1. BLINDSTROM KOMPENSATION

Größe: px
Ab Seite anzeigen:

Download "1. BLINDSTROM KOMPENSATION"

Transkript

1 1. BLINDSTROM KOMPENSATION Der Blindstrom kann kompensiert werden bei: Mittelspannung: Wenn Empfänger vorhanden sind, die bei dieser Spannung Blindstrom verbrauchen wie zum Beispiel grosse Motore: M2.1 und M2.2 auf Abb.1-1 Niederspannung: Hier befinden sich gewöhnlich die meisten Empfänger, die Blindstrom verbrauchen (vom Sekundären T1 auf Abb. 1-1 gespeiste 400V- Empfänger) Jeder Empfängerr: Diese Lösung wird angewendet, wenn wenige hochleistungsfähige Empfänger existieren, wie zum Beispiel die Motore M1, M2.1 und M2.2 der Abb.1-1. Ausserdem wird gewöhnlich ein fester Kondensator zum kompensieren der Blindleistung der Transformatoren angeschlossen (Q T1 und Q T2 der Abb.1-1). Die Kompensation mit Empfängerschütz hat den Vorteil, dass er das ganze Netz ableitet (von den Terminals des Empfängers aus noch oben bis zur Einspeisung) Mit einer zentralisierten automatischen Batterie: Bei den meisten Anlagen wird wegen der grossen Empfängerzahl die zentralisierte Kompensation mit einer an die Hauptstromleiste am Ausgang des Transformators angeschlossenen Batterie oder automatischen Anlage empfohlen (Anlage Q 1 der Abb.1-1). Abb.1-1. Kompensationsarten.

2 1.1 TRANSFORMATOREN KOMPENSATION Tabelle 1.1-I Empfohlene Blindleistung und Kondensatoren für die Kompensation des Blindstroms der Transformatoren (es wird angenommen, dass der Trafo zu 80% seiner Nominalleistung arbeitet). Serie bis 24 kv Serie bis 36 kv Nominalleistung (Sn) Blindstrom bei Nominalleistung Empfohlene Kondensatorleistung bei 80% der Nominalleistung Blindstrom bei Nominalleistung Empfohlene Kondensatorleistung bei 80% der Nominalleistung kva kvar kvar kvar kvar 25 2,0 2 2, ,7 3 3, ,5 5 7, ,1 7,5 10,4 7, , , , , , , , , , , , , , , , , , , , ,0 120 Wenn der Transformator gewöhnlich mit einer anderen Kraft arbeitet oder für normalisierte Transformatoren ist die Leistung des Kondensators mit der folgenden Formel zu kalkulieren: S N io Q = 100 uk S S N 2 S Wenn: S N, Nominalleistung des Trafo (kva) i o, Leerleitstrom in % U k, Spannung in % S, Effektive Arbeitsleistung in kva. N Beispiel Trafo mit 630 kva Nominalleistung mit i o =0,95%, U k =6%, der mit 50% seiner Nominalleistung arbeitet , Q = = 15,4k var Wenn dieser Service jedoch nicht permanent ist oder der Trafo kann in naher Zukunft bis zu 80% oder 100% geladen werden, ist die künftige Situation zu berücksichtigen und die gleiche Formel für die 100% seiner Nominalleistung anzuwenden, sodass sich daraus die folgende Kondensatorleistung ergibt: 630 0,95 6 Q = = 38,4k var Es wird empfohlen, den Transformator mit einem festen verstärkten Schritt zu kompensieren.

3 Abb Kompensation eines Transformators und der Empfänger Q F, für den Trafo und Q A für die Empfänger Q F, fester Schritt für die Kompensation des Blindstroms des Transformators; ist vor dem TI angeschlossen, der den Regler der automatischen Batterie versorgt (siehe Version SF auf Seite 17). In Fällen, bei denen der zu erzielende cos φ niedriger ist als die Einheit, kann der feste Schritt hinter dem TI angeschlossen werden, wenn der Transformator nicht längere Zeit leer oder sehr niedrig geladen ist (bei Saisonarbeiten, landwirtschaftliche Berieselungen, Fremdenverkehrsanlagen,...) Q A, automatische Batterie zum kompensieren der Ladung des Transformators (Empfänger) 1.2 MOTOR KOMPENSATION Tabelle 1.2-I Blindstrom asynchroner Motore zusammen mit der empfohlenen Kondensatorleistung. Vide/ P. Cond. Vide/ P. Cond. Vide/ P. Cond. Vide/ P. Cond. Vide/ P. Cond. chargée chargée chargée chargée. chargée kw CV Leer/Voll Kond. Leer/Voll Kond. Leer/Voll Kond Leer/Voll Kond. Leer/Voll Kond. kw CV Unload/Full Load Cap. Unload/Full Load Cap. Unload/Full Load Cap.. Unload/Full Load Cap. Unload/Full Load Cap. kvar kvar kvar kvar kvar kvar kvar kvar kvar kvar kw HP kvar kvar kvar kvar kvar kvar kvar kvar kvar kvar 3000 tr/min 1500 tr/min 1000 tr/min 750 tr/min 500 tr/min 3000 r.p.m r.p.m r.p.m. 750 r.p.m. 500 r.p.m. 1,1 1,5 0,7/0,9 0,6 0,7/1,0 0,6 0,9/1,2 0,8 1,0/1,3 0,9 1,1/1,4 1,0 1,1 1,5 0,7/0,9 0,6 0,7/1,0 0,6 0,9/1,2 0,8 1,0/1,3 0,9 1,1/1,4 1,0 1,5 0,8/1,0 0,7 1,0/1,2 0,9 1,1/1,4 1,0 1,2/1,6 1,0 1,3/1,8 1,2 1,5 2 0,8/1,0 0,7 1,0/1,2 0,9 1,1/1,4 1,0 1,2/1,6 1,0 1,3/1,8 1,2 2,2 1,1/1,4 1,0 1,2/1,5 1,0 1,4/1,8 1,3 1,7/2,2 1,5 2,0/2,4 1,8 2,2 3 1,1/1,4 1,0 1,2/1,5 1,0 1,4/1,8 1,3 1,7/2,2 1,5 2,0/2,4 1,8 1,5/1,8 1,3 1,6/2,0 1,5 1,8/2,4 1,6 2,3/3,0 2,0 2,5/3,2 2, ,5/1,8 1,3 1,6/2,0 1,5 1,8/2,4 1,6 2,3/3,0 2,0 2,5/3,2 2,2 5,5 1,8/2,6 1,6 2,0/2,6 1,8 2,2/2,9 2,0 2,7/3,5 2,4 2,9/3,8 2,6 4 5,5 1,8/2,6 1,6 2,0/2,6 1,8 2,2/2,9 2,0 2,7/3,5 2,4 2,9/3,8 2,6 5,5 7,5 2,2/2,9 2,0 2,4/3,3 2,2 2,7/3,6 2,4 3,2/4,3 2,9 4,0/5,2 3,6 5,5 7,5 2,2/2,9 2,0 2,4/3,3 2,2 2,7/3,6 2,4 3,2/4,3 2,9 4,0/5,2 3,6 7,5 10 3,4/4,4 3,0 3,6/4,8 3,2 4,1/5,4 3,7 4,6/6,1 4,1 5,5/7,2 5,0 7,5 10 3,4/4,4 3,0 3,6/4,8 3,2 4,1/5,4 3,7 4,6/6,1 4,1 5,5/7,2 5, ,0/6,5 4,5 5,5/7,2 5,0 6,0/8,0 5,0 7,0/9,0 6,0 7,5/10 7, ,0/6,5 4,5 5,5/7,2 5,0 6,0/8,0 5,0 7,0/9,0 6,0 7,5/10 7, ,5/8,5 6,0 7,0/9,5 6,0 8,0/10 7,0 9,0/12 8,0 1,0/1,3 9, ,5/8,5 6,0 7,0/9,5 6,0 8,0/10 7,0 9,0/12 8,0 1,0/1,3 9,0 18,5 25 8,0/11 7,0 9,0/12 8,0 10/13 9,0 11/ / ,5 25 8,0/11 7,0 9,0/12 8,0 10/13 9,0 11/ / /12,5 9,0 11/13, / /16 12,5 16/ /12,5 9,0 11/13, / /16 12,5 16/ /18 12,5 15/20 12,5 17/ / / /18 12,5 15/20 12,5 17/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Pour Für höhere des puissances Leistungen supérieures, 30% der Leistung prendre in en KW compte des Motors les 30 Q For higher power consider the 30% of the power in % de la puissance en kw du moteur Q [kvar] = 0,3 P [kw] [kvar] = 0,3 P [kw] berücksichtigen KW of the motor Q [kvar] = 0,3 P [kw]

4 Die Kondensatorleistung der Tabelle 1.2-I entspricht der Empfehlung EN , nicht die 90% des Leer-Blindstroms zu überschreiten. Bei Motoren mit statischen Startern wird der Kondensator vor dem Starter angeschlossen, Lösung (a) oder (b) der Abbildung Diese Empfehlung ist zur Vermeidung der Selbsterregung des Motors erforderlich, ein Phänomen, das bei Motoren auftritt, die durch das Laden beim abschalten vom Netz und immer wenn der Kondensator sich an den Motor anschliesst, abgetrieben werden. Wenn diese Umstände nicht vorhanden sind, kann der Kondensator den Blindstrom bei voller Belastung des Motors ausgleichen. Beispiel Motor startet eine Maschine mit grosser Trägheit (Selbsterregungsgefahr), Leistung 75 kw bei 1500 r.p.m. Man nimmt den auf der Tabelle angegebenen Wert:: 30 kvar für die Kondensatorleistung. Wird der Kondensator an Motoranschlussklemmen über einen Kondensator angeschlossen, müssen die besagten 90% des Leer- Blindstroms nicht eingehalten werden. In diesem Fall können lt. Tabelle bis 49 kvar kompensiert werden. Beispiel Motor von 350 kw betreibt eine Pumpe mit cos φ 1 vollbelastet mit 0,88 und 97% Effizienz, soll auf cos φ 2 =0,97 kompensiert werden. Es wird die Leistung des Kondensators wie üblich mit der traditionellen Formel kalkuliert (siehe Tabelle 1.3-I) Q = P f In diesem Fall und lt. besagter Tabelle, f=0,289 dann, 350 Q = 0,289 = 104k var 0,97 Motore mit Stern-Dreieck-Start werden mit anschliessen des Kondensators an der Seite des Linienschützes oder mit einem unabhängigen Schütz kompensiert. Fig Kompensation statischer Starter Für Kompensation anderer Empfänger konsultieren Sie bitte das HANDBUCH CYDESA 1.3 ZENTRALISIERTE KOMPENSATION Ist die üblichste Form, Installationen zu kompensieren, bei der gewöhnlich zahlreiche Empfänger vorhanden sind BERECHNUNG DER KONDENSATORLEISTUNG BEI EINEM INSTALLATIONSPROJEKT. Von dem Projekt haben wir folgende Informationen: - Installierte Gesamtleistung... P T (kw) - Simultanitätsfaktor... Fs (%) - Durchschnittlicher Cos φ... Cosφ 1 Für einen gewünschten cos φ 2, ist folgende Kondensatorleistung erforderlich: Fs Q = PT 100 Fs 100 ( tanϕ tan ) = P f 1 ϕ 2 T (f = Wert aus der Tabelle 1.3-I) L Beispiel Installation, bei der man weiss, dass die Leistung der Empfänger 230 kw beträgt, es funktionieren jedoch nur 50%. Es wird ein Durchschnitts-cosφ von 0,8 geschätzt und man möchte einen cosφ von 0,98 erhalten. Wir bestimmen nach der Tabelle f=0,547, sodass : 50 Q = 230 0,547 = 63k var 100 Abb Kompensation mit Stern-Dreieck-Start

5 Beispiel Eine Installation soll mit einem Trafo von 1000 KVA gespeist werden, die installierte Leistung, der cosφ und der Simultanitätsfaktor sind jedoch nicht genau bekannt. Die Kondensatorleistung wäre: Q F (für den Trafo)= 50kvar (Tabelle 1.1-I) Q (für Empfänger)= 1000x0,8x0,8x(tanφ 1 tanφ 2 )= 1000x0,64x0,421=269kvar Gewöhnlich schätzt man folgende Werte: Cosφ 1 = 0,8 Cosφ 2 = 0,95 Trafo: u =6% und 80% des P.C. k

6 TABELLE 1.3-I - FAKTOR f = tanφ 1 -tanφ 2 Q[kvar] Kondensatorleistung = P[kW] aktive Leistung x f CYDESA 2007 vorhanden Gewünschter Leistungsfaktor (cosφ 2 ) Tan φ 1 Cos φ 1 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1,00 1,98 0,45 1,235 1,365 1,500 1,529 1,159 1,589 1,622 1,656 1,693 1,734 1,781 1,842 1,985 1,93 0,46 1,180 1,311 1,446 1,475 1,504 1,535 1,567 1,602 1,639 1,680 1,727 1,788 1,930 1,88 0,47 1,128 1,258 1,394 1,422 1,452 1,483 1,515 1,549 1,586 1,627 1,675 1,736 1,878 1,83 0,48 1,078 1,208 1,343 1,372 1,402 1,432 1,465 1,499 1,536 1,577 1,625 1,685 1,828 1,78 0,49 1,029 1,159 1,295 1,323 1,353 1,384 1,416 1,450 1,487 1,528 1,576 1,637 1,779 1,73 0,50 0,982 1,112 1,248 1,276 1,306 1,337 1,369 1,403 1,440 1,481 1,529 1,590 1,732 1,69 0,51 0,937 1,067 1,202 1,231 1,261 1,291 1,324 1,358 1,395 1,436 1,484 1,544 1,687 1,64 0,52 0,893 1,023 1,158 1,187 1,217 1,247 1,280 1,314 1,351 1,392 1,440 1,500 1,643 1,60 0,53 0,850 0,980 1,116 1,144 1,174 1,205 1,237 1,271 1,308 1,349 1,397 1,458 1,600 1,56 0,54 0,809 0,939 1,074 1,103 1,133 1,163 1,196 1,230 1,267 1,308 1,356 1,416 1,559 1,52 0,55 0,768 0,899 1,034 1,063 1,092 1,123 1,156 1,190 1,227 1,268 1,315 1,376 1,518 1,48 0,56 0,729 0,860 0,995 1,024 1,053 1,084 1,116 1,151 1,188 1,229 1,276 1,337 1,479 1,44 0,57 0,691 0,822 0,957 0,986 1,015 1,046 1,079 1,113 1,150 1,191 1,238 1,299 1,441 1,40 0,58 0,655 0,785 0,920 0,949 0,979 1,009 1,042 1,076 1,113 1,154 1,201 1,262 1,405 1,37 0,59 0,618 0,749 0,884 0,913 0,942 0,973 1,006 1,040 1,077 1,118 1,165 1,226 1,368 1,33 0,60 0,583 0,714 0,849 0,878 0,907 0,938 0,970 1,005 1,042 1,083 1,130 1,191 1,333 1,30 0,61 0,549 0,679 0,815 0,843 0,873 0,904 0,936 0,970 1,007 1,048 1,096 1,157 1,299 1,27 0,62 0,515 0,646 0,781 0,810 0,839 0,870 0,903 0,937 0,974 1,015 1,062 1,123 1,265 1,23 0,63 0,483 0,613 0,748 0,777 0,807 0,837 0,870 0,904 0,941 0,982 1,030 1,090 1,233 1,20 0,64 0,451 0,581 0,716 0,745 0,775 0,805 0,838 0,872 0,909 0,950 0,998 1,058 1,201 1,17 0,65 0,419 0,549 0,685 0,714 0,743 0,774 0,806 0,840 0,877 0,919 0,966 1,027 1,169 1,14 0,66 0,388 0,519 0,654 0,683 0,712 0,743 0,775 0,810 0,847 0,888 0,935 0,996 1,138 1,11 0,67 0,358 0,488 0,624 0,652 0,682 0,713 0,745 0,779 0,816 0,857 0,905 0,966 1,108 1,08 0,68 0,328 0,459 0,594 0,623 0,652 0,683 0,715 0,750 0,787 0,828 0,875 0,936 1,078 1,05 0,69 0,299 0,429 0,565 0,593 0,623 0,654 0,686 0,720 0,757 0,798 0,846 0,907 1,049 1,02 0,70 0,270 0,400 0,536 0,565 0,594 0,625 0,657 0,692 0,729 0,770 0,817 0,878 1,020 0,99 0,71 0,242 0,372 0,508 0,536 0,566 0,597 0,629 0,663 0,700 0,741 0,789 0,849 0,992 0,96 0,72 0,214 0,344 0,480 0,508 0,538 0,569 0,601 0,635 0,672 0,713 0,761 0,821 0,964 0,94 0,73 0,186 0,316 0,452 0,481 0,510 0,541 0,573 0,608 0,645 0,686 0,733 0,794 0,936 0,91 0,74 0,159 0,289 0,425 0,453 0,483 0,514 0,546 0,580 0,617 0,658 0,706 0,766 0,909 0,88 0,75 0,132 0,262 0,398 0,426 0,456 0,487 0,519 0,553 0,590 0,631 0,679 0,739 0,882 0,86 0,76 0,105 0,235 0,371 0,400 0,429 0,460 0,492 0,526 0,563 0,605 0,652 0,713 0,855 0,83 0,77 0,079 0,209 0,344 0,373 0,403 0,433 0,466 0,500 0,537 0,578 0,626 0,686 0,829 0,80 0,78 0,052 0,183 0,318 0,347 0,376 0,407 0,439 0,474 0,511 0,552 0,599 0,660 0,802 0,78 0,79 0,026 0,156 0,292 0,320 0,350 0,381 0,413 0,447 0,484 0,525 0,573 0,634 0,776 0,75 0,80 0,130 0,266 0,294 0,324 0,355 0,387 0,421 0,458 0,499 0,547 0,608 0,750 0,72 0,81 0,104 0,240 0,268 0,298 0,329 0,361 0,395 0,432 0,473 0,521 0,581 0,724 0,70 0,82 0,078 0,214 0,242 0,272 0,303 0,335 0,369 0,406 0,447 0,495 0,556 0,698 0,67 0,83 0,052 0,188 0,216 0,246 0,277 0,309 0,343 0,380 0,421 0,469 0,530 0,672 0,65 0,84 0,026 0,162 0,190 0,220 0,251 0,283 0,317 0,354 0,395 0,443 0,503 0,646 0,62 0,85 0,000 0,135 0,164 0,194 0,225 0,257 0,291 0,328 0,369 0,417 0,477 0,620 0,59 0,86 0,109 0,138 0,167 0,198 0,230 0,265 0,302 0,343 0,390 0,451 0,593 0,57 0,87 0,082 0,111 0,141 0,172 0,204 0,238 0,275 0,316 0,364 0,424 0,567 0,54 0,88 0,055 0,084 0,114 0,145 0,177 0,211 0,248 0,289 0,337 0,397 0,540 0,51 0,89 0,028 0,057 0,086 0,117 0,149 0,184 0,221 0,262 0,309 0,370 0,512 0,48 0,90 0,029 0,058 0,089 0,121 0,156 0,193 0,234 0,281 0,342 0,484 0,46 0,91 0,030 0,060 0,093 0,127 0,164 0,205 0,253 0,313 0,456 0,43 0,92 0,031 0,063 0,097 0,134 0,175 0,223 0,284 0,426 0,40 0,93 0,032 0,067 0,104 0,145 0,192 0,253 0,395 0,36 0,94 0,034 0,071 0,112 0,160 0,220 0,363 Q [ kvar] = P[ kw] f 0,33 0,95 0,037 0,078 0,126 0,186 0,329 0,29 0,96 0,041 0,089 0,149 0,292 0,25 0,97 0,048 0,108 0,251 0,20 0,98 0,061 0,203 0,14 0,99 0,142 Tabelle 1.3-I. Bestimmung des Faktors für die Berechnung der erforderlichen Kondensatorleistung Q. Hierfür muss zuerst tan φ 1 =Q (reactiv)/p (aktiv) refunden werden. Mit dieser Information liefert die Tabelle den entsprechenden vorhandenen cos φ. Ist der gewünschte cos φ 2 gewählt, kann der Faktor f und damit die erforderliche Kondensatorleistung Q=P.f bestimmt werden.

7 1.4 STROMTARIFE Die Stromtarife sehen generell Anreize für reduzieren des reaktiven Stromverbrauchs vor - speziell in Zeiten, in denen sehr viel verbraucht wird und tragen damit zum regulieren der Spannung des Netzes und zur Minderung seiner Verluste bei. Gewöhnlich wird das Zuviel an verbrauchter Leistung damit bestraft, dass es in Rechnung gestellt wird, das heisst, der Verbrauch, der über einen bestimmten Prozentsatz des aktiven Stromverbrauchs hinausgeht. Je nach Land liegt dieser Prozentsatz zwischen 33 und 50%, was einen cosφ von zirka 0,95 und 0,90 bedeutet.

8

KORREKTIONS DES LEISTUNGSFAKTORS

KORREKTIONS DES LEISTUNGSFAKTORS INHALT KORREKTIONS DES LEISTUNGSFAKTORS Blindstromkompensation 3 Transformatorenkompensation 4 Motorenkompensation 5 Niederspannungskondensatoren 8 Zylindrische Kondensatoren 10 Prismatische Kondensatoren

Mehr

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen:

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: 1 25 26 Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: U = 226V, I = 7, 5 A, cos ϕ = 0, 63. Wie gross ist a) die Scheinleistung, b) die Wirkleistung, c) die Blindleistung? d)

Mehr

Niederspannungsschaltanlagen

Niederspannungsschaltanlagen Niederspannungsschaltanlagen / BK, BKD - Kondensatorbatterien ENLETUNG m elektroenergetischen System hat die Übertragung der Blindleistung einen negativen Einfluss auf Qualität der Parameter des Energienetzes

Mehr

Weiterbildungsseminar für Prüfsachverständige. Rechenbeispiele

Weiterbildungsseminar für Prüfsachverständige. Rechenbeispiele Weiterbildungsseminar für Prüfsachverständige Rechenbeispiele 22. Januar 2016 Brandenburgische Ingenieurkammer Potsdam Dipl.-Ing. Gero Gerber 01/2015 Folie 1 Erwärmungsrunde Leistungstransformator Bestimmen

Mehr

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Serie 2005 Berufskunde schriftlich Elektrotechnik / Elektronik Name: Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Nr. Kandidat:... Vorname:...... Datum:... Zeit: Hilfsmittel: Bewertung:

Mehr

Relaiseinstellungen für einen Motor mit Kondensator zur Blindleistungskompensation Einstellanleitung

Relaiseinstellungen für einen Motor mit Kondensator zur Blindleistungskompensation Einstellanleitung Relaiseinstellungen für einen Motor mit Kondensator zur Blindleistungskompensation Einstellanleitung kansikuva_bw 1MRS756428 Ausgabe: 22.08.2006 Version: A/01.10.2007 Relaiseinstellungen für einen Motor

Mehr

E X P E R T E N V O R L A G E

E X P E R T E N V O R L A G E Serie 5 Berufskunde schriftlich Elektrotechnik / Elektronik Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin E E R T E N V O R L A G E Zeit: Hilfsmittel: Bewertung: 75 Minuten Formelbuch,

Mehr

Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater

Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater E-SB 03100 Kandidatennummer Name Vorname Datum Maximale Punkte 64 Erreichte Punkte Note Bemerkung zur Prüfung: Maximal 64

Mehr

Hinweise zur Blindstromkompensation Anlage zu Ziffer 10 TAB 2007

Hinweise zur Blindstromkompensation Anlage zu Ziffer 10 TAB 2007 Hinweise zur Blindstromkompensation Anlage zu Ziffer 10 TAB 2007 (Ausgabe Februar 2017) Emmy-Noether-Straße 2 80992 München Internet: www.swm-infrastruktur.de Stand: 01.02.2017 Inhaltsverzeichnis: 1 Vorbemerkungen

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Serie 2006 Berufskunde schriftlich Elektrotechnik / Elektronik Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

REGIONALE LEHRABSCHLUSSPRÜFUNGEN Berufskentnisse für Elektromonteure (schriftlich ) 1O U, U 2 U 1

REGIONALE LEHRABSCHLUSSPRÜFUNGEN Berufskentnisse für Elektromonteure (schriftlich ) 1O U, U 2 U 1 REGIONALE LEHRABSCHLUSSPRÜFUNGEN 00 1 FiG, BS, BL, BE 1-4, S O Pos. :4 Name : Punkte : Note : Blatt : 1O 3 4 5 6 7 8 Kandidat Nr. : Experten : / Nr. AUFGABEN Pkt. 1 Ein Sonnerietransformator 30 / 6 V hat

Mehr

,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km. Länge kann die Belastung maximal 340 A betra-

,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km. Länge kann die Belastung maximal 340 A betra- 1 RE 1.1041 9.9 10 SBB-Leitung Auf der Speiseleitung ( x 95mm,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km Länge kann die Belastung maximal 340 A betra- gen. Der Leistungsfaktor ist 0, 75 ( ρ

Mehr

PRÜFUNGSKLAUSUR F 03 Energietechnik 08. März 2003

PRÜFUNGSKLAUSUR F 03 Energietechnik 08. März 2003 Fachbereich Elektrotechnik und Informationstechnik LG Elektrische Energietechnik niversitätsstr. 7/PRG D - 58084 Hagen PRÜFNGKLAR F 0 Energietechnik 08. März 00 Prüfungsdauer: tunden [,5 td.] Bitte vollständig

Mehr

Berechnung von Kurzschlussströmen - Teil 6

Berechnung von Kurzschlussströmen - Teil 6 Berechnung von Kurzschlussströmen - Teil 6 Beziehungen zwischen den Impedanzen der einzelnen Spannungsebenen einer Anlage Impedanzen in Abhängigkeit von der Spannung Die Kurzschlussleistung Scc an einer

Mehr

Probeklausur im Sommersemester 2007

Probeklausur im Sommersemester 2007 Technische Universität Berlin 1 Elektrische Energiesysteme Probeklausur im Sommersemester 2007 Technische Universität Berlin 2 Aufgabe 1 In einem Drehstromnetz werden der in Dreieck geschaltete Generator

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Bedienungs- und Installationshinweise. MICROmatic

Bedienungs- und Installationshinweise. MICROmatic Bedienungs- und Installationshinweise MICROmatic BLINDLEISTUNGSKOMPENSATIONSANLAGE MIT AUTOMATISCHER STUFENREGELUNG TYPE MICROmatic BEDIENUNGS- UND INSTALLATIONSMANUAL 1. ALLGEMEIN 2. ANSCHLUSS AN DAS

Mehr

Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt

Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt Leistungs-Kondensatoren der Typenreihe LKN und LKSLT werden zur Fest kompensation u.a. von Motoren und Transformatoren eingesetzt. LKN LKSLT Stahlblechgehäuse

Mehr

2.3 Prismatische Kondensatoren

2.3 Prismatische Kondensatoren 2.3 Prismatische Kondensatoren - Technische Daten auf Seite 10 - Eingebaute Ableitwiderstände (75 V in 3 min) - Schutz IP43 - Endverarbeitung RAL 7032 480V 8h/Tag. Die Leistung bezieht sich immer auf 400V

Mehr

Blindstromkompensation Planungshinweise

Blindstromkompensation Planungshinweise Blindleistungsbedarf von Drehstrom-ormmotoren Zweiolige Maschine Vierolige Maschine ennleistung eerlauf Vollast eerlauf Vollast kw 0,9 kvar, kvar,4 kvar,5 kvar 3 kw,5 kvar,0 kvar,3 kvar,6 kvar 6 kw,6 kvar

Mehr

Table of Contents. Lucas Nülle GmbH Seite 1/7 https://www.lucas-nuelle.de

Table of Contents. Lucas Nülle GmbH Seite 1/7 https://www.lucas-nuelle.de Table of Contents Table of Contents Elektrische Energietechnik Energiemanagement EUC Energiemanagement EUC 3 Handbetätigte und automatische Blindleistungskompensation 1 2 2 4 5 Lucas Nülle GmbH Seite 1/7

Mehr

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN. Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN. Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Kapitel 3 Mathematik Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn Telefon 055 654 12 87 Telefax 055 654 12 88 E-Mail

Mehr

70 Minuten für 16 Aufgaben auf 10 Seiten

70 Minuten für 16 Aufgaben auf 10 Seiten Serie 07 QV nach BiVo 006 Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Berufskenntnisse schriftlich Pos. 4. Elektrische Systemtechnik Name, Vorname Kandidatennummer Datum Zeit:

Mehr

Antwort hier eintragen R 2 = 10 Ω

Antwort hier eintragen R 2 = 10 Ω Klausur 22.02.2011 Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Mit Lösung Aufgabe 1 (8 Punkte) Gegeben ist folgendes Netzwerk Gegeben: 1 = 25

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

Wie können Stromnetze kurzfristig für mehr Stromtransport ertüchtigt werden.

Wie können Stromnetze kurzfristig für mehr Stromtransport ertüchtigt werden. Wie können Stromnetze kurzfristig für mehr Stromtransport ertüchtigt werden. Janko Kroschl Dipl.-Ing. DGS-Sektion München www.kroschl.de, [email protected] Vortrag: IHM-München, 9.März. 2018 15:30

Mehr

Klausur Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 R 3 U B. Antwort hier eintragen

Klausur Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 R 3 U B. Antwort hier eintragen Klausur 15.08.2011 Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (4 Punkte) Folgendes Gleichstromnetzwerk ist gegeben. I X R 3 I 1 U

Mehr

Grundlagenreihe Stromversorgungen und Verbraucher besonderer Art Teil 2

Grundlagenreihe Stromversorgungen und Verbraucher besonderer Art Teil 2 Grundlagenreihe Stromversorgungen und Verbraucher besonderer Art Teil 2 Die Überwachungsfunktionen Aufgrund der besonderen Kenndaten des Generators und dessen Regelung müssen die Betriebsparameter des

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Qualifikationsverfahren Elektroplanerin EFZ

Qualifikationsverfahren Elektroplanerin EFZ Serie 01 Berufskenntnisse schriftlich Pos. 4 Elektrische Systemtechnik Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ Name, Vorname Kandidatennummer Datum......... Zeit: Hilfsmittel: Bewertung:

Mehr

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN KONDENSATOR IM WECHSELSTROMKIS 7 Frequenzverhalten eines Kondensators Ein Kondensator hat bei 0 Hz einen kapazitiven Blindwiderstand

Mehr

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

In einem Drehstrom-Verteilnetz beträgt die Spannung zwischen den Polleitern 8,6 kv. Wie gross ist die Spannung gegen Erde?

In einem Drehstrom-Verteilnetz beträgt die Spannung zwischen den Polleitern 8,6 kv. Wie gross ist die Spannung gegen Erde? EST ELEKTRSCHE SYSTEMTECHNK LÖSUNGSSAT PETTONEN LNEN- UND EGERDAGRAMME DPHASEN-WECHSELSTROM 94 H n einem Drehstrom-Verteilnetz beträgt die Spannung zwischen den Polleitern 8,6 kv. Wie gross ist die Spannung

Mehr

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Serie 01 Berufskenntnisse schriftlich Pos. 4 Elektrische Systemtechnik Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Name, Vorname Kandidatennummer Datum......... Zeit: Hilfsmittel:

Mehr

Leistungs-Kondensatoren im Stahlblechgehäuse. Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt

Leistungs-Kondensatoren im Stahlblechgehäuse. Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt Leistungs-Kondensatoren im Stahlblechgehäuse Leistungs-Kondensatoren im Stahlblechgehäuse unverdrosselt LKN LKSLT Stahlblechgehäuse Mit Anschlussklemme Schutzart IP54 Mit Sicherungs- Lasttrenner Schutzart

Mehr

Anwendungsregel AR-N 4105 (Niederspannungsrichtlinie) BDEW- Mittelspannungsrichtlinie. und AR-N 4105 & BDEW MSR. Stand

Anwendungsregel AR-N 4105 (Niederspannungsrichtlinie) BDEW- Mittelspannungsrichtlinie. und AR-N 4105 & BDEW MSR. Stand Anwendungsregel AR-N 4105 (Niederspannungsrichtlinie) und BDEW- Mittelspannungsrichtlinie AR-N 4105 & BDEW MSR Stand 01.12.2011 2011, KOSTAL Solar Electric GmbH. Inhalt und Darstellung sind weltweit geschützt.

Mehr

Kompensation von Drehstrommotoren

Kompensation von Drehstrommotoren Technik Jens Schlender / Andreas Renner Kompensation von Drehstrommotoren Studienarbeit GBS Leipzig Kompensation von Drehstrommotoren Verfasser: Klasse: Jens Schlender Andreas Renner 01E2B Projektarbeit

Mehr

Die Aufgaben dürfen nur an der Lehrabschlussprüfung verwendet werden! 75 Minuten

Die Aufgaben dürfen nur an der Lehrabschlussprüfung verwendet werden! 75 Minuten Kantonale Prüfungskommission Lehrabschlussprüfung Elektromonteure 2003 - Fach BK5 Elektrotechnik Serie A Prüfungsdatum Kandidat I Nr...... Allgemeine Bestimmungen: Die Aufgaben dürfen nur an der Lehrabschlussprüfung

Mehr

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 TU Berlin, Fak. IV, Institut für Energie-und Automatisierungstechnik Seite 1 von 9 Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 Die Klausur besteht aus 6 Aufgaben. Pro richtig beantworteter

Mehr

90 Minuten für 19 Aufgaben auf 13 Seiten

90 Minuten für 19 Aufgaben auf 13 Seiten Serie 07 QV nach BiVo 006 Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ Berufskenntnisse schriftlich Pos. 4. Elektrische Systemtechnik Name, Vorname Kandidatennummer Datum Zeit: Hilfsmittel:

Mehr

Elektrotechnik Schulprüfung Elektro-Sicherheitsberater E-SB

Elektrotechnik Schulprüfung Elektro-Sicherheitsberater E-SB Elektrotechnik Schulprüfung Elektro-Sicherheitsberater Kandidatennummer Name Vorname Datum Maximale Punkte 72 Erreichte Punkte Note Bemerkung zur Prüfung: Maximal 72 Punkte ergibt die Note 6 Maximale Zeit:

Mehr

Bedienungs- und Installationshinweise. MINImatic

Bedienungs- und Installationshinweise. MINImatic Bedienungs- und Installationshinweise MINImatic BLINDLEISTUNGSKOMPENSATIONSANLAGE MIT AUTOMATISCHER STUFENREGELUNG TYPE MINImatic BEDIENUNGS- UND INSTALLATIONSMANUAL 1. ALLGEMEIN 2. ANSCHLUSS AN DAS NETZ

Mehr

Applikationsbeschreibung 10/2016. Bestimmung der Blindleistung beim Active Line Module. https://support.industry.siemens.com/cs/ww/de/view/

Applikationsbeschreibung 10/2016. Bestimmung der Blindleistung beim Active Line Module. https://support.industry.siemens.com/cs/ww/de/view/ Applikationsbeschreibung 10/2016 Bestimmung der Blindleistung beim Active Line Module https://support.industry.siemens.com/cs/ww/de/view/105643094 Gewährleistung und Haftung Gewährleistung und Haftung

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Sommersemester 17 Aufgabe 1: Die Lösungen zu Aufgabe 1 folgen am Ende. Aufgabe : 1. I = 600 ma R a = 5,5 Ω R c =

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Leistungs-Kondensatoren im Stahlblechgehäuse verdrosselt

Leistungs-Kondensatoren im Stahlblechgehäuse verdrosselt Headline Leistungs-Kondensatoren im Stahlblechgehäuse Subline Leistungs-Kondensatoren im Stahlblechgehäuse verdrosselt Leistungs-Kondensatoren der Typenreihe LKND-P und LKNS-P werden zur Festkompensation

Mehr

Scheinleistung und Trafo-Auslegung für LED Leuchtmittel bei 12 V Wechselspannung

Scheinleistung und Trafo-Auslegung für LED Leuchtmittel bei 12 V Wechselspannung +9 228 30 3 89 8 +3 372 219 999 +1 787 0 7 Scheinleistung und Trafo-Auslegung für LED Leuchtmittel bei 12 V Wechselspannung Zum Erhalt der Lebensdauer der LED Leuchtmittel und Trafos ist es von entscheidender

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

3 Anlagentechnik. 3.1 Planung von Kompensationsanlagen Allgemeines

3 Anlagentechnik. 3.1 Planung von Kompensationsanlagen Allgemeines 3 Anlagentechnik 3.1 Planung von Kompensationsanlagen 3.1.1 Allgemeines Für die Planung einer Kompensation in bestehender Betriebsanlage sind folgende Informationen relevant: Verbraucher - Daten (z. B.

Mehr

Blindleistung außerhalb des Einspeisebetriebs bei SUNNY CENTRAL der Baureihen CP XT, CP-JP und CP-US

Blindleistung außerhalb des Einspeisebetriebs bei SUNNY CENTRAL der Baureihen CP XT, CP-JP und CP-US Technische Information Q at Night Blindleistung außerhalb des Einspeisebetriebs bei SUNNY CENTRAL der Baureihen CP XT, CP-JP und CP-US Inhalt Es besteht im öffentlichen Stromnetz grundsätzlich der Bedarf

Mehr

Verrechnung von Blindenergie für passive Teilnehmer ab dem

Verrechnung von Blindenergie für passive Teilnehmer ab dem Seite 1 von 8 Verrechnung von Blindenergie für passive Teilnehmer ab dem 01.01.2011 Autor: Martin Kurzidem Alle Rechte, insbesondere das Vervielfältigen und andere Eigentumsrechte, sind vorbehalten. Dieses

Mehr

Klausur Grundlagen der Elektrotechnik I (MB, SB, VT, EUT, BVT, LUM) Seite 1 von 5 R 3 U 3. Antwort hier eintragen R 3

Klausur Grundlagen der Elektrotechnik I (MB, SB, VT, EUT, BVT, LUM) Seite 1 von 5 R 3 U 3. Antwort hier eintragen R 3 Klausur 06.09.2010 Grundlagen der Elektrotechnik I (MB, SB, VT, ET, BVT, LM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Folgendes Netzwerk ist gegeben: 2 Name: Matr.-Nr.: Mit Lösung 1 I 4 2 1 = 10 Ω 2 = 10 Ω 3

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Blindleistung. Prof. Dr. Ing. Ralph Kennel Technische Universität München Arcisstraße München

Blindleistung. Prof. Dr. Ing. Ralph Kennel Technische Universität München Arcisstraße München Blindleistung Prof. Dr. Ing. Ralph Kennel ([email protected]) Arcisstraße 21 80333 München P Power F C = Factor Control Power Factor (Leistungsfaktor) = P W (Wirkleistung) P S (Scheinleistung) 15.10.09

Mehr

Installation und erste Inbetriebnahme:

Installation und erste Inbetriebnahme: Installation und erste Inbetriebnahme: Die Platine ist am Kopter frei und ohne Kontakt zu anderen elektrischen Bauteilen zu befestigen. Benutzen Sie hier für spezielle Kunststoff- Abstandhalter. Anschluss

Mehr

Blindleistung. Prof. Dr. Ing. Ralph Kennel Technische Universität München Arcisstraße München

Blindleistung. Prof. Dr. Ing. Ralph Kennel Technische Universität München Arcisstraße München Blindleistung Prof. Dr. Ing. Ralph Kennel ([email protected]) Arcisstraße 21 80333 München P Power F C = Factor Correction Power Factor (Leistungsfaktor) = P W (Wirkleistung) P S (Scheinleistung) 15.10.09

Mehr

Mathematik. Komplexe Zahlen

Mathematik. Komplexe Zahlen K- Gegeben ist die Gleichung. öst man diese Gleichung nach auf, so erhält man mit Hilfe der pq-formel: 6 / / / 6 Wenn diese Gleichung etzt lautet, dann erhält man einen negativen adikanden: 6 / / / / {

Mehr

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik Serie 2014 Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik Name, Vorname Kandidatennummer Datum Zeit: Hilfsmittel: Bewertung:

Mehr

Elektrotechnik 3 Übung 1

Elektrotechnik 3 Übung 1 Elektrotechnik 3 Übung 1 2 Drehstrom 2.1 Gegeben sei ein Heizofen mit U n = 400 V, R = 25 pro Strang. Berechnen Sie Außenleiterströme, Strangströme, Nullpunktspannung, Nullleiterstrom sowie Leistung und

Mehr

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik Serie 06 Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ Berufskenntnisse schriftlich Pos. 4. Elektrische Systemtechnik Name, Vorname Kandidatennummer Datum Zeit: Hilfsmittel: Bewertung:

Mehr

Programmierung von LED-Treibern Philips Xitanium LP/FP/

Programmierung von LED-Treibern Philips Xitanium LP/FP/ Programmierung von LED-Treibern Philips Xitanium LP/FP/ Version 1.1.2018 Autor des Dokuments Sven Dressel Erstellt am 03.01.2018 Seitenanzahl 7 AEC ILLUMINAZIONE GMBH Inhaltsverzeichnis Inhaltsverzeichnis...

Mehr

- Leseprobe - Blindstromkompensation in der Praxis. 1 Grundlagen. Blindstromkompensation 04004

- Leseprobe - Blindstromkompensation in der Praxis. 1 Grundlagen. Blindstromkompensation 04004 Blindstromkompensation 04004 Seite 1 Blindstromkompensation in der Praxis In Stromrechnungen von Industriekunden tauchen nicht selten græßere Betråge an Blindarbeit auf, die ab einer bestimmten Hæhe auch

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

TECHNISCHE MINDESTANFORDERUNGEN DER SWS NETZE GMBH ZUM MESSSTELLENBETRIEB STROM

TECHNISCHE MINDESTANFORDERUNGEN DER SWS NETZE GMBH ZUM MESSSTELLENBETRIEB STROM TECHNISCHE MINDESTANFORDERUNGEN DER SWS NETZE GMBH ZUM MESSSTELLENBETRIEB STROM 1. Allgemeine Festlegungen Für den Einbau, den Betrieb sowie die Unterhaltung von Messeinrichtungen im Netzgebiet der SWS

Mehr

... Formelbuch, Taschenrechner ohne Datenbank, Massstab und Transporteur

... Formelbuch, Taschenrechner ohne Datenbank, Massstab und Transporteur Serie 2008 Berufskunde schriftlich Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch, Taschenrechner

Mehr

3. Transformator. EM1, Kovalev/Novender/Kern (Fachbereich IEM)

3. Transformator. EM1, Kovalev/Novender/Kern (Fachbereich IEM) 1 Grundgesetze 2 Idealer Transformator Ideal: Streufluss bleibt unberücksichtigt, Keine Verluste. 3 Leerlauf 4 Lastfall 5 Kernausführungen Kerntransformator Manteltransformator 6 Kernschichtung Normal-Schichtung

Mehr

Kapitel 19.2 Drehstrom- Transformatoren. Repetitionen

Kapitel 19.2 Drehstrom- Transformatoren. Repetitionen Kapitel 19.2 Drehstrom- Transformatoren Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 EST ELEKTRISCHE SYSTEMTECHNIK

Mehr

RCVIVIV %LL LLI il 1\V1 VIYVCIV IJV O Berufskenntnisse für Elektromonteure (schriftlich)

RCVIVIV %LL LLI il 1\V1 VIYVCIV IJV O Berufskenntnisse für Elektromonteure (schriftlich) rpos, i Blatt : RCVIVIV %LL LLI il \V VIYVCIV IJV O AG, BL, BS, BE -, S O Elektrotechnik Name Pt 2 3 5 6 7 Nummer Exp Schriftliche Prüfung Zeit 75 Minuten Total 3kt Die Lösungen müssen enthalten : Formeln,

Mehr

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 AG BL, BS, BE 1-4, SO Pos.4 An einer Steckdose 1 x 230 V wird ein Kurzschluss verursacht. Der Wider - stand des gesamten Stromkreises wurde mit 150 ms2 ermittelt.

Mehr

Konverter mit eingebauten Laderegler

Konverter mit eingebauten Laderegler Konverter mit eingebauten Laderegler Modelle ESC 300 3000 12-24VDC/220VAC Via al Ticino 10 CH - 6514 Sementina Tel. +41 (0) 91 857 20 66 Fax. +41 (0) 91 857 55 44 Homepage: www.eselectronic.ch E-mail:

Mehr

ELEKTRISCHE ENERGIEVERSORGUNG

ELEKTRISCHE ENERGIEVERSORGUNG JOHN A. HARRISON ELEKTRISCHE ENERGIEVERSORGUNG IM KLARTEXT >>> NEW TECH ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

Drehstromsteuerung DSFO

Drehstromsteuerung DSFO Drehstromsteuerung DSFO Inhaltsverzeichnis Allgemeines S2 Modelle, Versionen S3 Technische Daten S4 Funktionen S5 Anschlussbox S6 Transponder, Display S7 Kühlung, Einbau S8 Programmierkabel u Software

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Fach BK4 Elektrotechnik Serie A. Prüfungsdatum. Kandidat / Nr. ... ... Allgemeine Bestimmungen: Notenschlüssel: Erreichte Punktzahl: Note: Visum:.../.

Fach BK4 Elektrotechnik Serie A. Prüfungsdatum. Kandidat / Nr. ... ... Allgemeine Bestimmungen: Notenschlüssel: Erreichte Punktzahl: Note: Visum:.../. Kantonale Prüfungskommission Lehrabschlussprüfung Elektromonteure Fach BK4 Elektrotechnik Serie A Prüfungsdatum Kandidat / Nr................ Allgemeine Bestimmungen: ie Aufgaben dürfen nur an der Lehrabschlussprüfung

Mehr

Schriftliche Prüfung aus VO Energieübertragung und Hochspannungstechnik am Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Energieübertragung und Hochspannungstechnik am Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Energieübertragung und Hochspannungstechnik am 01.10.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Beispiel 1: Netzeinspeisung (33 Punkte) Zwei benachbarte Netze sind über eine

Mehr

Netzintegration aus der Sicht des Photovoltaik-Wechselrichters

Netzintegration aus der Sicht des Photovoltaik-Wechselrichters 14. Fachkongress Zukunftsenergien Netzintegration aus der Sicht des Photovoltaik-Wechselrichters Dr.-Ing. Armin von Preetzmann KOSTAL Industrie Elektrik GmbH Essen, 09. Februar 2010 14. Fachkongress Zukunftsenergien

Mehr

Technische Voraussetzungen einer Netzentlastung durch Eigenverbrauch

Technische Voraussetzungen einer Netzentlastung durch Eigenverbrauch Technische Voraussetzungen einer Netzentlastung durch Eigenverbrauch Prof. Dr. Ing. Martin Braun, Dr. Ing. Philipp Strauß Bereich: Anlagentechnik und Netzintegration Kontakt: Fraunhofer IWES, Königstor

Mehr

MPS 10-800 kva, Typ 3/1 oder Typ 3/3. On-Line USV-Anlagen MPS 10-100 kva dreiphasig/einphasig 10-800 kva dreiphasig/dreiphasig.

MPS 10-800 kva, Typ 3/1 oder Typ 3/3. On-Line USV-Anlagen MPS 10-100 kva dreiphasig/einphasig 10-800 kva dreiphasig/dreiphasig. On-Line USV-Anlagen MPS 10-100 kva dreiphasig/einphasig 10-800 kva dreiphasig/dreiphasig Von 10 bis 100 kva steht dieses Modell als dreiphasig/einphasig zur Verfügung und von 10 bis 800 kva auch als dreiphasig/dreiphasig..

Mehr

Klausur Grundlagen der Elektrotechnik I (MB, SB, VT, EUT, BVT, LUM) Seite 1 von 5 R 3 U 3. Antwort hier eintragen R 3

Klausur Grundlagen der Elektrotechnik I (MB, SB, VT, EUT, BVT, LUM) Seite 1 von 5 R 3 U 3. Antwort hier eintragen R 3 Klausur 06.09.2010 Grundlagen der Elektrotechnik I (MB, SB, VT, EUT, BVT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Folgendes Netzwerk ist gegeben: U 2 Name: Matr.-Nr.: 1 I 4 2 1 = 10 Ω 2 = 10 Ω 3 = 10 Ω

Mehr

Bedienungsanleitung. Handumgehung 1-3KVA. Typ: MHU 3 BA100108

Bedienungsanleitung. Handumgehung 1-3KVA. Typ: MHU 3 BA100108 Bedienungsanleitung Handumgehung 1-3KVA Typ: MHU 3 BA100108 Einschalten der Handumgehung Netz Service Bypass 1. Schalten Sie die USV auf Bypass wie im Handbuch der USV beschrieben. 2. Vergewissern Sie

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Zuverlässige Einspeisung regenerativer Energie in das öffentliche Energieversorgungsnetz

Zuverlässige Einspeisung regenerativer Energie in das öffentliche Energieversorgungsnetz Zuverlässige Einspeisung regenerativer Energie in das öffentliche Energieversorgungsnetz FuE-Projekt ZEREN 1 Energieversorgung durch Windkraft Sturmabschaltung 100% 0% 100% 0% 1.. 3min 1..3min 60% 90%

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr