Information Retrieval
|
|
|
- Martha Messner
- vor 9 Jahren
- Abrufe
Transkript
1 Information Retrieval Norbert Fuhr 12. April 2010
2 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Dimensionen des IR 4 Daten Information Wissen 5 Rahmenarchitektur für IR-Systeme
3 IR in Beispielen IR-Aufgaben IR-Facetten Unterschiede zu klassischen Suchaufgaben:
4 IR in Beispielen IR-Aufgaben IR-Aufgaben Adhoc-Suche
5 IR in Beispielen IR-Aufgaben IR-Aufgaben Klassifikation
6 IR in Beispielen IR-Aufgaben IR-Aufgaben Klassifikation Beispiel: Spam-Mail-Erkennung
7 IR in Beispielen IR-Aufgaben IR-Aufgaben Clustering
8 IR in Beispielen IR-Aufgaben IR-Aufgaben Informationsextraktion/-markup
9 IR in Beispielen IR-Aufgaben IR-Aufgaben Informationsextraktion/-markup Beispiel: Markup bei Yahoo!-Nachrichten
10 IR in Beispielen IR-Aufgaben IR-Aufgaben (Text-)Zusammenfassung
11 IR in Beispielen IR-Aufgaben IR-Aufgaben (Text-)Zusammenfassung
12 IR in Beispielen IR-Aufgaben IR-Aufgaben Frage-Antwort-Systeme
13 IR in Beispielen IR-Aufgaben IR-Aufgaben Recommender-Systeme
14 IR in Beispielen IR-Aufgaben IR-Aufgaben Recommender-Systeme
15 IR in Beispielen IR-Aufgaben IR-Aufgaben Adhoc-Suche Klassifikation ( Vorlesung Information Mining) Clustering ( Vorlesung Information Mining) Informationsextraktion ( Vorlesung Informationsextraktion aus Texten, Hoeppner) (Text-)Zusammenfassung Frage-Antwort-Systeme Recommender-Systeme
16 IR in Beispielen IR-Facetten IR-Facetten Sprache Beispiel: cross-linguale Suche in Google
17 IR in Beispielen IR-Facetten IR-Facetten Struktur Beispiel: XML-Retrieval
18 IR in Beispielen IR-Facetten IR-Facetten Medien Beispiel: Ähnlichkeitssuche auf Bildern
19 IR in Beispielen IR-Facetten IR-Facetten Objekte Beispiel: Personensuche mit 123people
20 IR in Beispielen IR-Facetten IR-Facetten statische/dynamische Inhalte Beispiel: Twitter-Suche
21 IR in Beispielen IR-Facetten IR-Facetten Sprache: monolingual, cross-lingual, multilingual Struktur: atomar, Felder, baumartig (z.b. XML), Graph (z.b. Web) Medien: Text, Fakten, Bilder, Audio (Sprache/Musik), Video, 3D,... Objekte: Produkte, Personen, Firmen statische/dynamische Inhalte
22 IR in Beispielen Unterschiede zu klassischen Suchaufgaben: Unterschiede zu klassischen Suchaufgaben: Schwierigkeit, passende Anfrage zu formulieren iterative Anfrageformulierung (abhängig von Antworten) viele Antworten, aber wenige davon relevant Rangordnung der Antworten (statt Antwortmenge) Repräsentation des Inhalts von Dokumenten inadäquat / unsicher
23 Was ist IR? Definitionen IR = Unsicherheit und Vagheit in IS IR = inhaltsorientierte Suche
24 Was ist IR? Definitionen Definitionen Salton (1968): Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information.
25 Was ist IR? Definitionen Definitionen Salton (1968): Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information. Definition der Fachgruppe IR in der GI (1992): Im Information Retrieval (IR) werden Informationssysteme in bezug auf ihre Rolle im Prozeß des Wissenstransfers vom menschlichen Wissensproduzenten zum Informations-Nachfragenden betrachtet. Die Fachgruppe Information Retrieval in der Gesellschaft für Informatik beschäftigt sich dabei schwerpunktmäßig mit jenen Fragestellungen, die im Zusammenhang mit vagen Anfragen und unsicherem Wissen entstehen.
26 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren
27 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen
28 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung
29 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte
30 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte unsichere Repräsentation ( fehlerhafte Antworten)
31 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte unsichere Repräsentation ( fehlerhafte Antworten) unvollständige Repräsentation ( fehlende Antworten)
32 Was ist IR? IR = inhaltsorientierte Suche IR = inhaltsorientierte Suche (engere Definition) Suche auf verschiedenen Abstraktionsstufen: Syntax Semantik Pragmatik
33 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik bei Texten Willkommen beim Fachgebiet Informationssysteme. Schwerpunkte unserer Arbeit sind Information Retrieval, Digitale Bibliotheken und Web-basierte Informationssysteme, wobei wir insbesondere Nutzer-orientierte Forschungsansätze verfolgen. Syntax: Forschungsansatz no match Semantik Forschungsschwerpunkt match Pragmatik potenzielle Kooperationspartner für Entwicklung multimedialer Informationssysteme?
34 Was ist IR? IR = inhaltsorientierte Suche Bildersuche auf der Syntaktischen Ebene Bild als Pixelmatrix mit Farbwerten
35 Was ist IR? IR = inhaltsorientierte Suche Bildersuche auf der Syntaktischen Ebene Bild als Pixelmatrix mit Farbwerten 1. Konturen
36 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 2. Texturen d001 d056 d095 d020 Textures: Muster im Grauwert-Bild strukturelle und/oder statistische Muster d014 d006 d003 d004 d087 d005 d111 d066 d011 d103 d049 d015
37 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 3. Farbe Häufigkeit/räumliche Verteilung von Pixelfarben
38 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 3. Farbe Häufigkeit/räumliche Verteilung von Pixelfarben
39 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Semantische Ebene Objekte im Bild(+ räumliche Anordnung) Beispiel: Google Bildersuche nach kangaroo
40 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Semantische Ebene Objekte im Bild(+ räumliche Anordnung) Beispiel: Google Bildersuche nach kangaroo (basiert auf Textsuche im Dateinamen und der Bildunterschrift)
41 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema
42 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis
43 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis Themen sind sehr subjektiv
44 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis Themen sind sehr subjektiv Aber die pragmatische Ebene ist wichtig für viele Anwendungen
45 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen:
46 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern)
47 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte)
48 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte) Pragmatik Nutzung eines Dokumentes (Zweck) (z.b.: Löst das Dokument mein Problem? Was ist die Aussage des Textes / Bildes?)
49 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte) Pragmatik Nutzung eines Dokumentes (Zweck) (z.b.: Löst das Dokument mein Problem? Was ist die Aussage des Textes / Bildes?) IR beschäftigt sich mit der Semantik und Pragmatik von Dokumenten
50 Dimensionen des IR
51 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR
52 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match
53 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion
54 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch
55 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch
56 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich
57 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig
58 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig gesuchte Objekte die Fragespezif. erfüllende relevante
59 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig gesuchte Objekte die Fragespezif. erfüllende relevante Reaktion auf Datenfehler sensitiv insensitiv
60 Daten Information Wissen
61 Daten Information Wissen Daten Information Wissen Daten Information Wissen syntaktisch definierte Verfahren der Daten verarbeitung semantisch begründete Verfahren der (Wissen ) Repräsentation pragmatisch kontrollierte Wissens erarbeitung zur informationellen Handlungs absicherung
62 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist)
63 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist) Nach Wissen wird in externen Quellen gesucht.
64 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist) Nach Wissen wird in externen Quellen gesucht. Die Transformation von Information in Wissen ist ein Mehrwert erzeugender Prozess
65 Daten Information Wissen Wissen zur Entscheidungsunterstützung Daten Information Wissen Entscheidung Nützlichkeit
66 Rahmenarchitektur für IR-Systeme
67 Rahmenarchitektur für IR-Systeme Rahmenarchitektur für IR-Systeme Informations bedürfnis Frage Repräsentation Frage Beschreibung Vergleich Ergebnisse fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung
68 Rahmenarchitektur für IR-Systeme Beispiel für ein Textdokument Objekt: Experiments with Indexing Methods. The analysis of 25 indexing algorithms has not produced consistent retrieval performance. The best indexing technique for retrieving documents is not known. Repräsentation: (experiment, index, method, analys, index, algorithm, produc, consistent, retriev, perform, best, index, techni, retriev, document, know) Beschreibung: {(experiment,1), (index,3), (method, 1), (analys,1), (algorithm,1), (produc,1), (consistent,1), (retriev,1), (perform,1), (best,1), (techni,1), (retriev,1), (document,1), (know,1)} fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung
69 Rahmenarchitektur für IR-Systeme Beispiel für Textsuche Frage: What is the best indexing algorithm? Repräsentation: (best index algorithm) Beschreibung: best index algorithm Informations bedürfnis Frage Repräsentation Frage Beschreibung
70 Rahmenarchitektur für IR-Systeme Bezug zu den Vorlesungskapiteln Evaluierung Informations bedürfnis Frage Repräsentation Frage Beschreibung Wissensrepräsentation Vergleich Ergebnisse fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung Retrievalmodelle
Information Retrieval
Information Retrieval 1 Information Retrieval Norbert Fuhr 13. Oktober 2011 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Daten Information Wissen 4 Dimensionen des IR 5 Rahmenarchitektur für IR-Systeme
Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr
Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen
Internet-Suchmaschinen. Web-Suche. Internet-Suche. Norbert Fuhr. 2. April 2015. 1. Einführung
Einführung nternet-suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Web-Suche nternet-suche 4 / 1 Produktsuche in nternet-shops ntranet-suche 5 / 1 6 / 1 Suche in Online-Publikationen Suche
Internet-Suchmaschinen 1. Einführung
Internet-Suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Einführung Internet-Suche Internet-Suche Beispiele Web-Suche 4 / 1 Internet-Suche Beispiele Produktsuche in Internet-Shops 5 / 1 Internet-Suche
Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval
Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und
Einführung in Information Retrieval Skriptum zur Vorlesung im SS 10. Norbert Fuhr
Einführung in Information Retrieval Skriptum zur Vorlesung im SS 10 Norbert Fuhr 9. April 2010 Inhaltsverzeichnis 1 Einführung 3 1.1 IR-Methoden und -Anwendungen................................. 3 1.2
Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12. Norbert Fuhr
Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12 Norbert Fuhr 16. Dezember 2011 Inhaltsverzeichnis 1 Einführung 3 1.1 IR-Methoden und -Anwendungen.................................
Suchmaschinen. Anwendung RN Semester 7. Christian Koczur
Suchmaschinen Anwendung RN Semester 7 Christian Koczur Inhaltsverzeichnis 1. Historischer Hintergrund 2. Information Retrieval 3. Architektur einer Suchmaschine 4. Ranking von Webseiten 5. Quellenangabe
Multimedia-Datenbanken im SS 2010 Einführung in MMDB
Multimedia-Datenbanken im SS 2010 Einführung in MMDB Dr.-Ing. Marcin Grzegorzek 27.04.2010 Ähnlichkeitssuche in Multimedia-Datenbanken 2/ 28 Inhalte und Termine 1. Einführung in MMDB 1.1 Grundlegende Begriffe
Information Retrieval Einführung
Information Retrieval Einführung Kursfolien Karin Haenelt 22.7.2015 Themen Traditionelles Konzept / Erweitertes Konzept Auffinden von Dokumenten Rankingfunktionen Auffinden und Aufbereiten von Information
Kapitel IR:III (Fortsetzung)
Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches
Wissensrepräsentation
Wissensrepräsentation Vorlesung Sommersemester 2008 12. Sitzung Dozent Nino Simunic M.A. Computerlinguistik, Campus DU Übersicht Rückblick, Zusammenhänge Mysterien 2 Inhalte im abstrakten Überblick Künstliche
Automatische Klassifikation: Stand der Technik und Veränderungen im Berufsbild des Dokumentars. Automatische Klassifikation:
02. Mai 2005 P R O J E C T C O N S U L T GmbH GmbH 1 Agenda Einführung Automatische Klassifikation Qualität Veränderung des Arbeitsumfeldes Ausblick GmbH 2 1 Einführung GmbH 3 Eine Herausforderung geordnete
Linguistik mit Schwerpunkt Computerlinguistik / Sprachtechnologie
Nebenfach/Anwendungsfach Linguistik mit Schwerpunkt Computerlinguistik / Sprachtechnologie Prof. Dr. Udo Hahn Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität
Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme
Kapitel IR:II II. Grundlagen des Information Retrieval Retrieval-Evaluierung Indexterme IR:II-1 Basics STEIN 2005-2010 Batch-Mode-Retrieval einmaliges Absetzen einer Anfrage; nur eine Antwort wird geliefert
Computerlinguistische Grundlagen. Jürgen Hermes Wintersemester 17/18 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln
Computerlinguistische Grundlagen Jürgen Hermes Wintersemester 17/18 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Was ist Computerlinguistik? Definition Anwendungen Fragestellung
xii Inhaltsverzeichnis Generalisierung Typisierte Merkmalsstrukturen Literaturhinweis
Inhaltsverzeichnis 1 Computerlinguistik Was ist das? 1 1.1 Aspekte der Computerlinguistik.................. 1 1.1.1 Computerlinguistik: Die Wissenschaft........... 2 1.1.2 Computerlinguistik und ihre Nachbardisziplinen.....
Inhaltsverzeichnis 1 Einführung Was ist Information Retrieval? IR-Konzepte Daten μ Wissen μ Information..
Informationssysteme Stammvorlesung im WS 01/02 (IR-Teil) Norbert Fuhr 31. Januar 2002 Inhaltsverzeichnis 1 Einführung 3 1.1 Was ist Information Retrieval?............................. 3 2 IR-Konzepte 5
2 Evaluierung von Retrievalsystemen
2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...
Information Retrieval
Information Retrieval Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik [email protected] Vorlesung Sommersemester 2004 Allgemeines zur Vorlesung Vorbemerkungen Es gibt
Information Retrieval in XML- Dokumenten
Inhalt Information Retrieval in XML- Dokumenten Norbert Fuhr Universität Dortmund [email protected] I. Einführung II. III. IV. IR-Konzepte für XML XIRQL HyREX-Retrievalengine V. Zusammenfassung und
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über
Computational Neuroscience
Computational Neuroscience Vorlesung WS 2005/2006 Josef Ammermüller Jutta Kretzberg http://www.uni-oldenburg.de/sinnesphysiologie/ 14508.html Begriffsdefinitionen Computational Neuroscience Churchland
Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot
Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval
Information Retrieval. Peter Kolb
Information Retrieval Peter Kolb Semesterplan Einführung Boolesches Retrievalmodell Volltextsuche, invertierter Index Boolesche Logik und Mengen Vektorraummodell Evaluation im IR Term- und Dokumentrepräsentation
IR Seminar SoSe 2012 Martin Leinberger
IR Seminar SoSe 2012 Martin Leinberger Suchmaschinen stellen Ergebnisse häppchenweise dar Google: 10 Ergebnisse auf der ersten Seite Mehr Ergebnisse gibt es nur auf Nachfrage Nutzer geht selten auf zweite
Herzlich willkommen!!!
Theoretische Informatik 2 Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! 1 / 19 Kapitel 1: Einführung
Interdisziplinäre fachdidaktische Übung: Sprache und Modelle. SS 2015: Grossmann, Jenko
Interdisziplinäre fachdidaktische Übung: Sprache und Modelle SS 2015: Grossmann, Jenko Einleitung Was ist ein Modell? Sprachlich orientierte Modelle Beispiele Wie entstehen Modelle? Zusammenhang Modell
Einführung Grundbegriffe
Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung
1. Vorlesung,
1. Vorlesung, 16.10.2006 Einführung und Motivation, Beispiel Information versus Daten Grundlegende Konzepte Aufgaben des Anwenders Logische Sicht auf Dokumente Dokumentvorverarbeitung Dokumentsuche mit
Hauptseminar Information Retrieval. Karin Haenelt Vorschläge für Seminarprojekte
Hauptseminar Information Retrieval Vorschläge für Seminarprojekte Karin Haenelt 17.10.2010 Projektarten Implementierungsprojekte: Standardalgorithmen Modellierungsexperimente Vorhandene Werkzeuge studieren,
Kompendium semantische Netze
Klaus Reichenberger Kompendium semantische Netze Konzepte, Technologie, Modellierung Inhaltsverzeichnis 1 Warum dieses Buch? 1 1.1 Was erwartet Sie in diesem Buch? I 2 Grundlagen semantischer Netze 3 2.1
1. Grundlegende Konzepte von Information Retrieval Systemen
1. Grundlegende Konzepte von IR-Systemen Charakterisierung von Information Retrieval 1. Grundlegende Konzepte von Information Retrieval Systemen Charakterisierung des Begriffs Information Retrieval Beispiele
Logik für Informatiker
Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
Algorithmen und Datenstrukturen II
Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung III: D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2009,
Internet-Suchmaschinen Skriptum zur Vorlesung im WS 12/13. Norbert Fuhr
Internet-Suchmaschinen Skriptum zur Vorlesung im WS 12/13 Norbert Fuhr 7. Januar 2013 Inhaltsverzeichnis 1 Einführung 4 1.1 Internet-Suche........................................... 4 1.1.1 Suchqualität........................................
Frequent Itemset Mining + Association Rule Mining
Frequent Itemset Mining + Association Rule Mining Studiengang Angewandte Mathematik WS 2015/16 Frequent Itemset Mining (FIM) 21.10.2015 2 Einleitung Das Frequent-Itemset-Mining kann als Anfang des modernen,
Einführung in die Logik (Vorkurs)
Einführung in die Logik (Vorkurs) Jürgen Koslowski 2014-04-07 Ein Beispiel Familie A will im kommenden Jahr eine Waschmaschine, ein Auto und ein Moped anschaffen. Aber falls Herr A seinen üblichen Bonus
Informationssysteme für Ingenieure
Informationssysteme für Ingenieure Vorlesung Herbstsemester 2016 Überblick und Organisation R. Marti Organisation Web Site: http://isi.inf.ethz.ch Dozent: Robert Marti, martir ethz.ch Assistenz:??
Ivana Daskalovska. Willkommen zur Übung Einführung in die Computerlinguistik. Sarah Bosch,
Ivana Daskalovska Willkommen zur Übung Einführung in die Computerlinguistik Kontakt: [email protected] Betreff: EICL Wiederholung Aufgabe 1 Was ist Computerlinguistik? 4 Was ist Computerlinguistik?
Was ist mathematische Logik?
Was ist mathematische Logik? Logik untersucht allgemeine Prinzipien korrekten Schließens Mathematische Logik stellt zu diesem Zweck formale Kalküle bereit und analysiert die Beziehung zwischen Syntax und
Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!
Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit Sommersemester 2012 Prof. Dr. Nicole Schweikardt AG Theorie komplexer Systeme Goethe-Universität Frankfurt am Main Herzlich willkommen!
Einführung in die Wissensverarbeitung und Data Mining
Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen
Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem
-Problem Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Zum Aufwärmen: wir betrachten das sogenannte -Problem, bei dem ein Abenteurer/eine
Künstliche Intelligenz
Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage Mit Beiträgen von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebastian Thrun PEARSON mm ein Imprint von Pearson
Künstliche Intelligenz
Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage Mit Beiträgen von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebastian Thrun ein Imprint von Pearson Education
Logik für Informatiker
Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:
Information Retrieval Übung
Information Retrieval p. 1/15 Information Retrieval Übung Raum LF052, Montags 8:30-10:00 Dipl.-Inform. Sascha Kriewel, Raum LF137 [email protected] Institut für Informatik und Interaktive
Künstliche Intelligenz
Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage itb< en von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebast- run PEARSON Studium ein Imprint von Pearson Education
Einführung in die Wissensrepräsentation
Einführung in die Wissensrepräsentation Netzartige und schema-basierte Repräsentationsformate Von Dr. rer. soc. Ulrich Reimer Universität Konstanz > B.G.Teubner Stuttgart 1991 Inhaltsverzeichnis 1 Einleitung
Semantische Datenintegration: Strategien zur Integration von Datenbanken
Semantische Datenintegration: Strategien zur Integration von Datenbanken Inhalt 1. Wiederholung Integrationskonflikte 2. Klassische Strategien zur Integration 1. Eng gekoppelte Ansätze 2. Lose gekoppelte
Data Mining - Wiederholung
Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)
1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.
Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik
Datenbank-Recherche. SS Veranstaltung 8. Mai Philipp Mayr - Philipp Schaer -
Datenbank-Recherche SS 2014 4. Veranstaltung 8. Mai 2014 Philipp Mayr - [email protected] Philipp Schaer - [email protected] GESIS Leibniz-Institut für Sozialwissenschaften 2 Agenda Nachbearbeitung
5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation
Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung
1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf
. Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und
INFORMATIONSEXTRAKTION Computerlinguistik Referenten: Alice Holka, Sandra Pyka
INFORMATIONSEXTRAKTION 1 22.12.09 Computerlinguistik Referenten: Alice Holka, Sandra Pyka INFORMATIONSEXTRAKTION(IE) 1. Einleitung 2. Ziel der IE 3. Funktionalität eines IE-Systems 4. Beispiel 5. Übung
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Paul Prasse Michael Großhans
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Paul Prasse Michael Großhans Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. 6 Leistungspunkte
I Begriff. Semiotik, die: .1 Ursprung des Namens. aus dem Altgriechischen. τεχνη σημειοτικη. Die Lehre von (Kenn-)Zeichen
SEMIOTIK I Begriff.1 Ursprung des Namens Semiotik, die: aus dem Altgriechischen τεχνη σημειοτικη ( techne semeiotike ) Die Lehre von (Kenn-)Zeichen die Untersuchung von Zeichen, die sich am Menschen, in
Ein XML Dokument zeichnet sich im Wesentlichen durch seine baumartige Struktur aus:
RDF in wissenschaftlichen Bibliotheken 5HWULHYDODXI5') Momentan existiert noch keine standardisierte Anfragesprache für RDF Dokumente. Auf Grund der existierenden XML Repräsentation von RDF liegt es jedoch
Seminar Datenbanksysteme
Seminar Datenbanksysteme Recommender System mit Text Analysis für verbesserte Geo Discovery Eine Präsentation von Fabian Senn Inhaltsverzeichnis Geodaten Geometadaten Geo Discovery Recommendation System
Multimedia-Metadaten und ihre Anwendung
Multimedia-Metadaten und ihre Anwendung 14.02.2006 MPEG-7: Überblick und Zusammenfassung Anneke Winter Inhalt der Präsentation 1. MPEG 2. Einordnung in die MPEG Familie 3. MPEG-7 Idee 4. MPEG-7 Hauptelemente
5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank
Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.
Modellierungsbeispiel Geräte
Was bisher geschah Modellierung von Aussagen in (klassischer) Aussagenlogik Syntax: Aussagenvariablen sind Atome Junktoren,,,, induktive Definition: Baumstruktur der Formeln strukturelle Induktion äquivalente
