Integrierte Schaltungen
|
|
|
- Ulrich Becker
- vor 9 Jahren
- Abrufe
Transkript
1 Klausur Integrierte Schaltungen Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden bewertet! Zur Lösung der Klausur sind keine Hilfsmittel wie Taschenrechner, Formelsammlungen, Aufzeichnungen, Bücher etc. erlaubt! Dauer: 85 min Aufgabe Punkte Zusatz Gesamt Viel Erfolg! Seite 1/16
2 Aufgabe 1 MOS-Transistor / Technologie (19 Punkte) a) Zeichnen Sie den prinzipiellen Querschnitt eines n-kanal-transistors in einem p- dotierten Substrat! Bezeichnen Sie die 4 Anschlüsse Gate, Source, Drain, Bulk, die Materialien und die vorhandenen Dotierungstypen! (4 P) b) Zeichnen Sie in dieses Bild den Kanal für den Betrieb des Transistors im Triodenbereich ein! (1 P) c) Zeichen Sie das Ausgangskennlinienfeld eines NMOS-Transistors I D = f(u DS ) mit Kanallängenmodulation! Markieren Sie mit gestrichelter Linie den Bereichswechsel und kennzeichnen Sie die unterschiedlichen Arbeitsbereiche. (3 P) d) Nennen Sie die Stromgleichungen für den Unterschwellenbereich, Triodenbereich und Sättigungsbereich! Führen Sie auch die Bedingungen der jeweiligen Bereiche auf! (4 P) e) Leiten Sie aus den Stromgleichungen für den Trioden- und Sättigungsbereich den Ausgangswiderstand r 0 ab! (3 P) f) Bei der Herstellung eines Transistors wirkt das Gate als Maske. Erläutern Sie, was man darunter versteht! Welchen Vorteil bietet das? (2 P) g) Was bedeuten die Begriffe BEOL (back end of line) und FEOL (front end of line) bei der Herstellung von integrierten Schaltungen (kurze Antwort)? (2 P) Seite 2/16
3 Seite 3/16
4 Aufgabe 2 Kleinsignalverhalten (16 Punkte) a) Zeichnen Sie das komplette Kleinsignalersatzschaltbild des MOS-Transistors. (2 P) b) Zeichen Sie das Transistorschaltbild eines Pseudo-NMOS-Inverters! Beschriften Sie alle Anschlüsse! (3P) c) Entwickeln Sie das Kleinsignalersatzschaltbild für einen Pseudo-NMOS-Inverter! Hinweis: Vernachlässigen Sie nur Elemente, die keine Wirkung haben. (3 P) d) Berechnen Sie mit Hilfe von c) die Übertragungsfunktion H( j ) U ( j ) U ( j )! Geben Sie die Funktion in folgender Form an: out in (1 j ) n H ( j ) k! Wie groß sind n und p? (1 j ) p (4 P) Hinweis: Fassen Sie parallele Elemente gleichen Typs zu einem Element zusammen, um die Berechnung zu vereinfachen! e) Zeichnen Sie den prinzipiellen Verlauf des Betragsamplitudengangs in Abhängigkeit von (Frequenzgang) in doppellogarithmischer Darstellung! (2 P) f) Wie groß ist die Verstärkung bei sehr großen Frequenzen? (2 P) Seite 4/16
5 Seite 5/16
6 Aufgabe 3 Inverter (19 Punkte) Klausur Integrierte Schaltungen ( ) a) Zeichnen Sie die Übertragungskennlinie des CMOS-Inverters mit U DD = 4 V und U T = U Tn = -U Tp = 1 V! Beschriften Sie die Pegel U IL, U IH sowie U OL und U OH! (4 P) b) Welchen Vorteil und welchen Nachteil hat der CMOS-Inverter gegenüber dem Pseudo-NMOS-Inverter? Hinweis: Zwei stichpunktartige Antworten sind ausreichend. (2 P) c) Geben Sie die Formel zur Bestimmung der Gatterlaufzeit an. Hinweis: Die Betrachtung des Entladevorgangs genügt hier. (2 P) d) Zeichen Sie das Transistorschaltbild eines CMOS-Inverters und zeichnen Sie alle Transistorkapazitäten ein, die für die Bestimmung des Schaltverhaltens (im Speziellen die äquivalenten Lastkapazitäten) notwendig sind. (5 P) e) Geben Sie an, welche Kapazitäten in d) als interne und welche als externe Kapazitäten wirken. Schreiben Sie dabei die Formel für die interne und externe Lastkapazität als Summe der Einzelkapazitäten auf unter Berücksichtigung des Fanout (F 0 ). Hinweis: Verdrahtungskapazitäten können vernachlässigt werden. (3 P) f) Skizzieren Sie den prinzipiellen zeitlichen Verlauf der Ströme aus der Versorgungsleitung, getrennt nach den entsprechenden drei Verlustleistungstypen eines CMOS-Inverters. (3 P) (P C : Schaltverluste; P SC : Querstromverluste; P leak : Leckstromverluste) U AUS I PC I PSC I Pleak t Seite 6/16
7 Seite 7/16
8 Aufgabe 4 Latch und Register (17 Punkte) a) Erklären Sie die Funktionsweise eines positiven dynamischen Latches! Hinweis: Beschreiben Sie das Ausgangssignal in Abhängigkeit von den Eingangssignalen. Fassen Sie sich kurz! (3 P) b) Zeichnen Sie ein Register, welches aus zwei einfachen dynamischen Latches besteht, unter Verwendung von Inverter- und Transmissions-Gatter-Symbolen! (3 P) c) Warum verwendet man Transmissions-Gatter anstelle von Transfertransistoren? Begründen Sie detailliert! (3 P) d) Nennen Sie drei Einflussgrößen bzw. Störungen, die gespeicherte Information in einem dynamischen Register verfälschen können. (3 P) e) Die Schaltung von b) hat einen Nachteil, der durch die Verzögerung zwischen CLK und CLK entsteht. Erläutern Sie das Problem für die zwei unterschiedlichen Fälle! Wie kann man dieses Problem verhindern? (3 P) I3 f) Im BILD 4.1 ist ein statisches Latch dargestellt. Was CLK muss bei der Dimensionierung der Inverter beachtet werden, damit die Schaltung funktionieren kann? D Begründen Sie! I1 I2 Hinweis: Unterscheiden Sie zwischen großen und CLK kleinen Invertern, also Invertern mit großer oder kleiner Bild 4.1 Stromtreibfähigkeit. (2 P) Q Seite 8/16
9 Seite 9/16
10 Aufgabe 5 Logikgatter (15 Punkte) a) Stellen Sie die Wertetabelle für ein 2-fach-NAND-Gatter auf. Führen sie auch die invertierten Eingangssignale auf. (1 P) b) Entwickeln Sie das NAND-Gatter in Pass-Transistor- Logik (nur mit NMOS-Transistoren). (2 P) c) Zeichen Sie das Transistorschaltbild eines 2-fach- NAND-Gatters in NMOS- und CMOS-Logik! (4 P) IN d) Bild 5.1 zeigt einen Inverter in dynamischer Schaltungstechnik. Erklären Sie die prinzipielle CLK Funktionsweise eines dynamischen Gatters. (2 P) Bild 5.1 e) Warum können dynamische Gatter nicht kaskadiert (gleiche Gatter hintereinander- U DD geschaltet) werden? Erklären Sie an einem Beispiel mit zwei kaskadierten Invertern (siehe Bild 5.2) das Problem! (2 P) Z 1 Hinweis: Der Eingang des 1. Inverters ist high. Berücksichtigen Sie die U DD Verzögerung für Z 1. Die Lösung in Form eines Zeitverlaufsdiagramms ist auch zulässig. CLK Bild 5.2 CLK f) Die Bestimmung der Stromergiebigkeit ist wichtig für die Dimensionierung von Gattern. Berechnen Sie den Drainstrom I D eines CMOS-NAND-Gatters anhand des Schaltbildes in Bild 5.3! Hinweis: Berechnen Sie zuerst die Spannung U DS1! und U T beider Transistoren sind gleich. Die Kanallängenmodulation soll vernachlässigt werden. (4 P) Bild 5.3 U DD U DD U DD U DD T2 T1 I D U DS1 OUT Z 2 Seite 10/16
11 Seite 11/16
12 Zusatzaufgaben Klausur Integrierte Schaltungen ( ) a) Erklären Sie die Funktionsweise einer Bootstrap-Schaltung anhand einer Beispielschaltung und unter Verwendung von Spannungsverläufen. (+2 P) b) Die inverse Unterschwellsteigung einer gegebenen CMOS-Technologie liegt bei Zimmertemperatur bei 80 mv / Dekade. Berechnen Sie, um welchen Faktor die rein statische Verlustleistung einer Logik- Schaltung zunimmt, wenn der Betrag der Schwellenspannung aller Transistoren um 160 mv gegenüber dem zuvor gegebenen Wert verringert wird. (+2 P) c) Gegeben ist die unten skizzierte Schaltung. Skizzieren Sie in dem angelegten Diagramm die Spannungsverläufe an den Knoten 1, 2, 3 und out. (+2 P) Hinweis: Sie dürfen annehmen, dass die Laufzeit durch jedes Gatter identisch ist. Lesen Sie das Verhältnis von Frequenz am Ausgang zu Frequenz am Eingang (f out / f in ) aus dem Diagramm ab und geben Sie es an! (+1 P) Seite 12/16
13 Seite 13/16
14 Seite 14/16
15 Seite 15/16
16 Seite 16/16
Integrierte Schaltungen
Klausur Integrierte Schaltungen 07.03.2013 Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden
Integrierte Schaltungen
Klausur Integrierte Schaltungen 28.03.2014 Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden
Übung Integrierte Schaltungen 6. Übung: Pseudo-NMOS, CMOS, Verzögerungszeit, Schaltschwelle,Verlustleistung
Übung Integrierte Schaltungen 6. Übung: Pseudo-NMOS, CMOS, Verzögerungszeit, Schaltschwelle,Verlustleistung Organisatorisches Termine: 01.11.2013 15.11.2013 29.11.2013 13.12.2013 10.01.2014 24.01.2014
Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten
Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten Organisatorisches Termine: 01.11.2013 15.11.2013 29.11.2013 13.12.2013 10.01.2014 http://www.meis.tu-berlin.de/menue/studium_und_lehre/
Praktikum Elektronik WS12/13. Versuch 5 MOS Transistoren Betreuer: Michael Maurer,
FRITZ-HÜTTINGER-PROFESSUR FÜR MIKROELEKTRONIK PROF. DR.-ING. YIANNOS MANOLI Praktikum Elektronik WS12/13 Versuch 5 MOS Transistoren Betreuer: Michael Maurer, [email protected] Gruppe... Name......
Grundlagen der VLSI-Technik
Grundlagen der VLSI-Technik VLSI-Systeme I Prof. Dr. Dirk Timmermann Institut für Angewandte Mikroelektronik und Datentechnik Fakultät für Informatik und Elektrotechnik Universität Rostock Vorteile der
Schaltungstechnik
KLAUSUR Schaltungstechnik 26.07.2012 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 2 3 4 5 6 Punkte 15 12 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle
Schaltungstechnik I. Übungsklausur, 18/
Schaltungstechnik I Übungsklausur, 18/19.01.2010 Es gibt 90 Punkte und 90 Minuten Zeit. Also ein Punkt pro Minute. Erlaubte Hilfsmittel sind: Schreibutensilien und 5 Blätter DIN-A4 Formelsammlung Wir wünschen
Aufgaben zur Analogen Schaltungstechnik!
Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt
Übung Integrierte Schaltungen 7. Übung: Latch und Register, Logikgatter
Übung Integrierte Schaltungen 7. Übung: Latch und Register, Logikgatter Organisatorisches Termine: 01.11.2013 15.11.2013 29.11.2013 13.12.2013 10.01.2014 24.01.2014 14.02.2014 Klausurvorbereitungsstunde:
Proseminar Statische CMOS- Schaltungen. Thema: CMOS-NOR-Gatter Gehalten von: Björn Fröhlich Prof. Dr. Zehendner SS05 - FSU Jena
Statische CMOS- Schaltungen Thema: CMOS-NOR-Gatter Gehalten von: Björn Fröhlich Prof. Dr. Zehendner SS05 - FSU Jena Inhaltsübersicht 1. allgemeiner Aufbau 2. Gleichstrom Transfer Charakteristik 3. Transiente
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 10. Vorlesung Dr.-Ing. Wolfgang Heenes 22. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Vorbesprechung drittes Labor
Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,
Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 11/12 Fach: Elektronik,
Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?
Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters
Praktikum Elektronik
Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel.(0351) 462 2437 ~ Fax (0351)
Verlustleistungsreduzierung in Datenpfaden
Verlustleistungsreduzierung in Datenpfaden F. Grassert, F. Sill, D. Timmermann Inhalt Motivation Analyse der Ausgangssituation Verlustleistung in der Schaltungstechnik Selbstgetaktete dynamische Logiken
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider!
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider! 1 Na, wie sieht es aus mit Eurem Schaltungsblick? Schade, das spart Rechenarbeit, aber Sie müssen sich natürlich sicher sein. 2 Aufgabe
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 8,
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 8, 18.05.2017 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches
Aufgabe 1 Bipolare Transistoren
2 22 Aufgabe Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b T2 i c T i 2 R 2 i a =0 u e u a U 0 i R Bild
Wir wünschen Ihnen bei der Bearbeitung viel Erfolg!
Semesterabschlussklausur Wintersemester 200/2005: WERKSTOFFE UND BAUELEMENTE DER ELEKTROTECHNIK I (Bauelemente) Name: Matrikelnummer: Lesen Sie bitte vor dem Beginn der Bearbeitung die einzelnen Aufgaben
Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten
Diplomprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Matr.-Nr.: Name, Vorname:
Einführung in die Halbleiter- Schaltungstechnik
Holger Göbel Einführung in die Halbleiter- Schaltungstechnik Unter Mitwirkung von Henning Siemund Mit 363 Abbildungen 4y Springer Inhaltsverzeichnis Liste der verwendeten Symbole 1 1 Grundlagen der Halbleiterphysik
Transistorschaltungen
Transistorschaltungen V DD in Volt 3 2 V Ein - UTh,P V Ein - UTh,N 1-1 0 1 2 3 U Th,P U Th,N V Ein in Volt a) Schaltung b) Übertragungsfunktion Bipolar Transistorschaltung im System I Ein C Ein? V CC I
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10,
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10, 16.06.2016 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches
ELEKTRONIK 2 SCHALTUNGSTECHNIK P4-1/5 Prof. Dr.-Ing. Johann Siegl. P4 Praktikum zum Feldeffekttransistor. P4 Praktikum zum Feldeffekttransistor
1 von 5 15.03.2008 11:47 ELEKTRONIK 2 SCHALTUNGSTECHNIK P4-1/5 a) Der Feldeffekttransistor findet vielfältige Anwendung in Elektroniksystemen. Die wichtigsten Anwendungen sind der Feldeffekttransistor
Schaltungstechnik
KLAUSUR Schaltungstechnik 6.07.01 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 3 4 5 6 Punkte 15 1 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle verwendet
Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr
Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Montag, den 17.02.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.: Dieses
Vorlesungsprüfung aus. Digitales Design. 2. Juni 2015
Vorlesungsprüfung aus igitales esign 2. Juni 25 ie Arbeitszeit beträgt,5 Stunden. Als Hilfsmittel sind ausnahmslos Schreibzeug, Lineal und (nicht programmierbarer) Taschenrechner erlaubt. Schreiben Sie
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5 Prof. Baitinger / Lammert Besrechung: 15.01.2001 b) Die Diode wird in der Schaltung nach Abb. 1-2 betrieben. Berechnen Sie jeweils die
Sourceschaltung mit selbstleitendem MOSFET
BEISPIEL 5.5: Sourceschaltung mit selbstleitendem MOSFET R D C R G Versorgungsspannung: U 0 = 12 V Schwellenspannung: U th = 3 V Steuerfaktor: β = 2 ma/v 2 Widerstandswert: R G = 1 MW (a) Dimensionieren
Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Mittwoch, den Uhr
Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Mittwoch, den 27.02.2002 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.:
Analoge CMOS-Schaltungen. Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil. Roland Pfeiffer 7. Vorlesung
Analoge CMOS-Schaltungen Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil 7. Vorlesung Operational Transconductance Amplifier OTA Rückblick: Differenzverstärker OTA (genau: OTA mit NMOS-Eingangsstufe
Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte)
1. PROBETEST ZU HALBLEITER-SCHALTUNGSTECHNIK, WS 2017/18 DATUM Punktemaximum: 100 Testdauer: 90 min Vorname: Nachname: Matr. Nr.: Kennzahl: Hinweis zum Test: Alle nötigen Zwischenschritte angeben! Ergebnisse
Beispielklausur 1 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur, sowie die
Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),
Analoge CMOS-Schaltungen
Analoge CMOS-Schaltungen Von dem Großsignalschaltbild (Transienten-Analyse) zum Kleinsignalersatzschaltbild (AC-Analyse) 2. Vorlesung Schaltungen: analog Schaltungen: analog Analoge (Verstärker-)Schaltungen
Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:
Unterschrift: Hörsaal: Platz-Nr.:
FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:
A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem Studenten im Selbststudium erarbeitet.
Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 5 Operationsverstärker Übungstermin 21.06.2018 A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem
Praktikum Elektronik 2
Versuch : Kennlinien u. Kenndaten von Feldeffekttransistoren Fassung vom 26.02.2009 Versuchsdatum: Gruppe: Teilnehmer: Semester: 1. Vorbereitung. (Vor Beginn des Praktikums durchzuführen!) 1.1 Informieren
VL 0433 L608 Integrierte digitale Schaltungen H.Klar. Foliensatz 5: Inverter
Foliensatz 5: Inverter 1 4 Grundschaltungen Nachdem in den vorhergehenden Kapiteln die technologischen und physikalischen Grundlagen gelegt wurden, werden nun in den folgenden Abschnitten die wichtigsten
Einführung in die Halbleiter- Schaltungstechnik
Holger Göbel Einführung in die Halbleiter- Schaltungstechnik 2., bearbeitete und erweiterte Auflage Unter Mitwirkung von Henning Siemund Mit 390 Abbildungen und CD-ROM < _j Springer Inhaltsverzeichnis
Schaltungstechnik 1 (Wdh.)
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 6.04.004 9.00 0.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 5 AM 02.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Schaltungstechnik 1 (Wdh.)
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 16.04.2010 9:00 10:30 Uhr Name: Vorname: Matrikel-Nr.:
Klausur-Lösungen EL(M)
Beuth-Hochschule, Prof. Aurich -1/5- Prüfungstag: Do, 11.7.2013 Raum: T202 Zeit: 10:00-12:00 Studiengang: 2. Wiederholung (letzter Versuch)? ja / nein. Name: Familienname, Vorname (bitte deutlich) Matr.:
Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,
Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten
Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung Elektronik Seite 1 von 8 Diplomvorprüfung SS 2009 Fach: Elektronik,
Klausur Elektronische Schaltungen I/II
"!$#%&!'(%&!*)*+-,/.102'34&. Elektronische Schaltungen Univ.Prof. Dr. Ing. H. Wupper Klausur Elektronische Schaltungen I/II Datum: 15. März 1997 Hinweise zur Klausur 1. Für die Bearbeitung der Aufgaben
Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0)
2 31 Aufgabe 1 Operationsverstärker (31 Punkte) Zuerst soll folgende Schaltung mit einem Operationsverstärker, linearen Widerständen und idealen Dioden untersucht werden. i z =0 u D2 D2 i D2 u e u D1 D1
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 7
lektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 7 b) n die Schaltung werden nacheinander die in der Tabelle eingetragenen ingangssignale angelegt. Tragen Sie die sich einstellenden Pegel
Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation
KLAUSUR LN/FP Sensortechnik/Applikation Name: Matr.-Nr.: Vorname: Note: Datum: Beginn: 8:15 Uhr Dauer: 120 Min. Aufgabe 1 2 3 4 Summe max. Pkt 22 18 14 10 64 err. Pkt Allgemeine Hinweise: Erlaubte Hilfsmittel:
Klausur Grundlagen der Schaltungstechnik WS 2007/2008 1
Klausur Grundlagen der Schaltungstechnik WS 007/008 Hinweis: Die Darstellung der Lösungswege muß vollständig, klar und kontrollierbar sein. Achten Sie dazu bitte insbesondere bei Ersatzschaltbildern auf
Aufgabe 1 Bipolare Transistoren
2 Aufgabe 1 Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b1 T2 i c1 T1 i 2 R 2 i a =0 u e u a U 0 i 1 R
Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,
Feldeffekttransistoren 1 JFET Sperrschicht - FET (Junction FET) Sperrschicht breitet sich mit Ansteuerung in den Kanal aus und sperrt diesen Es gibt zwei Arten n-kanal, p-kanal 2 JFET Schaltzeichen 3 Das
Physik und Technologie der Halbleiterbauelemente
Name, Vorname: Punkte(20): Matr.Nr.: Note: Physik und Technologie der Halbleiterbauelemente 1. Technologie (6 Punkte) 1.1 Zeichnen Sie einen planaren n-kanal-mos-transistor im Querschnitt. a) Bezeichnen
A1 VU Schaltungstechnik A1 Prüfung
A1 VU Schaltungstechnik A1 Prüfung 05.05.2009 1 Kreuzen Sie die richtige Antwort an: 1.1 Mit welcher Schaltung erreicht man die gewünschte Ausgangsspannung U a lt. Diagramm. (U e und U st lt. Diagramm)
Wintersemester 2012/13
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Schaltungstechnik WS16/17
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Schaltungstechnik WS16/17 Name................................ Vorname................................ Matrikelnummer................................
Schaltungstechnik 1 (Wdh.)
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 04.04.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.:
MOSFET (Metal-Oxid-Silizium Feldeffekttransistor)
MOSFET (Metal-Oxid-Silizium Feldeffekttransistor) Inhaltverzechnis Inhaltverzechnis 1 1. Einführung in die MOS Schaltungen und Aufbau eines MOSFETs 2 2. Wirkungsweise eines N-MOSFETs und Berechnung von
Fragenkatalog zur Übung Halbleiterschaltungstechnik
Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2018/19 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,
Zentralabitur 2007 Physik Schülermaterial Aufgabe II LK Bearbeitungszeit: 300 min
Thema: Abklingprozesse Aufgabenstellung In den folgenden Aufgaben werden anhand des radioaktiven Zerfalls und der gedämpften elektromagnetischen Schwingung zwei Abklingprozesse betrachtet. Außerdem werden
T =300 K und. n i = cm 3. Gedächnisprotokoll HLB Klausur
Gedächnisprotokoll HLB Klausur 23.03.2012 Es besteht keinerlei Anspruch auf Vollständigkeit, oder sonstigem bei diesem Gedächnisprotokoll. Und wie der Name schon sagt, es ist aus dem Gedächnis, da kann
6 Integrierte digitale Logikbausteine
6 Integrierte digitale Logikbausteine 6.1 Kennwerte der Integrationsdichte Die Komplexität einer Integrierten Schaltung (IC) wird außer mit der Transistoranzahl auch mit der Anzahl der logischen Gatter
Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik. Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 25.02.2005 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:
Studienschwerpunkt Mechatronik/Vertiefungsrichtung Fahrzeugmechatronik Seite 1 von 8. Sommersemester 2018 Angewandte Elektronik
Studienschwerpunkt Mechatronik/Vertiefungsrichtung Fahrzeugmechatronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Sommersemester 2018 Angewandte
Klausur Elektronik II
Klausur Elektronik II Sommersemester 2008 Name:................................................ Vorname:............................................. Matrikelnummer:.......................................
11. Übung Grundlagen der analogen Schaltungstechnik
11. Übung Grundlagen der analogen Schaltungstechnik 1 Aufgabe (Klausur WS07/08: 40 min, 22 Punkte) - die Killeraufgabe, aber warum? Bootstrapschaltung und Kleinsignal-Transistormodell Gegeben ist die in
Teil VII Einfache Logikgatter. Statische Logik
Teil VII Einfache Logikgatter Statische Logik 1 Einleitung Statische Logik CMOS-Logik Gleichstromverhalten Laufzeit Kaskadierung Falsches Schalten Verlustleistung Pseudo-NMOS-Logik DCVS-Logik Pass-Transistor-Logik
Analoge CMOS-Schaltungen. Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil. Roland Pfeiffer 7. Vorlesung
Analoge CMOS-Schaltungen Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil 7. Vorlesung OpAmp Bekannt unter anderem aus der Vorlesung von Prof. Jungemann: Operationsverstärker OpAmp Analoge
Systemorientierte Informatik 1
Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,
Fragenkatalog zur Übung Halbleiterschaltungstechnik
Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,
Klausur "Elektronik und Messtechnik" am Teil: Elektronik
Name, Vorname: Hinweise zur Klausur: Klausur "Elektronik und Messtechnik" 9115 am 11.03.2002 1. Teil: Elektronik Die für diesen Teil zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind:
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik. Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek
Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik Univ.-Prof. Dr. techn. Josef A. Nossek Donnerstag, den 5.0.00 9:00 0:0 Uhr Musterlösung Name: Vorname: Matrikel-Nr.:
Prüfung aus Seite 1 Analoge Integrierte Schaltungen,
Prüfung aus Seite 1 Analoge Integrierte Schaltungen, 354.026 29.12.2010 Beispiel 1: (30%) Eine integrierte Schaltung verwendet sowohl eine Sourcfolger (SF) als auch eine Sourceschaltung (CS), siehe Skizze.
Analog- und Digitalelektronik
Willkommen zur Prüfung: Analog- und Digitalelektronik Name: Vorname: Matrikelnummer: Allgemeine Hinweise: Diese Klausur umfasst 7 n. Sie haben 90 Minuten Zeit, um die folgenden Aufgaben zu bearbeiten.
Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik
Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2016/17 Elektronik Matr.-Nr.: Name, Vorname: Hörsaal: Unterschrift: Prof. Dr.-Ing. Tilman
Probeklausur Elektronik (B06)
Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:
5. Tutorium Digitaltechnik und Entwurfsverfahren
5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Abschlussprüfung Schaltungstechnik 2
Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer
Protokoll zum Versuch Flip-Flop
Naturwissenschaft Torben Pfaff Protokoll zum Versuch Flip-Flop Praktikumsbericht / -arbeit Praktikum zu Elektronische Bauelemente und Schaltungstechnik Protokoll zum Versuch Flip-Flop Versuch Flip-Flop
5. Tutorium Digitaltechnik und Entwurfsverfahren
5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Wintersemester 2015/16 Elektronik
Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Wintersemester
Wir wünschen Ihnen bei der Bearbeitung viel Erfolg!
Semesterabschlussklausur Wintersemester 200/2007: WERKSTOFFE UND BAUELEMENTE DER ELEKTROTECHNIK I (Bauelemente) Name: Matrikelnummer: Es sind außer Ihrem Schreibzeug, einfachem Zeichenmaterial, einem nicht
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.
Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation
KLAUSUR LN/FP Sensortechnik/Applikation Name: Matr.-Nr.: Vorname: Note: Datum: Beginn: 8:15 Uhr Dauer: 10 Min. Aufgabe 1 3 4 Summe max. Pkt 18 16 16 15 65 err. Pkt Allgemeine Hinweise: Erlaubte Hilfsmittel:
Einführung in die Halbleiter- Schaltungstechnik
Holger Göbel Einführung in die Halbleiter- Schaltungstechnik 2., bearbeitete und erweiterte Auflage Unter Mitwirkung von Henning Siemund Mit 390 Abbildungen und CD-ROM Spri inger Liste der verwendeten
3 Elektronische Verknüpfungsglieder
3 Elektronische Verknüpfungsglieder ufgabe 27: RTL NICHT Glied.27.: Skizzieren Sie die Schaltung eines NICHT Schaltgliedes, das mit einem NPN Transistor und Widerständen aufgebaut ist (Resistor Transistor
Klausur im Fach: Regelungs- und Systemtechnik 1
(in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30
Klausur "Elektronik und Messtechnik" am Teil: Elektronik
Name, Vorname: Matr.Nr.: Klausur "Elektronik und Messtechnik" 9115 am 01.10.2004 1. Teil: Elektronik Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner
Aufgabe 1: Transistor, Diode (ca. 15 Punkte)
Studienschwerpunkt Mechatronik/Vertiefungsrichtung Fahrzeugmechatronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2018/19 Angewandte
