilisierungsschaltung mit Längstransistor
Geregelte Stabilisierungsschaltung mit Längstransistor I R1 R 1 U R1 I B3 U CE3 I B4 V 3 V 4 U CE4 I A I R2 U E R 2 U R2 U CE2 V 2 I R3 I Z V 1 U Z R 3 UR3 Eine Stabilisierung für ein Netzteil entsprechend
Fachprüfung. Schaltungen & Systeme
Fachprüfung Schaltungen & Systeme 30. Juli 2007 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte gesamt
5 Bipolar- und Feldeffekt-Transistoren
Fachbereich Physik Elektronikpraktikum 5 Bipolar- und Feldeffekt-Transistoren Stichworte zur Vorbereitung: Aufbau und Funktion, Löcherleitung, Elektronenleitung, Eingangskennlinien, Ausgangskennlinien,
Fachprüfung. Schaltungen & Systeme
Fachprüfung Schaltungen & Systeme 12. September 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
18.2.08 PHYSIKALISHES PRAKTIKM FÜR ANFÄNGER LGyGe Versuch: E 8 - Transistor 1. Grundlagen pnp- bzw. npn-übergang; Ströme im und Spannungen am Transistor, insbesondere Strom- und Spannungsverstärkung; Grundschaltungen,
ETP1-4. Konstantspannungsquelle, gesteuerte Quelle. Übersicht
Department Informations- und Elektrotechnik Studiengruppe: Übungstag (Datum): Labor für Grundlagen der Elektrotechnik ETP1-4 Protokollführer (Name, Vorname): Weitere Übungsteilnehmer: Professor: Testat:
Übungsserie: Diode 1
7. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 1 1 Vorbereitung Eine Zenerdiode ist so gebaut, dass der Betrieb im Durchbruchbereich sie nicht zerstört. Ihre Kennlinie ist in Abb. 1 dargestellt.
pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau
Transistor 1. LITERATUR: Berkeley, Physik; Kurs 6; Kap. HE; Vieweg Dorn/Bader und Metzler, Physik; Oberstufenschulbücher Beuth, Elektronik 2; Kap. 7; Vogel 2. STICHWORTE FÜR DIE VORBEREITUNG: pn-übergang,
E l e k t r o n i k I
Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Bipolare Transistoren
Der Bipolar-Transistor
Universität Kassel F 16: Elektrotechnik / Informatik FG FSG: Fahrzeugsysteme und Grundlagen der Elektrotechnik Wilhelmshöher Allee 73 D-34121 Kassel Prinzip des Transistors Seite: 2 Aufbau des ipolar-transistors,
Grundlagen und Bauelemente der Elektrotechnik
Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6
Abschlussprüfung Schaltungstechnik 2
Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer
v p v n Diplomprüfung Elektronik SS 2006 Montag,
FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS 6 Montag, 7.7.6 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prüfung: 9 Minuten Homogene
Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.
Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner
Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. 2.1 Prüfen von Transistoren 2.2 Schaltbetrieb 2.3 Kleinsignalverstärker
TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 17.01.2017 Erstellt am 21.01.2017 von Übungsteilnehmern Übungsteilnehmer
R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω
Probeklausur Elektronik, W 205/206. Gegeben ist die folgende Schaltung: R U q R 3 R 2 R 4 U L 2 mit Uq= 0 V R= 800 Ω R2=, kω R3= 480 Ω R4= 920 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen Gesetze
Aufgaben zur Analogen Schaltungstechnik!
Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt
Diplomprüfung Elektronik WS 2006/07 Dienstag,
FH München FK 3 Maschinenbau Diplomprüfung Elektronik WS 6/7 Dienstag, 3..7 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.:
Übungsaufgaben EBG für Mechatroniker
Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:
Institut für Informatik. Aufgaben zum Seminar Technische Informatik
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.4.. - Berechnung einer Transistorschaltung mit Emitterwiderstand
NF Verstärker mit Germaniumtransistoren
NF Verstärker mit Germaniumtransistoren Allgemeines Der vorliegende NF Verstärker ist mit Germaniumtransistoren aufgebaut und liefert bei einer Betriebsspannung von 9 V eine Ausgangsleistung von 1,3 W
Übung 2 Einschwingvorgänge 2 Diode Linearisierung
Universität Stuttgart Übung 2 Einschwingvorgänge 2 Diode Linearisierung Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Aufgabe 2.1
Klausur "Elektrotechnik" am 11.02.2000
Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene
Die Arbeitspunkteinstellung beim Bipolartransistor
Die Arbeitspunkteinstellung beim Bipolartransistor In der Schaltungstechnik stellt sich immer wieder das Problem der Arbeitspunkteinstellung eines Bipolartransistors (BJT). Bauteiltoleranzen des Transistors
Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Parallelschaltung von Halbleiterdioden
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Parallelschaltung von Halbleiterdioden In integrierten
