Optische Methoden in der Messtechnik. welcome back!
|
|
|
- Maria Richter
- vor 9 Jahren
- Abrufe
Transkript
1 Optische Methoden in der Messtechnik Gert Holler (OM_2 OM_7), Axel Pinz (OM_1) welcome back! 1
2 Übersicht Allgemeine Übersicht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen: OM_1 Licht als elektromagnet. Welle, Interferenz, Kohärenz, Laser, Interferometrie, Anemometrie: OM_2 OM_7 Beschreibung radiometrische, fotometrische Größen Detektoren Geometrische Optik Bildgebende Verfahren Anwendungen 2
3 V(λ) Spektraler Hellempfindlichkeitsgrad für Tagsehen Relative sensitivity = V( ) Commission International de l Eclairage (CIE) max. bei 555nm Strahlungsphysikalische vs. Lichttechnische Größen [Foley et al., Computer Graphics ] 3
4 Strahlungsphysikalische (radiometrische) Lichttechnische Größen (fotometrische) [Hoffmann, TB d. Messtechnik] 4
5 Strahlungsenergie (-menge), Strahlungsfluss Strahlungsenergie Q e Strahlungsfluss Φ e = dq e dt Gesamte von einer Quelle emittierte Energie Gesamte von einer Quelle emittierte Leistung [Q e ] = J = Ws [ e ] = W Index e energetisch Strahlungsphysikalische/radiometrische Grundgrößen 5
6 je Wellenlänge Spektrale Strahlungsenergie Q e Spektraler Strahlungsfluss e [Q e ] = J = Ws/m [ e ] = W/m Gesamte von einer Quelle emittierte Energie Leistung einer bestimmten Wellenlänge 6
7 [Pedrotti et al.] 7
8 Fluss pro Raumwinkel Strahlstärke I e I e = dφ e dω [I e ] = W sr [Pedrotti et al.] 8
9 Strahldichte L e Strahlstärke der projizierten Quellenfläche (effektive Senderfläche) senkrecht zur Beobachtungsrichtung L e = di e da 1 cos ε = d 2 Φ e dω da 1 cos ε Sonderfall Lambert scher Strahler: I e = I e0 cos ε L e = I e0 = const. A 1 L e = W sr m 2 Strahldichte ist unabhängig vom Betrachtungswinkel Sonderfall Kugelstrahler: I e ( )= const. 9
10 [Pedrotti et al.] 10
11 Strahlcharakteristik Richtungsabhängigkeit der Strahlstärke I e ( ): Kugelstrahler I e = Φ e 4π sr = const. Lambert- (Cosinus-)strahler I e = I e0 cos ε Keulencharakteristik I e = I e (ε) (Öffnungswinkel: Abfall von I e auf 50%) 11
12 Spezifische Ausstrahlung M e Strahlungsflussdichte einer Quelle die den Strahlungsfluss d e,h vom Flächenelement da 1 in den Halbraum strahlt: M e = dφ e,h da 1 [M e ]= W m 2 12
13 Bestrahlungsstärke E e, Bestrahlung H e Strahlungsflussdichte auf einer Empfängerflache da 2 : E e = dφ e da 2 [E e ]= W m 2 über einen Zeitraum: H e = E e dt [H e ]= Ws m 2 13
14 [Pedrotti et al.] 14
15 Wie misst man strahlungsphysikalische Größen? [Pedrotti et al.] 15
16 Strahlungsdetektion Wechselwirkung Photon/Strahlung Detektor Photonendetektion, Beispiel Photodiode Schwarzkörper Absorption, Beispiel Bolometer Immer nur in einem bestimmten Energiebereich! z.b.: λ 2 E eλ dλ λ 1 Spektrale Empfindlichkeit berücksichtigen! z.b.: λ 2 η(λ)e eλ dλ λ 1 ( ) z.b. Quanteneffizienz ( ), z.b. für Silizium 16
17 Beispiel Photodiode Im Sperrbetrieb (III. Quadrant): Sperrstrom streng proportional zu Bestrahlungsstärke und Fläche Lineare KL (I/E e ) [Hoffmann, TB d. MT] BS520E0F von Sharp 17
18 Beispiel Bolometer a. Absorber E e Erwärmung d. Membran b. Temperatur der Membran (z.b. piezoresistiv) [Hoffmann, TB d. MT] Perfekt schwarze Membran: Allgemein: Spektrale Albedo ρ( )=0 E e (1-ρ( )) 18
19 Strahlungsphysikalisch Lichttechnisch Viele wellenlängen-abhängige Gewichtungen: ( ), ρ( ),, V( ) Spektraler Hellempfindlichkeitsgrad für Tagsehen Relative sensitivity = V( ) Lichtstrom φ = K m 780nm 380nm V(λ)φ eλ dλ [Foley et al., Computer Graphics ] K m = 683 lm/w fotometrisches Strahlungsäquivalent 19
20 [Pedrotti et al.] 20
21 Radiometrie Fotometrie Allgemein: Fotometrische Größe, z.b. φ, φ v, φ vis Index visible für sichtbares Licht Fotometrische Größe = K( ) Radiometrische Größe K λ = K m V λ mit K m = 683 lm W Es gibt die gleiche Berechnung auch für Nachtsehen: K λ = K mv λ mit K m = 1699 lm W 21
22 Nachtsehen Tagsehen 650 [Pedrotti et al.] 22
23 0,2 [Pedrotti et al.] 23
24 Zum Abschluss Strahlungsphysikalische Lichttechnische Größen Si-Einheiten W lm Lumen W/sr cd Candela = lm/sr W/m 2 lx Lux = lm/m 2 Lichttechnische Si-Basiseinheit: Candela Und noch ein Gewicht 24
25 Responsivity Relative spektrale Antwort [Jähne et al.] Einfach: R λ U Spannung am Detektor = U(λ) Vollständig: R λ, f = U(λ,f) φ λ φ λ (f) f Abtastfrequenz 25
26 Detektoren Photonen-Detektoren Äußerer Photoeffekt Innerer Photoeffekt R λ = η(λ)λqg hc e p = hc Photonenenergie q Thermische Detektoren R λ = U dark U light = S φ eλ φ eλ φ eλ const. R λ const. Potonen-Detektor Thermischer Detektor 26
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht
Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische
Grundlagen der Lichttechnik I
Grundlagen der Lichttechnik I S. Aydınlı Raum: E 203 Tel.: 314 23489 Technische Universität Berlin Fachgebiet Lichttechnik, Sekr. E6 Einsteinufer 19 10587 Berlin email: [email protected] http://www.li.tu-berlin.de
(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU
(3) Grundlagen II Vorlesung CV-Integration S. Müller KOBLENZ LANDAU Wiederholung I Strahlungsphysik (Radiometrie) Lichttechnik (Photometrie) V(λ)-Kurve.0 0.8 0.6 0.4 0. 0 400 500 600 700 800λ[nm] violett
Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik
Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik Lösungen zur Übungseinheit Photometrische Größen c Frank Demaria, DVI erzeugt am 11. November 21 1. Fahrradbeleuchtung (a) LUX, lx (korrekte
Beleuchtungsmodelle I
Beleuchtungsmodelle I Licht Elektromagnetisches Spektrum Optische Phänomene I Materialien: Leiter, Dielektrika an Begrenzungsflächen: im Material: Reflexion Absorption, Streuung Optische Phänomene II Spektrale
Optische Methoden in der Messtechnik 2VO 438.041 WS 2LU 438.019 WS
Optische Methoden in der Messtechnik 2VO 438.041 WS Gert Holler, Axel Pinz 2LU 438.019 WS Thomas Höll, Gert Holler 1 Axel Pinz Lehre WS 2012/13 710.094 Bildverstehen 2VO 710.095 Bildverstehen 1KU 438.020
(2) Photometrische und Radiometrische Grundlagen
(2) Photometrische und Radiometrische Grundlagen 1.0 V (λ ) V eq (λ ) V(λ ) Vorlesung CV-Integration S. Müller 0.8 0.6 0.4 0.2 0 400 500 600 700 800 λ [nm] violett blau grün gelb orange rot infra-rot KOBLENZ
MP7. Grundlagen-Vertiefung Version vom 2. April 2013
MP7 Grundlagen-Vertiefung Version vom 2. April 2013 Inhaltsverzeichnis 1 Raumwinkel 1 2 Fotometrische Größen 1 3 Stahlungsgesetze der Hohlraumstrahlung 3 3.1 Strahlungsgesetze - klassische Physik.....................
Licht- und Displaytechnik
Lichttechnisches Institut Licht- und Displaytechnik von Uli Lemmer Karl Manz, Dieter Kooß Karsten Klinger, Sven Schellinger, André Domhardt Wintersemester 2004/2005 Scripte Vorlesungen mit teilweise überlappendem
Lichtmessung. Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt. Version: 12. September 2016
Lichtmessung Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt Version: 12. September 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen 1 1.1 Raumwinkel (solid angle).......................
physikalisch: elektromagnetische Strahlung umgangssprachlich: sichtbare Strahlung
Licht physiologisch: Helligkeits- bzw. Farbempfindung physikalisch: elektromagnetische Strahlung umgangssprachlich: sichtbare Strahlung etwa der Wellenlängenbereich 380 780 nm im erweiterten Sinne: Infrarotstrahlung
Wellenlängenspektrum der elektromagnetischen Strahlung
Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängen- / Frequenzabhängigkeit Richtungsabhängigkeit Eigenschaften der von Oberflächen emittierten Strahlung Einfallende Strahlung α+ ρ+ τ=
Automobile Licht- und Displaytechnik
Lichttechnisches Institut Automobile Licht- und Displaytechnik von Prof. Uli Lemmer Dr. Karl Manz Dr. Dieter Kooß Dipl.-Ing. Karsten Klinger Wintersemester 2004/2005 Inhalt Mo. 25.10. Lichtbeschreibung
Modell der Bildentstehung mit HDR-Kameras
Modell der Bildentstehung mit HDR-Kameras Wolfram Hans, Thorsten Grosch, Tobias Feldmann, Dietrich Paulus, Stefan Müller {hans, grosch, tfeld, paulus, stefanm}@uni-koblenz.de Institut für Computervisualistik
Grundlagen des Lichts
Grundlagen des Lichts 2. Vorlesung Photorealistische Computergrafik Thorsten Grosch Was ist Licht? Einfache Beschreibung Helligkeit oder Energie Sehr ungenau, tatsächlich gibt es mind. 5 verschiede Größen
CV-Integration S. Müller
(2) Photometrische t h und Radiometrische Grundlagen 1.0 V (λ) V eq (λ) V(λ) Vorlesung CV-Integration S. Müller 0.8 0.6 0.4 0.2 0 400 500 600 700 800 λ [nm] violett blau grün gelb orange rot infra-rot
23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik
23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie
Licht- und Displaytechnik Grundgrößen
Lichttechnisches Institut Licht- und Displaytechnik Grundgrößen von Karsten Klinger Wintersemester 2008/2009 Inhalt Strahlung Raumwinkel Spektrale Wirkungsfunktionen Lichttechnische Grundgrößen Photometrisches
3. Erklären Sie drei Eigenschaften der bidirektionalen Reflektivität (BRDF).
Licht und Material Ulf Döring, Markus Färber 07.03.2011 1. (a) Was versteht man unter radiometrischen Größen? (b) Was versteht man unter fotometrischen Größen? (c) Nennen Sie drei radiometrische Größen
Arbeitsblätter zur Vorlesung. Fernerkundung 1. WS 2008/09, 2. Vorlesung
Arbeitsblätter zur Vorlesung Fernerkundung 1 WS 2008/09, 2. Vorlesung erstellt Oktober 2008 Inhalt der 2. Vorlesung physikalische Grundlagen der Fernerkundung elektromagnetische Welle elektromagnetisches
Grundlagen der Lichttechnik. DI(FH) Horst Pribitzer MA39 Lichttechniklabor
Grundlagen der Lichttechnik DI(FH) Horst Pribitzer MA39 Lichttechniklabor Gliederung & Ziele Was ist überhaupt Licht Menschliche Strahlungsmessgerät = AUGE Kenngrößen der Lichttechnik Messtechnik Wertschätzung
Optische Technologien Im Automobil
Lichttechnisches Institut Optische Technologien Im Automobil von Dr. Karl Manz Sommersemester 2009 Administratives Teilnehmerliste Terminänderungen werden per email zugeschickt Literatur Licht und Beleuchtung,
TROS IOS - Nutzung von Herstellerangaben zur
www.osram.de TROS OS - Nutzung von Herstellerangaben zur Gefährdungsbeurteilung Werner Halbritter 3.09.14 Dortmund Übersicht nformationen / Kennzeichnungen aus horizontalen und vertikalen Normen Berechnung
Licht- und Displaytechnik. Messtechnik
Lichttechnisches Institut Licht- und Displaytechnik Messtechnik von Karsten Klinger Wintersemester 2007/2008 Inhalt Das Auge Raumwinkelprojektion Vier Grundgrößen Photometrisches Entfernungsgesetz und
Klausurtermin: Nächster Klausurtermin: September :15-11:15
Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: [email protected] direkt oder im Tutorium
Elektromagnetische Wellen Dispersion, Farben, Fotometrie
Aufgaben 5 Elektromagnetische Wellen Dispersion, Farben, Fotometrie Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten
Photometrie. EPD.06 Photometrie.doc iha Ergonomie / Arbeit + Gesundheit
1 EPD.06.doc iha Ergonomie / Arbeit + Gesundheit H. Krueger 6. 6.1 Umrechnung physikalischer in photometrische Grössen Physikalische Grössen werden mittels der spektralen Empfindlichkeitskurve des menschlichen
Licht- und Displaytechnik
Lichttechnisches Institut Licht- und Displaytechnik von Uli Lemmer Karl Manz, Dieter Kooß Karsten Klinger, Sven Schellinger, André Domhardt Wintersemester 2004/2005 Das Auge Nachtsehen Stäbchen Anzahl:
Leseprobe. Volker Quaschning. Regenerative Energiesysteme. Technologie - Berechnung - Simulation. ISBN (Buch):
Leseprobe Volker Quaschning Regenerative Energiesysteme Technologie - Berechnung - Simulation ISBN (Buch): 978-3-446-4356-1 ISBN (E-Book): 978-3-446-43571-1 Weitere Informationen oder Bestellungen unter
Experimentalphysik 3
Optik Experimentalphysik 3 Dr. Georg von Freymann 26. Oktober 2009 Matthias Blaicher Dieser Text entsteht wärend der Vorlesung Klassische Experimentalphysik 3 im Wintersemester 2009/200 an der Universität
Physikalisches Praktikum 4. Semester
Torsten Leddig 06.April 2005 Mathias Arbeiter Betreuer: Dr.Holzhüter Physikalisches Praktikum 4. Semester - Wärmestrahlung - 1 Aufgabenstellung: Ziel: Erarbeitung der wichtigsten Begriffe und Größen der
Photonik Technische Nutzung von Licht
Photonik Technische Nutzung von Licht Lichtdetektion Wiederholung Optik Grundlagen I Lichtstrahlen Fermat sches Prinzip Reflexion und Brechung (Snellius sches Gesetz) Eigenschaften optische Medien Dispersion
Kennlinie einer Solarzelle
E14 Kennlinie einer Solarzelle Die Effizienz der mwandlung von Strahlungsenergie einfallenden Sonnenlichts unmittelbar in elektrische Energie durch eine Solarzelle soll untersucht werden. Dazu sind die
Thermodynamik. Kapitel 9. Nicolas Thomas. Nicolas Thomas
Thermodynamik Kapitel 9 Wärmestrahlung Wir wissen, dass heisse Objekte Energie abstrahlen. Jedes Objekt mit einer Temperatur > 0 K strahlt Energie ab. Die Intensität und Frequenzverteilung (oder Wellenlänge)
Lokale Beleuchtungsmodelle
Lokale Beleuchtungsmodelle Proseminar GDV, SS 05 Alexander Gitter Betreuer: Dirk Staneker Wilhelm-Schickard-Institut für Informatik Graphisch-Interaktive Systeme Sand 14 D-72076 Tübingen Einleitung und
Grundlagen der Lichttechnik KOMPENDIUM 2. Auflage
Dietrich Gall Grundlagen der Lichttechnik KOMPENDIUM 2. Auflage ULB Darmstadt Illllllllllllllllllllll 16795836 Pflaum Inhaltsverzeichnis Teil A: Grundlagen 7 1. Photonenenergie, Wellenlänge, Frequenz,
Die Rendering-Gleichung
Die Rendering-Gleichung Oliver Deussen Rendering-Gleichung 1 Grundlage für globale Beleuchtungsmodelle erlaubt einheitliche mathematische Bechreibung für Raytracing und Radiosity Kajiya 1984: The rendering
Grundlagen der Kalibrierung optischer und photometrischer Messgrößen
www.osram.com Grundlagen der Kalibrierung optischer und photometrischer Messgrößen Werner Jordan 19.10.2016 esz - Munich Calibration Day 2016 Light is OSRAM Licht und optische Strahlung - der offensichtliche
Radiometrische Grundbegriffe
Prof. Dr. Jürgen Nolting, Aalen Prof. Dr.-Ing. Günter Dittmar, Aalen How does it work? Teil 13 Radiometrische Grundbegriffe So wie das 20. Jahrhundert als das Jahrhundert des Elektrons bezeichnet wurde,
H E (λ, t) dλ dt (H UVA ist nur im Bereich 315 nm bis 400 nm relevant)
1 von 9 ANHANG A zur Verordnung optische Strahlung Inkohärente optische Strahlung (künstliche) Definitionen, Expositionsgrenzwerte, Ermittlung und Beurteilung nach Risikogruppen für Lampen und Lampensysteme
mit Mg Wiederholung: Barometrische Höhenformel Annahmen: Resultate: Hydrostatische Atmosphäre Temperaturprofil bekannt Ideales Gas
Übersicht VL Datum Thema Dozent(in) 1 01.11.2011 Einführung & Vert. Struktur der Atmos. Reuter 2 08.11.2011 Strahlung I Reuter 3 15.11.2011 Strahlung II Reuter 4 22.11.2011 Strahlung III Reuter 8 29.11.2011
Allgemeines über die LED
Allgemeines über die LED Quelle: www.led-beleuchtungstechnik.com LED steht für Licht emittierende Diode (oder technisch oft Luminiszenzdiode genannt) und gehört zu den elektronischen Halbleiter- Elementen.
Strahlungsaustausch zwischen Oberflächen BRDF Ideal diffuse Reflektion Ideal spiegelnde Reflektion Totalreflexion Gerichtet diffuse Reflektion
*UDSKLVFKH 'DWHYHUDUEHLWXJ Reflektion physikalisch betrachtet Prof. Dr.-Ing. Detlef Krömker Strahlungsaustausch zwischen Oberflächen BRDF Ideal diffuse Reflektion Ideal spiegelnde Reflektion Totalreflexion
XII. Grundlagen der Lichttechnik
XII. Grundlagen der Lichttechnik Strahlungsphysikalische Lichttechnische (Photometrische) Größen (Radiometrische) Wieviele Photonen? Wieviel Energie? Wieviel Licht? Wie hell? Sichtbar Radiowellen Mikrowellen
Übersicht Optische Komponenten
Linsen Blenden Spiegel Prismen Faseroptik Übersicht Optische Komponenten Optische Systeme (Kombination obiger Komponenten) Auge Brille Lupe Okular Mikroskop Kamera Fernrohr 1 Blenden Aperturblende reguliert
Medizinische Biophysik 6
Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer
Richtungseigenschaften von Lichtquellen
Richtungseigenschaften von Lichtquellen Ziel: Wir untersuchen die räumliche Verteilung der Strahlungsleistung einer Lichtquelle. Die räumliche Verteilung des Lichtstromes einer Haushaltsglühbirne wird
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
1 Grundlagen. 1.1 Definition des Lichts
1 Grundlagen Der Sehvorgang»beginnt«mit dem Licht. Ohne Licht ist eine visuelle Wahrnehmung nicht möglich, denn das menschliche Auge kann Körper nur wahrnehmen, wenn von ihnen ausgehendes bzw. reflektiertes
5 Optoelektronische Bauelemente
5 Optoelektronische Bauelemente Dieses Kapitel behandelt die Wechselwirkung von Halbleitern mit Licht und beschreibt die Funktionsweise wichtiger optoelektronischer Bauelemente. Dabei unterscheidet man
Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre
Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre Was ist Strahlung Strahlung besteht aus elektromagnetischen Welle Strahlungsarten unterscheiden sich durch die Wellenlänge https://de.wikipedia.org/wiki/elektromagnetisches_spektrum
Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008
Versuch A9 - Strahlung Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Raumwinkel.............................. 3 2.2 Strahlungsgrößen...........................
LED-Beleuchtung von Innenräumen
LED-Beleuchtung von Innenräumen Werner Winkler HTL Wien 10 [email protected] Seminar: Neuer Lehrplan/LiTEC 2011/W.Winkler 1 Technischer und ästhetischer Zugang:? Seminar: Neuer Lehrplan/LiTEC
Modul: Labor und Statistik SENSORTECHNIK M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON. Lichttechnik
Modul: Labor und Statistik SENSORTECHNIK M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON Lichttechnik Sensortechnik Lichttechnik Inhaltsverzeichnis Einleitung Physikalische Grundlagen Wahrnehmung
Optische Technologien im Automobil
Optische Technologien im Automobil Messtechnik Karsten Klinger Sommersemester 2008 Inhalt Messtechnik für Körperfarben und Reflektoren Einfache Messtechnik Leuchtdichte und Helligkeit Erkennung farbiger
40. Strahlungsenergie
40. Strahlungsenergie 40.1. Das elektroagnetische Spektru Zunächst einen kurzen Überblick über das elektroagnetisches Spektru: Nae n in Hz E h n l kosische Strahlung γ-strahlung 10 1 1 MeV Röntgenstrahlung
Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz
Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren
Licht- und Displaytechnik. Messtechnik
Lichttechnisches Institut Licht- und Displaytechnik Messtechnik von Karsten Klinger Wintersemester 2008/2009 Inhalt Das Auge Raumwinkelprojektion Vier Grundgrößen Photometrisches Entfernungsgesetz und
1. Bestimmen Sie die Energie eines Photons bei einer Wellenlänge λ 500nm in ev! (h Js, c m s, e As) (Φ e 60W)
Seminar Lichttechnik I Übungsaufgaben 27. Februar 2015 1. Bestimmen Sie die nergie eines Photons bei einer Wellenlänge λ 500nm in ev! (h 6 626 10 34 Js, c 3 10 8 m s, e 1 602 10 19 As) 2. Das Auge ist
Modul: Labor und Statistik SENSORTECHNIK M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON. Lichttechnik
Modul: Labor und Statistik SENSORTECHNIK M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON Lichttechnik Inhaltsverzeichnis Einleitung Physikalische Grundlagen Wahrnehmung Licht Auge - Sehen Mensch
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer
4.1.2 Berührungslose Temperaturmessung. Berührungslose Temperaturmessung
.1.2 Berührungslose Temperaturmessung Berührungslose Temperaturmessung Definitionen: Wellenzahl σ = ν/c, ν: Frequenz, c: Lichtgeschwindigkeit (Vakuum) Einheit der Wellenzahl ([σ] = 1 Kayser = 1 cm -1 )
Vom Licht zur Beleuchtung
62 So funktioniert s Vom Licht zur Beleuchtung Teil 1: Lichttechnische Grundlagen Licht ist die Grundlage unseres Lebens. Die gewaltigste, seit der Existenz unseres Planeten vorhandene Lichtquelle ist
Grundlagen der Lichtmesstechnik
Grundlagen der Lichtmesstechnik Grundlagen der Lichtmesstechnik... 3 1 Eigenschaften und Konzepte von Licht und Farbe... 4 1.1 Der Wellenlängenbereich von optischer Strahlung... 5 1.2 Messgrößen einer
4 Wärmeübertragung durch Temperaturstrahlung
Als Wärmestrahlung bezeichnet man die in einem bestimmten Bereich der Wellenlängen und Temperaturen auftretende Energiestrahlung (elektromagnetische trahlung). Nach den Wellenlängen unterscheidet man:
Lösung zu Aufgabe 6.1
Lösung zu Aufgabe 6. (a) Die Energie eines Photons der Wellenlänge λ = 500 nm beträgt W hν = hc λ m 6.626 0 34 Js 3 08 = s 500 0 9 m = 3.976 0 9 J. Die Photonenflußdichte ergibt sich damit aus der Bestrahlungsstärke
Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12
Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12 - System Erde- Sonne - Strahlungsgesetze - Eigenschaften strahlender Körper - Strahlungsbilanz der Erde - Albedo der Erde - Globale Strahlungsbilanz
Kraftfahrzeug Lichttechnik
Kraftfahrzeug Lichttechnik Einführung Wintersemester 2009/2010 Karsten Köth Lichttechnik im Automobil Lampen Leuchten Scheinwerfer Mechanik Adaptive Systeme Betriebs- und Steuergeräte Anbindung an Bordnetz
Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz
Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren
Physik IV, RWTH, SS 2005, T.Hebbeker
3. PH4 TH 5 1 Physik IV, RWTH, SS 25, T.Hebbeker May 9, 25 TEIL 3 Nachdenken/Nachlesen: Lesen Sie nach: Plancks Forschungsarbeiten in Berlin, die zur Entdeckung der Strahlungsformel und zum Planckschen
Optik. Drw. Physikalisch-technische Grundlagen und Anwendungen. von Heinz Haferkorn
Optik Physikalisch-technische Grundlagen und Anwendungen von Heinz Haferkorn Drw VEB Deutscher Verlag der Wissenschaften Berlin 1980 Inhaltsverzeichnis 1. Einleitung 11 1.1. Arbeitsgebiet Optik 11 1.1.1.
Schwarzkörperstrahlung Berührungslose Temperaturmessung Detektoren
Schwarzkörperstrahlung Berührungslose Temperaturmessung Detektoren Prinzipien Infrarotkameras Fernerkundung von Gefahrstoffen Einführung in die passive Fernerkundung mittels IR- Spektrometrie Anwendungen
Optische Strahlung Sicherheitsbeurteilung von LEDs - sichtbare Strahlung.
M 083 Sicherheit kompakt Optische Strahlung Sicherheitsbeurteilung von LEDs - sichtbare Strahlung www.auva.at AUVA M083 Optische Strahlung - LED Inhalt 1 Zweck des Merkblatts 2 2 Einleitung 4 3 Lichttechnische
Einführung in die Arbeitswissenschaft
Einführung in die Arbeitswissenschaft Übung zur Lehreinheit 11 Computergestützte Büroarbeit Sommersemester 2016 Univ.-Prof. Dr.-Ing. Dipl.-Wirt.-Ing. Christopher M. Schlick Lehrstuhl und Institut für Arbeitswissenschaft
Grundlagen der Quantentheorie
Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische
D11 Pyrometer. 1. Aufgabenstellung. 2. Grundlagen zu den Versuchen. Physikpraktikum
Tobias Krähling email: Homepage: 20.03.2007 Version: 1.1 Stichworte: Literatur: Pyrometer, schwarzer Körper, Schwarzkörperstrahlung, Planck sches Strahlungsgesetz,
Computer Graphik I Beleuchtung
Computer Graphik I Beleuchtung 1 3D Graphik- Pipeline Anwendung Geometrieverarbeitung Perspek>vische Transforma>on, kanonisches Sichtvolumen Clipping Culling (Verdeckungsrechnung im Objektraum) Simula>on
Technische Bewertung von Licht
Technische Bewertung von Licht Helmut Merkel, Peter Danell Peter Danell, Helmut Merkel, Seite 1 Begriffsklärung Leuchte Leuchtmittel (Lampen) sind meist in einer Leuchte untergebracht, die weitere Betriebsmittel
INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität
INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Dipl.-Phys. Hermann Gröning aus Sigmaringen
Klimawandel. Inhalt. CO 2 (ppm)
Klimawandel CO 2 (ppm) Sommersemester '07 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Inhalt 1. Überblick 2. Grundlagen 3. Klimawandel heute: Beobachtungen 4. CO 2 5. Andere Treibhausgase
