Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004

Größe: px
Ab Seite anzeigen:

Download "Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004"

Transkript

1 Theoretical Analysis of Protein-Protein Interactions Proseminar

2 Virtual Screening: Predicting Pairs from Sequence

3 Übersicht Einleitung 1.Modell: Vorhersage von Protein-Interfaces aus Sequenzprofilen und Residue Neighbor Listen durch neuronale Netzwerke 2.Modell: Vorhersage von Protein-Interfaces aus der Aminosäuresequenz mithilfe einer Support Vector Machine Zusammenfassung 3/29

4 Einleitung Protein-Protein Protein-Interaktionen spielen eine entscheidende Rolle bei biologischen Prozessen Ziel: Verständnis der physiologischen Funktion eines Proteins 4 Identifikation von Interfaces 4/29

5 Einleitung Spezifisches Problem: Gegeben die Struktur eines Proteins und die Tatsache, dass es einen Komplex mit einem anderen, unbekannten Protein bildet. Sage die Residuen des ersten Proteins voraus, die im Interface mit dem zweiten Protein liegen. 5/29

6 Merkmale von Interfaces unterscheiden sich in Homo- und Heteromeren, sowie in permanent und transient interagierenden Proteinen Unterschiedliche Interface-Arten haben unterschiedliche Merkmale große Anzahl von hydrophoben Residuen im Vergleich zur gesamten Proteinoberfläche Protein-Interfaces sind segmentiert 6/29

7 Merkmale von Interface-Residuen Segmente fassen oft Residuen zusammen, die in der 3D-Struktur geclustert sind und in der Aminosäuresequenz aufeinanderfolgen andere Aminosäure-Zusammensetzung als der Rest des Proteins nicht-polare Residuen häufiger in Interfaces als geladene und polare Residuen (Ausnahme: Arginin) mutieren weniger häufig als andere Stellen der Protein- Oberfläche 7/29

8 Definitionen Oberflächen-Residue Residue: relative MASA (ASA im ungebundenen Molekül) wenigsten 25% der Gesamtfläche Interface-Residue Residue: 1. Basierend auf der Reduktion der ASA: ASA Monomer - ASA Komplex <1 Å 2 ASA Monomer ASA Komplex 2. Abstands-basiert basiert: Residue (oder Atom) in anderem Molekül mit Abstand <6Å zur Target-Residue 8/29

9 1.Modell: Vorhersage von Protein-Interfaces aus Sequenzprofilen und Residue Neighbor Listen durch neuronale Netzwerke Ziel: Entwicklung eines genauen Predictors für Interface- Residuen Input: Sequenzprofil und ASA einer Oberflächen- Residue und das Gleiche für die 19 räumlich am nähesten Oberflächen-Residuen Sammlung von Komplexen: Kettenpaare mit 20 Residuen/Kette, die einen Interface-Kontakt mit der anderen Kette bilden 9/29

10 Architektur der neuronalen Netzwerke 2 aufeinanderfolgende neuronale Netzwerke 4 2. Netzwerk soll Genauigkeit verbessern 1.Netzwerk: 420 Input-Knoten führenf zu einem Hidden Layer mit 75 Knoten, die zu 2 Output-Knoten führenf Zielwerte: (1,0) wenn die Residue unter der Vorhersage eine Interface-Residue ist (0,1) sonst 2. Netzwerk: Input-Knoten, ein Hidden Layer mit 30 Knoten und 2 Output-Knoten Die Werte der 2. Output-Knoten sind entscheidend 10/29

11 Neural Network Predictor Input-Layer Hidden Layer Output-Layer Quelle: Zhou,, H.X. and Shan,, Y.B., (2001) Proteins, 44, Prediction of Protein Interaction Sites from Sequence Profile and Residue Neighbor List. Vorherzusagende Residue: : L79 2 nächste räumliche Nachbarn: F78, V80 Input-Knoten: enthalten Substitutions-Werte aus Sequenzprofil (PSI-BLAST) bzw. letzter Knoten enthält relative ASA Vergleich der beiden Output-Knoten: Interface-Residue I x 1 >x 2 11/29

12 Performance der Methode Training Set: 615 Paare von nicht-homologen homologen komplex- bildenden Proteinen Oberflächen- Residuen ( IR, NIR) Test Set: 129 Paare Residuen, davon an der Oberfläche ( mit wenigstens einem Interface-Kontakt) Vorhersagen von IR 70% (7732) richtig, d.h. Genauigkeit 65% der Residuen die die 129 Interfaces bilden 12/29

13 Neighbor Listen und ASA relativ unempfindlich gegenüber strukturellen Änderungen 4 NN fürf r gebundene und ungebundene Strukturen etwa gleiche Genauigkeit: Suche nach ungebundenen Formen fürf r die 129 Paare von Proteinketten 4 35 solcher Proteine als Test Set : Genauigkeit von 69% 13/29

14 2.Modell: Vorhersage von Protein-Interfaces aus der Aminosäuresequenz mithilfe einer Support Vector Machine Ziel: Predictor zur Vorhersage von Interfaces durch Nutzung einer Support Vector Machine 4 Vorhersage, ob Oberflächen-Residue = Interface- Residue,, basierend auf der Identität der Ziel-Residue und ihrer 10 Sequenznachbarn einzige Strukturinformation: ASA der Residuen zur Identifizierung von Oberflächen-Residuen des Target- Proteins Vorhersage korrekt: Residue oder eine ihrer 4 nächsten Nachbarn haben wenigstens einen Interface-Kontakt 14/29

15 Input: abgeleitet aus der Identität der Target-Residue und den Residuen die sie in der Primärsequenz umgeben 411-Residue-Fenster besteht aus der Residue und ihren 10 Sequenznachbarn (5 auf jeder Seite) Output: +1 wenn Target Residue als Interface-Residue vorhergesagt wurde -11 sonst 15/29

16 Support Vector Machine Residue repräsentiert durch Vektor mit 20 Elementen (Elemente entsprechen den AS) 4 Jede Target-Residue assoziiert mit 220-elementigen Vektor Wert eines Elementes im Vektor: Häufigkeit, mit der die entsprechende AS in dieser Position im Alignment vorkommt Learning Algorithmus generiert Klasse mit 220- elementigen Vektor als Input und gibt Klassenlabel aus 16/29

17 SVM wählt eine Hyperfläche im euklidischen Raum aus, die den Trennungsrand zwischen den beiden Klassen maximiert Quelle: lectures.molgen.mpg.de/statistik/docs docs/kapitel_16.pdf 17/29

18 Maßstäbe für die Beurteilung der Methode TP (true( positives) = # vorhergesagte IR, die wirklich welche sind TN (true( negatives) = # vorhergesagte NIR, die wirklich keine sind FP (false( postitives) ) = # vorhergesagte IR, die aber NIR sind FN (false( negatives) = # vorhergesagte NIR, die aber IR sind N = TP + TN + FP + FN = # aller Vorhersagen 4 IR = TP + FN NIR = TN + FP 18/29

19 Maßstäbe für die Beurteilung der Methode TP Sensitivität + = = 1- False Alarm Rate - TP + FN TN Sensitivität - = = 1- False Alarm Rate + TN + FP TP Spezifität + = TP + FP TN Spezifität - = TN + FN FN False Alarm Rate + = FP + TN FN False Alarm Rate - = FN + TP 19/29

20 Erklärungen Sensitivität: wie viel Prozent aller IR wurden richtig vorhergesagt Spezifität: : wie viel Prozent aller vorhergesagten IR wurden richtig vorhergesagt False positive rate: wie viel Prozent aller NIR wurden als IR vorhergesagt 20/29

21 Genauigkeit TP + TN N = Gesamtwahrscheinlichkeit, dass eine Vorhersage korrekt ist r = (TP TP * TN - FP * FN + FN)(TP + FP)(TN + FP)(TN + FN) Maßstab dafür, wie gut Vorhersagen den aktuellen Daten entsprechen 11 bei positiver Korrelation -11 bei negativer Korrelation Zufallsvorhersagen: Korrelationskoeffizient von 0 (keine K.) 21/29

22 Performance der Methode 115 Proteine aus 70 Heterokomplexen (unterteilt in 6 Kategorien) Oberflächen-Residuen (3727 IR, 8949 NIR) 115 jack-knife knife Experimente Training Set: je 1250 zufällig gewählte IR und NIR aus 114 der 115 Proteine SVM klassifizierte Oberflächen-Residuen in IR und NIR: Spezifität 71% Sensitivität von 67% False Alarm Rate von 35,9% Korrelationskoeffizient von /29

23 23/29

24 24/29

25 25/29

26 26/29

27 27/29

28 Zusammenfassung Direkter Vergleich beider Methoden nicht gut möglich Aber beide Methoden relativ gut, NN etwas besser sichere Identifizierung Interfaces kann Exerimente untersützen Ergebnisse und einzigartige Kompositionen der interagierenden Residuen 4 Interfaces allein aus der Sequenz bestimmbar 28/29

29 Quellen Ofran,, Y. and Rost, B., (2003) FEBS Let,, 544, Predicted Protein-Protein Interaction Sites from Local Sequence Information. Zhou,, H.X. and Shan,, Y.B., (2001) Proteins, 44, Prediction of Protein Interaction Sites from Sequence Profile and Residue Neighbor List. Yan,, C., Honavar,, V., and Dobbs,, D., (2002). Predicting Protein-Protein Interaction Sites from Amino Acid Sequence. 29/29

Protein-Protein Bindungsstellen. Lennart Heinzerling

Protein-Protein Bindungsstellen. Lennart Heinzerling Protein-Protein Bindungsstellen Lennart Heinzerling 1 Worum geht es in den nächsten 45 Minuten? Auffinden von Protein- Protein Komplexen aus einer großen Menge potentieller Komplexe z.b. für -Interaction

Mehr

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation Yupeng Guo 1 Agenda Introduction RNN Encoder-Decoder - Recurrent Neural Networks - RNN Encoder Decoder - Hidden

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus 3. Klassifikation Motivation Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus Beispiel: Bestimme die Herkunft eines Autos

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2018 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Mo 30.7. 14:30-15:30

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2017 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 28.7. 10:00-11:00

Mehr

Vorhersage von Protein-Funktionen. Patrick Pfeffer

Vorhersage von Protein-Funktionen. Patrick Pfeffer Vorhersage von Protein-Funktionen Patrick Pfeffer Überblick Motivation Einleitung Methode Markov Random Fields Der Gibbs Sampler Parameter-Schätzung Bayes sche Analyse Resultate Pfeffer 2 Motivation Es

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Motiv und Domänensuche

Motiv und Domänensuche Motiv und Domänensuche Strukturelle Bioinformatik WS15/16 Dr. Stefan Simm, 09.12.2015 simm@bio.uni-frankfurt.de Motiv und Domänensuche SIGNALVORHERSAGE (MOTIV) Ansatz für Signalvorhersage 1. Zielsignalsuche

Mehr

Thema 8 Ein Schätzverfahren für das Wachstum von Gefäßnetzwerken auf der Grundlage von Zufallsgraphen. 2.Definitionen aus Graphentheorie

Thema 8 Ein Schätzverfahren für das Wachstum von Gefäßnetzwerken auf der Grundlage von Zufallsgraphen. 2.Definitionen aus Graphentheorie Seminar Mustererkennung mit syntaktischen und graphenbasierten Methoden Thema 8 Ein Schätzverfahren für das Wachstum von Gefäßnetzwerken auf der Grundlage von Zufallsgraphen 1.Einleitung Stefan Böcker

Mehr

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Wintersemester 2015/16 Musterlösung für das 7. Übungsblatt Aufgabe 1 Evaluierungsmethoden Ein Datenset enthält 2 n Beispiele, wobei genau n Beispiele positiv sind und

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Docking von starren und flexiblen Proteinen

Docking von starren und flexiblen Proteinen Seminar Bioinformatik, Theoretical Analysis of Protein-Protein Interactions Docking von starren und flexiblen Proteinen Präsentation von Andreas Schlicker (andreasschlicker@web.de) Übersicht Molecular

Mehr

KURSTAG 25 QUALITÄT VON VORHERSAGEN

KURSTAG 25 QUALITÄT VON VORHERSAGEN KURSTAG 25 QUALITÄT VON VORHERSAGEN In der Vorlesung haben Sie etwas über Qualität von Vorhersagemethoden gelernt. Aufgabe ist es, die dort genannten Formeln in ein Programm umzusetzen. Dies soll für den

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Thumbs up? Sentiment Classification using Machine Learning Techniques

Thumbs up? Sentiment Classification using Machine Learning Techniques Thumbs up? Sentiment Classification using Machine Learning Techniques Eine Präsentation von Aikaterini Azoidou. Das ist meine Präsentation für das Proseminar: Selected Topics of Sentiment Analysis WS17/18

Mehr

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Gerhard Svolba SAS Austria Mariahilfer Straße 116 A-1070 Wien Sastools.by.gerhard@gmx.net Zusammenfassung

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Übungssitzung 1: Organisation und Orientierung Julian Hitschler ICL, Universität Heidelberg, WiSe 2016/17 27.10.2016 1 / 1 Inhalt Vorstellung Organisatorisches

Mehr

Vorlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2013

Vorlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2013 Vorlesung des Software-Engineering im Sommersemester 2013 Prof. Dr. Jan Jürjens TU Dortmund, Fakultät Informatik, Lehrstuhl XIV Teil 2.3: Data-Mining v. 11.06.2013 1 [mit freundlicher Genehmigung basierend

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Sh Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und

Mehr

Threading - Algorithmen

Threading - Algorithmen Threading - Algorithmen Florian Lindemann 22.11.2007 Florian Lindemann () Threading - Algorithmen 22.11.2007 1 / 25 Gliederung 1 Prospect Scoring Function Algorithmus Weitere Eigenschaften Komplexität

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

Aufgabenblatt 5. Silke Trißl Wissensmanagement in der Bioinformatik

Aufgabenblatt 5. Silke Trißl Wissensmanagement in der Bioinformatik Aufgabenblatt 5 Silke Trißl Wissensmanagement in der Bioinformatik Zuerst! FRAGEN? Silke Trißl: Bioinformatik für Biophysiker 2 Exercise 1 + 2 Modify program to compare protein sequence read substitution

Mehr

Einführung in die Bioinformatik: Lernen mit Kernen

Einführung in die Bioinformatik: Lernen mit Kernen Einführung in die Bioinformatik: Lernen mit Kernen Dr. Karsten Borgwardt Forschungsgruppe für Maschinelles Lernen und Bioinformatik Max-Planck-Institut für Intelligente Systeme & Max-Planck-Institut für

Mehr

Primärstruktur. Wintersemester 2011/12. Peter Güntert

Primärstruktur. Wintersemester 2011/12. Peter Güntert Primärstruktur Wintersemester 2011/12 Peter Güntert Primärstruktur Beziehung Sequenz Struktur Proteinsequenzen, Sequenzdatenbanken Sequenzvergleich (sequence alignment) Sequenzidentität, Sequenzhomologie

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Diskriminatives syntaktisches Reranking für SMT

Diskriminatives syntaktisches Reranking für SMT Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung

Mehr

insara: Hierarchische Netzwerke zur Analyse, Visualisierung und Vorhersage von Struktur-Aktivitäts-Beziehungen

insara: Hierarchische Netzwerke zur Analyse, Visualisierung und Vorhersage von Struktur-Aktivitäts-Beziehungen insara: Hierarchische Netzwerke zur Analyse, Visualisierung und Vorhersage von Struktur-Aktivitäts-Beziehungen Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu

Mehr

Multivariate Pattern Analysis. Jan Mehnert, Christoph Korn

Multivariate Pattern Analysis. Jan Mehnert, Christoph Korn Multivariate Pattern Analysis Jan Mehnert, Christoph Korn Übersicht 1. Motivation 2. Features 3. Klassifizierung 4. Statistik 5. Annahmen & Design 6. Similarity 7. Beispiel Grenzen & Probleme der klassischen

Mehr

Named Entity Recognition auf Basis von Wortlisten

Named Entity Recognition auf Basis von Wortlisten Named Entity Recognition auf Basis von Wortlisten EDM SS 2017 Lukas Abegg & Tom Schilling Named Entity Recognition auf Basis von Wortlisten Lukas Abegg - Humboldt Universität zu Berlin Tom Schilling -

Mehr

A linear-regression analysis resulted in the following coefficients for the available training data

A linear-regression analysis resulted in the following coefficients for the available training data Machine Learning Name: Vorname: Prof. Dr.-Ing. Klaus Berberich Matrikel: Aufgabe 1 2 3 4 Punkte % % (Bonus) % (Gesamt) Problem 1 (5 Points) A linear-regression analysis resulted in the following coefficients

Mehr

Gütemaße. T... true F... false P... positive N... negative CP... Computerdiagnose GS... Gold-Standard-Diagnose D GS D GS D CP TP FP _ D CP FN TN

Gütemaße. T... true F... false P... positive N... negative CP... Computerdiagnose GS... Gold-Standard-Diagnose D GS D GS D CP TP FP _ D CP FN TN Gütemaße D GS D GS D CP TP FP D CP FN TN T... true F... false P... positive N... negative CP... Computerdiagnose GS... GoldStandardDiagnose TP TN Sensitivität = Spezifität = TP + FN TN + FP TP + TN Genauigkeit

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

Bioinformatik. BLAST Basic Local Alignment Search Tool. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. BLAST Basic Local Alignment Search Tool. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik BLAST Basic Local Alignment Search Tool Ulf Leser Wissensmanagement in der Bioinformatik Heuristische Alignierung Annotation neuer Sequenzen basiert auf Suche nach homologen Sequenzen in

Mehr

Rekurrente Neuronale Netze

Rekurrente Neuronale Netze Rekurrente Neuronale Netze Gregor Mitscha-Baude May 9, 2016 Motivation Standard neuronales Netz: Fixe Dimensionen von Input und Output! Motivation In viele Anwendungen variable Input/Output-Länge. Spracherkennung

Mehr

INTEGER Visuelle Entscheidungsunterstützung bei der Auswertung von Daten aus sozialen Netzwerken

INTEGER Visuelle Entscheidungsunterstützung bei der Auswertung von Daten aus sozialen Netzwerken INTEGER Visuelle Entscheidungsunterstützung bei der Auswertung von Daten aus sozialen Netzwerken BMBF-Innovationsforum Zivile Sicherheit Berlin Megatrends verändern das Arbeitsumfeld für Analysten (1/2)

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Artificial Intelligence. Was ist das? Was kann das?

Artificial Intelligence. Was ist das? Was kann das? Artificial Intelligence Was ist das? Was kann das? Olaf Erichsen Tech-Day Hamburg 13. Juni 2017 Sehen wir hier bereits Künstliche Intelligenz (AI)? Quelle: www.irobot.com 2017 Hierarchie der Buzzwords

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Klausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz Technische Universität Darmstadt Wintersemester 2014/15 Termin: 17. 2. 2015 Name: Vorname: Matrikelnummer: Fachrichtung:

Mehr

Chapter 6: Classification

Chapter 6: Classification Chapter 6: Classification 1) Introduction Classification problem, evaluation of classifiers, prediction 2) Bayesian Classifiers Bayes classifier, naive Bayes classifier, applications 3) Linear discriminant

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose. Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.com 13.06.20 15 SQLSaturday Rheinland 2015 1. Zu komplex: Man kann

Mehr

1 Einleitung. 2 Clustering

1 Einleitung. 2 Clustering Lernende Vektorquantisierung (LVQ) und K-Means-Clustering David Bouchain Proseminar Neuronale Netze Kurs-Nr.: CS4400 ISI WS 2004/05 david@bouchain.de 1 Einleitung Im Folgenden soll zum einen ein Überblick

Mehr

comparative structure prediction of ncrna molecules

comparative structure prediction of ncrna molecules comparative structure prediction of ncrna molecules using a non Sankoff approach 01. Februar 2008 Inhalt 1 ncrna s - ein Überblick 2 RNAcast - RNA consensus structure prediction Outline und Vorbereitung

Mehr

5 Zusammenfassung ZUSAMMENFASSUNG

5 Zusammenfassung ZUSAMMENFASSUNG ZUSAMMENFASSUNG 5 Zusammenfassung Die NMR-spektroskopische Strukturaufklärung von Peptiden erfordert die Analyse komplexer, mehrdimensionaler Spektren. Hierfür müssen als erstes die Signale in den Spektren

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Babeş-Bolyai Universität Fakultät für Mathematik und Informatik Oktober 2018 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 7. Übungsblatt Aufgabe 1: Evaluierung und Kosten Gegeben sei ein Datensatz mit 300 Beispielen, davon 2 /3 positiv

Mehr

CD-AUSGABE (Stand: 1999) HANDBUCH KURSPROGNOSE Quantitative Methoden im Asset Management von Thorsten Poddig 676 Seiten, Uhlenbruch Verlag, 1999 erstmals als Buch publiziert EUR 79,- inkl. MwSt. und Versand

Mehr

Simulation von Brownscher Dynamik und Assoziationsraten von PP-Komplexen. Alexander Baldauf Montag

Simulation von Brownscher Dynamik und Assoziationsraten von PP-Komplexen. Alexander Baldauf Montag Simulation von Brownscher Dynamik und Assoziationsraten von PP-Komplexen Alexander Baldauf Montag 25.04.2005 Motivation Typen von Interaktionen Verschiedene Methoden zur Vorhersage Wie kommen die beiden

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik.

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik. Harald Hauptseminarpräsentation Kirschenmann Personenerkennung 1 Inhaltsübersicht Motivation Grundlagen Benchmark Eigene Gesichtserkennung 2 Motivation Baustein einer Microservice Architektur Personenerkennung

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

Bewegungsplanung für den vierbeinigen Roboter AMEE. Björn Bettzüche

Bewegungsplanung für den vierbeinigen Roboter AMEE. Björn Bettzüche Bewegungsplanung für den vierbeinigen Roboter AMEE Einleitung Vergleichbare Arbeiten Zusammenfassung Referenzen Projekt AMEE SAR 4 intelligente Beine SLAM Sicheres Navigieren 4 [5] 5 Bildbasiert zu ungenau

Mehr

Institut für Künstliche Intelligenz

Institut für Künstliche Intelligenz Institut für Künstliche Intelligenz Prof. Sebstaian Rudolph --- Computational Logic Prof. Steffen Hölldobler --- Wissensverarbeitung Prof. Ivo F. Sbalzarini --- Wissenschaftliches Rechnen für Systembiologie

Mehr

Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten

Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten Dipl.-Ing. Daniel Tantinger Fraunhofer Institut für Integrierte Schaltungen IIS, Erlangen, Deutschland Automatische Erkennung

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

MRSA Typisierungen

MRSA Typisierungen EUREGIO Gronau/Enschede MRSA Typisierungen 2012-2013 Ansprechpartner Dr. med. R. Köck Institut für Hygiene Universitätsklinikum Münster robin.koeck@ukmuenster.de Tel. 0251-83-55348 0 Inhaltsverzeichnis

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Die Prognose regionaler Beschäftigung mit Neuronalen Netzen und Genetischen Algorithmen

Die Prognose regionaler Beschäftigung mit Neuronalen Netzen und Genetischen Algorithmen Die Prognose regionaler Beschäftigung mit Neuronalen Netzen und Genetischen Algorithmen Nijkamp P., Reggiani A., Patuelli R., Longhi S. Ziele: Darstellung eines Neuronalen Netzes (NN) zur Prognose regionaler

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Übung 6: Structure Comparison 1

Übung 6: Structure Comparison 1 Andrew Torda Björn Hansen Zentrum für Bioinformatik Übung zur Vorlesung Grundlagen der Strukturanalyse Wintersemester 2016/2017 12.12.2016 Übung 6: Structure Comparison 1 1. Einführung In der vorliegenden

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters Brad Johanson, Riccardo Poli Seminarvortrag von Thomas Arnold G ˇ ˇ ˇ ˇ WS 2012/13 TU Darmstadt Seminar

Mehr

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining 6. Data Mining Inhalt 6.1 Motivation 6.2 Klassifikation 6.3 Clusteranalyse 6.4 Asszoziationsanalyse 2 6.1 Motivation Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse (actionable

Mehr

Anwendungen von HMM. Kapitel 1 Spezialvorlesung Modul (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel

Anwendungen von HMM. Kapitel 1 Spezialvorlesung Modul (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Anwendungen von HMM Kapitel 1 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine

Mehr

Selbstständiges Lernen

Selbstständiges Lernen Kapitel 5 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW)

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW) Martin Kappus (ZHAW) Ablauf: Warum sprechen wir heute über maschinelle Übersetzung? Geschichte und Ansätze Eingabe-/Ausgabemodi und Anwendungen 2 WARUM SPRECHEN WIR HEUTE ÜBER MASCHINELLE ÜBERSETZUNG?

Mehr

MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN

MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN FRANK ORBEN, TECHNICAL SUPPORT / DEVELOPER IMAGE PROCESSING, STEMMER IMAGING GLIEDERUNG Einführung Aufgabe: Klassifikation

Mehr

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch. Annkatrin Bressin Freie Universität Berlin

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch. Annkatrin Bressin Freie Universität Berlin VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch Annkatrin Bressin Freie Universität Berlin Vorlesungsthemen Part 1: Background Basics (4) 1. The Nucleic Acid World 2. Protein Structure

Mehr

BCDS Seminar. Protein Tools

BCDS Seminar. Protein Tools BCDS Seminar Protein Tools Gliederung Nützliche Tools Three-/one-letter Amino Acids' Сodes RandSeq Random Protein Sequence Generator Protein Colourer ProtParam PeptideCutter ProtScale TMHMM Server 2.0

Mehr

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Übung Aufgabe 5: Gen-Erkennung mit Maschinellen Lernen Mario Sänger Problemstellung Erkennung von Genen in Texten NEU: Beachtung von Multi-Token-Entitäten (B-/I-protein)

Mehr

Phage-Display. Übersicht. Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten.

Phage-Display. Übersicht. Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten. Phage-Display Thomas Haarmann AG Dietrich Methodenseminar Biochemie II 20.01. und 10.02.2009 Übersicht Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten Phage-Display

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

V7 Modellierung von biomolekularen Komplexen

V7 Modellierung von biomolekularen Komplexen V7 Modellierung von biomolekularen Komplexen Protein-Protein-Docking Protein-DNA-Komplexe 7. Vorlesung WS 14/15 Softwarewerkzeuge 1 Beispiel eines Protein-DNA-Komplexes PDB-Struktur 1tup: tumor suppressor

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 7. Übungsblatt 1 Aufgabe 1a) Auffüllen von Attributen

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler 23.10. Zelle 30.10. Biologische Makromoleküle I 06.11. Biologische Makromoleküle II 13.11. Nukleinsäuren-Origami (DNA, RNA) 20.11.

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

"Korrelation" bei Nominaldaten: Kontingenz

Korrelation bei Nominaldaten: Kontingenz "Korrelation" bei Nominaldaten: Kontingenz j 1 2 3 beobachtete Häufigkeiten (KSV Tabelle 6.3): i Augenfar be Haarfarb e blau braun grün 1 blond 42 1 6 2 braun 12 5 22 3 schwarz 0 26 2 4 rot 8 4 0 175 i

Mehr

Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie

Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie Rheinisch-Westfälischen Technischen Hochschule Aachen Lehr- und Forschungsgebiet Theoretische Informatik Prof. Rossmanith Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie Deniz Özmen Emmanuel

Mehr

Binärbäume: Beispiel

Binärbäume: Beispiel Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Oberflächennahe und ferne Gestenerkennung mittels 3D-Sensorik

Oberflächennahe und ferne Gestenerkennung mittels 3D-Sensorik Oberflächennahe und ferne Gestenerkennung mittels 3D-Sensorik 26.10.2016 Gliederung Gesten für Mensch-Maschine Interaktion Anwendungsszenario Interaktive Projektionssitzkiste Herausforderungen Lösungsansatz

Mehr

Konvexe Hülle im R 3 + WSPD

Konvexe Hülle im R 3 + WSPD Übung Algorithmische Geometrie Konvexe Hülle im R 3 + WSPD LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 12.07.2012 Ablauf Konvexe Hülle im R 3

Mehr

Natural language processing

Natural language processing Natural language processing Guangyu Ge Betreuer: Tobias 29.01.2018 GLIEDERUNG 1. Einführung 2. Anwendungsbereiche 3. Verfahren bei NLP 4. Zusammenfassung ZIELE VON KÜNSTLICHER INTELLIGENZ Quelle: https://cdn-images-1.medium.com/max/800/0*y707xutx3zmvjkxx.png

Mehr