Information Retrieval

Größe: px
Ab Seite anzeigen:

Download "Information Retrieval"

Transkript

1 Information Retrieval Norbert Fuhr 12. April 2010

2 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Dimensionen des IR 4 Daten Information Wissen 5 Rahmenarchitektur für IR-Systeme

3 IR in Beispielen IR-Aufgaben IR-Facetten Unterschiede zu klassischen Suchaufgaben:

4 IR in Beispielen IR-Aufgaben IR-Aufgaben Adhoc-Suche

5 IR in Beispielen IR-Aufgaben IR-Aufgaben Klassifikation

6 IR in Beispielen IR-Aufgaben IR-Aufgaben Klassifikation Beispiel: Spam-Mail-Erkennung

7 IR in Beispielen IR-Aufgaben IR-Aufgaben Clustering

8 IR in Beispielen IR-Aufgaben IR-Aufgaben Informationsextraktion/-markup

9 IR in Beispielen IR-Aufgaben IR-Aufgaben Informationsextraktion/-markup Beispiel: Markup bei Yahoo!-Nachrichten

10 IR in Beispielen IR-Aufgaben IR-Aufgaben (Text-)Zusammenfassung

11 IR in Beispielen IR-Aufgaben IR-Aufgaben (Text-)Zusammenfassung

12 IR in Beispielen IR-Aufgaben IR-Aufgaben Frage-Antwort-Systeme

13 IR in Beispielen IR-Aufgaben IR-Aufgaben Recommender-Systeme

14 IR in Beispielen IR-Aufgaben IR-Aufgaben Recommender-Systeme

15 IR in Beispielen IR-Aufgaben IR-Aufgaben Adhoc-Suche Klassifikation ( Vorlesung Information Mining) Clustering ( Vorlesung Information Mining) Informationsextraktion ( Vorlesung Informationsextraktion aus Texten, Hoeppner) (Text-)Zusammenfassung Frage-Antwort-Systeme Recommender-Systeme

16 IR in Beispielen IR-Facetten IR-Facetten Sprache Beispiel: cross-linguale Suche in Google

17 IR in Beispielen IR-Facetten IR-Facetten Struktur Beispiel: XML-Retrieval

18 IR in Beispielen IR-Facetten IR-Facetten Medien Beispiel: Ähnlichkeitssuche auf Bildern

19 IR in Beispielen IR-Facetten IR-Facetten Objekte Beispiel: Personensuche mit 123people

20 IR in Beispielen IR-Facetten IR-Facetten statische/dynamische Inhalte Beispiel: Twitter-Suche

21 IR in Beispielen IR-Facetten IR-Facetten Sprache: monolingual, cross-lingual, multilingual Struktur: atomar, Felder, baumartig (z.b. XML), Graph (z.b. Web) Medien: Text, Fakten, Bilder, Audio (Sprache/Musik), Video, 3D,... Objekte: Produkte, Personen, Firmen statische/dynamische Inhalte

22 IR in Beispielen Unterschiede zu klassischen Suchaufgaben: Unterschiede zu klassischen Suchaufgaben: Schwierigkeit, passende Anfrage zu formulieren iterative Anfrageformulierung (abhängig von Antworten) viele Antworten, aber wenige davon relevant Rangordnung der Antworten (statt Antwortmenge) Repräsentation des Inhalts von Dokumenten inadäquat / unsicher

23 Was ist IR? Definitionen IR = Unsicherheit und Vagheit in IS IR = inhaltsorientierte Suche

24 Was ist IR? Definitionen Definitionen Salton (1968): Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information.

25 Was ist IR? Definitionen Definitionen Salton (1968): Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information. Definition der Fachgruppe IR in der GI (1992): Im Information Retrieval (IR) werden Informationssysteme in bezug auf ihre Rolle im Prozeß des Wissenstransfers vom menschlichen Wissensproduzenten zum Informations-Nachfragenden betrachtet. Die Fachgruppe Information Retrieval in der Gesellschaft für Informatik beschäftigt sich dabei schwerpunktmäßig mit jenen Fragestellungen, die im Zusammenhang mit vagen Anfragen und unsicherem Wissen entstehen.

26 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren

27 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen

28 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung

29 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte

30 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte unsichere Repräsentation ( fehlerhafte Antworten)

31 Was ist IR? IR = Unsicherheit und Vagheit in IS IR = Unsicherheit und Vagheit in IS Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte unsichere Repräsentation ( fehlerhafte Antworten) unvollständige Repräsentation ( fehlende Antworten)

32 Was ist IR? IR = inhaltsorientierte Suche IR = inhaltsorientierte Suche (engere Definition) Suche auf verschiedenen Abstraktionsstufen: Syntax Semantik Pragmatik

33 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik bei Texten Willkommen beim Fachgebiet Informationssysteme. Schwerpunkte unserer Arbeit sind Information Retrieval, Digitale Bibliotheken und Web-basierte Informationssysteme, wobei wir insbesondere Nutzer-orientierte Forschungsansätze verfolgen. Syntax: Forschungsansatz no match Semantik Forschungsschwerpunkt match Pragmatik potenzielle Kooperationspartner für Entwicklung multimedialer Informationssysteme?

34 Was ist IR? IR = inhaltsorientierte Suche Bildersuche auf der Syntaktischen Ebene Bild als Pixelmatrix mit Farbwerten

35 Was ist IR? IR = inhaltsorientierte Suche Bildersuche auf der Syntaktischen Ebene Bild als Pixelmatrix mit Farbwerten 1. Konturen

36 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 2. Texturen d001 d056 d095 d020 Textures: Muster im Grauwert-Bild strukturelle und/oder statistische Muster d014 d006 d003 d004 d087 d005 d111 d066 d011 d103 d049 d015

37 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 3. Farbe Häufigkeit/räumliche Verteilung von Pixelfarben

38 Was ist IR? IR = inhaltsorientierte Suche Syntaktische Ebene: 3. Farbe Häufigkeit/räumliche Verteilung von Pixelfarben

39 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Semantische Ebene Objekte im Bild(+ räumliche Anordnung) Beispiel: Google Bildersuche nach kangaroo

40 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Semantische Ebene Objekte im Bild(+ räumliche Anordnung) Beispiel: Google Bildersuche nach kangaroo (basiert auf Textsuche im Dateinamen und der Bildunterschrift)

41 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema

42 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis

43 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis Themen sind sehr subjektiv

44 Was ist IR? IR = inhaltsorientierte Suche Bildersuche: Pragmatische Ebene Bedeutung eines Bildes / durch das Bild illustriertes Thema B1-Ausbaupläne liegen weiter auf Eis Themen sind sehr subjektiv Aber die pragmatische Ebene ist wichtig für viele Anwendungen

45 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen:

46 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern)

47 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte)

48 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte) Pragmatik Nutzung eines Dokumentes (Zweck) (z.b.: Löst das Dokument mein Problem? Was ist die Aussage des Textes / Bildes?)

49 Was ist IR? IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte) Pragmatik Nutzung eines Dokumentes (Zweck) (z.b.: Löst das Dokument mein Problem? Was ist die Aussage des Textes / Bildes?) IR beschäftigt sich mit der Semantik und Pragmatik von Dokumenten

50 Dimensionen des IR

51 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR

52 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match

53 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion

54 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch

55 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch

56 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich

57 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig

58 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig gesuchte Objekte die Fragespezif. erfüllende relevante

59 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig gesuchte Objekte die Fragespezif. erfüllende relevante Reaktion auf Datenfehler sensitiv insensitiv

60 Daten Information Wissen

61 Daten Information Wissen Daten Information Wissen Daten Information Wissen syntaktisch definierte Verfahren der Daten verarbeitung semantisch begründete Verfahren der (Wissen ) Repräsentation pragmatisch kontrollierte Wissens erarbeitung zur informationellen Handlungs absicherung

62 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist)

63 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist) Nach Wissen wird in externen Quellen gesucht.

64 Daten Information Wissen Information vs. Wissen Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist) Nach Wissen wird in externen Quellen gesucht. Die Transformation von Information in Wissen ist ein Mehrwert erzeugender Prozess

65 Daten Information Wissen Wissen zur Entscheidungsunterstützung Daten Information Wissen Entscheidung Nützlichkeit

66 Rahmenarchitektur für IR-Systeme

67 Rahmenarchitektur für IR-Systeme Rahmenarchitektur für IR-Systeme Informations bedürfnis Frage Repräsentation Frage Beschreibung Vergleich Ergebnisse fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung

68 Rahmenarchitektur für IR-Systeme Beispiel für ein Textdokument Objekt: Experiments with Indexing Methods. The analysis of 25 indexing algorithms has not produced consistent retrieval performance. The best indexing technique for retrieving documents is not known. Repräsentation: (experiment, index, method, analys, index, algorithm, produc, consistent, retriev, perform, best, index, techni, retriev, document, know) Beschreibung: {(experiment,1), (index,3), (method, 1), (analys,1), (algorithm,1), (produc,1), (consistent,1), (retriev,1), (perform,1), (best,1), (techni,1), (retriev,1), (document,1), (know,1)} fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung

69 Rahmenarchitektur für IR-Systeme Beispiel für Textsuche Frage: What is the best indexing algorithm? Repräsentation: (best index algorithm) Beschreibung: best index algorithm Informations bedürfnis Frage Repräsentation Frage Beschreibung

70 Rahmenarchitektur für IR-Systeme Bezug zu den Vorlesungskapiteln Evaluierung Informations bedürfnis Frage Repräsentation Frage Beschreibung Wissensrepräsentation Vergleich Ergebnisse fiktives/ reales Objekt Objekt Repräsentation Objekt Beschreibung Retrievalmodelle

Information Retrieval

Information Retrieval Information Retrieval 1 Information Retrieval Norbert Fuhr 13. Oktober 2011 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Daten Information Wissen 4 Dimensionen des IR 5 Rahmenarchitektur für IR-Systeme

Mehr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen

Mehr

Internet-Suchmaschinen. Web-Suche. Internet-Suche. Norbert Fuhr. 2. April 2015. 1. Einführung

Internet-Suchmaschinen. Web-Suche. Internet-Suche. Norbert Fuhr. 2. April 2015. 1. Einführung Einführung nternet-suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Web-Suche nternet-suche 4 / 1 Produktsuche in nternet-shops ntranet-suche 5 / 1 6 / 1 Suche in Online-Publikationen Suche

Mehr

Internet-Suchmaschinen 1. Einführung

Internet-Suchmaschinen 1. Einführung Internet-Suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Einführung Internet-Suche Internet-Suche Beispiele Web-Suche 4 / 1 Internet-Suche Beispiele Produktsuche in Internet-Shops 5 / 1 Internet-Suche

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

Einführung in Information Retrieval Skriptum zur Vorlesung im SS 10. Norbert Fuhr

Einführung in Information Retrieval Skriptum zur Vorlesung im SS 10. Norbert Fuhr Einführung in Information Retrieval Skriptum zur Vorlesung im SS 10 Norbert Fuhr 9. April 2010 Inhaltsverzeichnis 1 Einführung 3 1.1 IR-Methoden und -Anwendungen................................. 3 1.2

Mehr

Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12. Norbert Fuhr

Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12. Norbert Fuhr Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12 Norbert Fuhr 16. Dezember 2011 Inhaltsverzeichnis 1 Einführung 3 1.1 IR-Methoden und -Anwendungen.................................

Mehr

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur Suchmaschinen Anwendung RN Semester 7 Christian Koczur Inhaltsverzeichnis 1. Historischer Hintergrund 2. Information Retrieval 3. Architektur einer Suchmaschine 4. Ranking von Webseiten 5. Quellenangabe

Mehr

Multimedia-Datenbanken im SS 2010 Einführung in MMDB

Multimedia-Datenbanken im SS 2010 Einführung in MMDB Multimedia-Datenbanken im SS 2010 Einführung in MMDB Dr.-Ing. Marcin Grzegorzek 27.04.2010 Ähnlichkeitssuche in Multimedia-Datenbanken 2/ 28 Inhalte und Termine 1. Einführung in MMDB 1.1 Grundlegende Begriffe

Mehr

Information Retrieval Einführung

Information Retrieval Einführung Information Retrieval Einführung Kursfolien Karin Haenelt 22.7.2015 Themen Traditionelles Konzept / Erweitertes Konzept Auffinden von Dokumenten Rankingfunktionen Auffinden und Aufbereiten von Information

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Wissensrepräsentation

Wissensrepräsentation Wissensrepräsentation Vorlesung Sommersemester 2008 12. Sitzung Dozent Nino Simunic M.A. Computerlinguistik, Campus DU Übersicht Rückblick, Zusammenhänge Mysterien 2 Inhalte im abstrakten Überblick Künstliche

Mehr

Automatische Klassifikation: Stand der Technik und Veränderungen im Berufsbild des Dokumentars. Automatische Klassifikation:

Automatische Klassifikation: Stand der Technik und Veränderungen im Berufsbild des Dokumentars. Automatische Klassifikation: 02. Mai 2005 P R O J E C T C O N S U L T GmbH GmbH 1 Agenda Einführung Automatische Klassifikation Qualität Veränderung des Arbeitsumfeldes Ausblick GmbH 2 1 Einführung GmbH 3 Eine Herausforderung geordnete

Mehr

Linguistik mit Schwerpunkt Computerlinguistik / Sprachtechnologie

Linguistik mit Schwerpunkt Computerlinguistik / Sprachtechnologie Nebenfach/Anwendungsfach Linguistik mit Schwerpunkt Computerlinguistik / Sprachtechnologie Prof. Dr. Udo Hahn Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität

Mehr

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme Kapitel IR:II II. Grundlagen des Information Retrieval Retrieval-Evaluierung Indexterme IR:II-1 Basics STEIN 2005-2010 Batch-Mode-Retrieval einmaliges Absetzen einer Anfrage; nur eine Antwort wird geliefert

Mehr

Computerlinguistische Grundlagen. Jürgen Hermes Wintersemester 17/18 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Computerlinguistische Grundlagen. Jürgen Hermes Wintersemester 17/18 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Computerlinguistische Grundlagen Jürgen Hermes Wintersemester 17/18 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Was ist Computerlinguistik? Definition Anwendungen Fragestellung

Mehr

xii Inhaltsverzeichnis Generalisierung Typisierte Merkmalsstrukturen Literaturhinweis

xii Inhaltsverzeichnis Generalisierung Typisierte Merkmalsstrukturen Literaturhinweis Inhaltsverzeichnis 1 Computerlinguistik Was ist das? 1 1.1 Aspekte der Computerlinguistik.................. 1 1.1.1 Computerlinguistik: Die Wissenschaft........... 2 1.1.2 Computerlinguistik und ihre Nachbardisziplinen.....

Mehr

Inhaltsverzeichnis 1 Einführung Was ist Information Retrieval? IR-Konzepte Daten μ Wissen μ Information..

Inhaltsverzeichnis 1 Einführung Was ist Information Retrieval? IR-Konzepte Daten μ Wissen μ Information.. Informationssysteme Stammvorlesung im WS 01/02 (IR-Teil) Norbert Fuhr 31. Januar 2002 Inhaltsverzeichnis 1 Einführung 3 1.1 Was ist Information Retrieval?............................. 3 2 IR-Konzepte 5

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

Information Retrieval

Information Retrieval Information Retrieval Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik [email protected] Vorlesung Sommersemester 2004 Allgemeines zur Vorlesung Vorbemerkungen Es gibt

Mehr

Information Retrieval in XML- Dokumenten

Information Retrieval in XML- Dokumenten Inhalt Information Retrieval in XML- Dokumenten Norbert Fuhr Universität Dortmund [email protected] I. Einführung II. III. IV. IR-Konzepte für XML XIRQL HyREX-Retrievalengine V. Zusammenfassung und

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Computational Neuroscience

Computational Neuroscience Computational Neuroscience Vorlesung WS 2005/2006 Josef Ammermüller Jutta Kretzberg http://www.uni-oldenburg.de/sinnesphysiologie/ 14508.html Begriffsdefinitionen Computational Neuroscience Churchland

Mehr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval

Mehr

Information Retrieval. Peter Kolb

Information Retrieval. Peter Kolb Information Retrieval Peter Kolb Semesterplan Einführung Boolesches Retrievalmodell Volltextsuche, invertierter Index Boolesche Logik und Mengen Vektorraummodell Evaluation im IR Term- und Dokumentrepräsentation

Mehr

IR Seminar SoSe 2012 Martin Leinberger

IR Seminar SoSe 2012 Martin Leinberger IR Seminar SoSe 2012 Martin Leinberger Suchmaschinen stellen Ergebnisse häppchenweise dar Google: 10 Ergebnisse auf der ersten Seite Mehr Ergebnisse gibt es nur auf Nachfrage Nutzer geht selten auf zweite

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Theoretische Informatik 2 Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! 1 / 19 Kapitel 1: Einführung

Mehr

Interdisziplinäre fachdidaktische Übung: Sprache und Modelle. SS 2015: Grossmann, Jenko

Interdisziplinäre fachdidaktische Übung: Sprache und Modelle. SS 2015: Grossmann, Jenko Interdisziplinäre fachdidaktische Übung: Sprache und Modelle SS 2015: Grossmann, Jenko Einleitung Was ist ein Modell? Sprachlich orientierte Modelle Beispiele Wie entstehen Modelle? Zusammenhang Modell

Mehr

Einführung Grundbegriffe

Einführung Grundbegriffe Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung

Mehr

1. Vorlesung,

1. Vorlesung, 1. Vorlesung, 16.10.2006 Einführung und Motivation, Beispiel Information versus Daten Grundlegende Konzepte Aufgaben des Anwenders Logische Sicht auf Dokumente Dokumentvorverarbeitung Dokumentsuche mit

Mehr

Hauptseminar Information Retrieval. Karin Haenelt Vorschläge für Seminarprojekte

Hauptseminar Information Retrieval. Karin Haenelt Vorschläge für Seminarprojekte Hauptseminar Information Retrieval Vorschläge für Seminarprojekte Karin Haenelt 17.10.2010 Projektarten Implementierungsprojekte: Standardalgorithmen Modellierungsexperimente Vorhandene Werkzeuge studieren,

Mehr

Kompendium semantische Netze

Kompendium semantische Netze Klaus Reichenberger Kompendium semantische Netze Konzepte, Technologie, Modellierung Inhaltsverzeichnis 1 Warum dieses Buch? 1 1.1 Was erwartet Sie in diesem Buch? I 2 Grundlagen semantischer Netze 3 2.1

Mehr

1. Grundlegende Konzepte von Information Retrieval Systemen

1. Grundlegende Konzepte von Information Retrieval Systemen 1. Grundlegende Konzepte von IR-Systemen Charakterisierung von Information Retrieval 1. Grundlegende Konzepte von Information Retrieval Systemen Charakterisierung des Begriffs Information Retrieval Beispiele

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung III: D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2009,

Mehr

Internet-Suchmaschinen Skriptum zur Vorlesung im WS 12/13. Norbert Fuhr

Internet-Suchmaschinen Skriptum zur Vorlesung im WS 12/13. Norbert Fuhr Internet-Suchmaschinen Skriptum zur Vorlesung im WS 12/13 Norbert Fuhr 7. Januar 2013 Inhaltsverzeichnis 1 Einführung 4 1.1 Internet-Suche........................................... 4 1.1.1 Suchqualität........................................

Mehr

Frequent Itemset Mining + Association Rule Mining

Frequent Itemset Mining + Association Rule Mining Frequent Itemset Mining + Association Rule Mining Studiengang Angewandte Mathematik WS 2015/16 Frequent Itemset Mining (FIM) 21.10.2015 2 Einleitung Das Frequent-Itemset-Mining kann als Anfang des modernen,

Mehr

Einführung in die Logik (Vorkurs)

Einführung in die Logik (Vorkurs) Einführung in die Logik (Vorkurs) Jürgen Koslowski 2014-04-07 Ein Beispiel Familie A will im kommenden Jahr eine Waschmaschine, ein Auto und ein Moped anschaffen. Aber falls Herr A seinen üblichen Bonus

Mehr

Informationssysteme für Ingenieure

Informationssysteme für Ingenieure Informationssysteme für Ingenieure Vorlesung Herbstsemester 2016 Überblick und Organisation R. Marti Organisation Web Site: http://isi.inf.ethz.ch Dozent: Robert Marti, martir ethz.ch Assistenz:??

Mehr

Ivana Daskalovska. Willkommen zur Übung Einführung in die Computerlinguistik. Sarah Bosch,

Ivana Daskalovska. Willkommen zur Übung Einführung in die Computerlinguistik. Sarah Bosch, Ivana Daskalovska Willkommen zur Übung Einführung in die Computerlinguistik Kontakt: [email protected] Betreff: EICL Wiederholung Aufgabe 1 Was ist Computerlinguistik? 4 Was ist Computerlinguistik?

Mehr

Was ist mathematische Logik?

Was ist mathematische Logik? Was ist mathematische Logik? Logik untersucht allgemeine Prinzipien korrekten Schließens Mathematische Logik stellt zu diesem Zweck formale Kalküle bereit und analysiert die Beziehung zwischen Syntax und

Mehr

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen! Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit Sommersemester 2012 Prof. Dr. Nicole Schweikardt AG Theorie komplexer Systeme Goethe-Universität Frankfurt am Main Herzlich willkommen!

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem

Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem -Problem Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Zum Aufwärmen: wir betrachten das sogenannte -Problem, bei dem ein Abenteurer/eine

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage Mit Beiträgen von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebastian Thrun PEARSON mm ein Imprint von Pearson

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage Mit Beiträgen von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebastian Thrun ein Imprint von Pearson Education

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Information Retrieval Übung

Information Retrieval Übung Information Retrieval p. 1/15 Information Retrieval Übung Raum LF052, Montags 8:30-10:00 Dipl.-Inform. Sascha Kriewel, Raum LF137 [email protected] Institut für Informatik und Interaktive

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Stuart Russell, Peter Norvig Künstliche Intelligenz Ein moderner Ansatz 2. Auflage itb< en von: John F. Canny Douglas D. Edwards Jitendra M. Malik Sebast- run PEARSON Studium ein Imprint von Pearson Education

Mehr

Einführung in die Wissensrepräsentation

Einführung in die Wissensrepräsentation Einführung in die Wissensrepräsentation Netzartige und schema-basierte Repräsentationsformate Von Dr. rer. soc. Ulrich Reimer Universität Konstanz > B.G.Teubner Stuttgart 1991 Inhaltsverzeichnis 1 Einleitung

Mehr

Semantische Datenintegration: Strategien zur Integration von Datenbanken

Semantische Datenintegration: Strategien zur Integration von Datenbanken Semantische Datenintegration: Strategien zur Integration von Datenbanken Inhalt 1. Wiederholung Integrationskonflikte 2. Klassische Strategien zur Integration 1. Eng gekoppelte Ansätze 2. Lose gekoppelte

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Datenbank-Recherche. SS Veranstaltung 8. Mai Philipp Mayr - Philipp Schaer -

Datenbank-Recherche. SS Veranstaltung 8. Mai Philipp Mayr - Philipp Schaer - Datenbank-Recherche SS 2014 4. Veranstaltung 8. Mai 2014 Philipp Mayr - [email protected] Philipp Schaer - [email protected] GESIS Leibniz-Institut für Sozialwissenschaften 2 Agenda Nachbearbeitung

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf . Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und

Mehr

INFORMATIONSEXTRAKTION Computerlinguistik Referenten: Alice Holka, Sandra Pyka

INFORMATIONSEXTRAKTION Computerlinguistik Referenten: Alice Holka, Sandra Pyka INFORMATIONSEXTRAKTION 1 22.12.09 Computerlinguistik Referenten: Alice Holka, Sandra Pyka INFORMATIONSEXTRAKTION(IE) 1. Einleitung 2. Ziel der IE 3. Funktionalität eines IE-Systems 4. Beispiel 5. Übung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Paul Prasse Michael Großhans

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Paul Prasse Michael Großhans Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Paul Prasse Michael Großhans Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. 6 Leistungspunkte

Mehr

I Begriff. Semiotik, die: .1 Ursprung des Namens. aus dem Altgriechischen. τεχνη σημειοτικη. Die Lehre von (Kenn-)Zeichen

I Begriff. Semiotik, die: .1 Ursprung des Namens. aus dem Altgriechischen. τεχνη σημειοτικη. Die Lehre von (Kenn-)Zeichen SEMIOTIK I Begriff.1 Ursprung des Namens Semiotik, die: aus dem Altgriechischen τεχνη σημειοτικη ( techne semeiotike ) Die Lehre von (Kenn-)Zeichen die Untersuchung von Zeichen, die sich am Menschen, in

Mehr

Ein XML Dokument zeichnet sich im Wesentlichen durch seine baumartige Struktur aus:

Ein XML Dokument zeichnet sich im Wesentlichen durch seine baumartige Struktur aus: RDF in wissenschaftlichen Bibliotheken 5HWULHYDODXI5') Momentan existiert noch keine standardisierte Anfragesprache für RDF Dokumente. Auf Grund der existierenden XML Repräsentation von RDF liegt es jedoch

Mehr

Seminar Datenbanksysteme

Seminar Datenbanksysteme Seminar Datenbanksysteme Recommender System mit Text Analysis für verbesserte Geo Discovery Eine Präsentation von Fabian Senn Inhaltsverzeichnis Geodaten Geometadaten Geo Discovery Recommendation System

Mehr

Multimedia-Metadaten und ihre Anwendung

Multimedia-Metadaten und ihre Anwendung Multimedia-Metadaten und ihre Anwendung 14.02.2006 MPEG-7: Überblick und Zusammenfassung Anneke Winter Inhalt der Präsentation 1. MPEG 2. Einordnung in die MPEG Familie 3. MPEG-7 Idee 4. MPEG-7 Hauptelemente

Mehr

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.

Mehr

Modellierungsbeispiel Geräte

Modellierungsbeispiel Geräte Was bisher geschah Modellierung von Aussagen in (klassischer) Aussagenlogik Syntax: Aussagenvariablen sind Atome Junktoren,,,, induktive Definition: Baumstruktur der Formeln strukturelle Induktion äquivalente

Mehr