14 Astronomie im Physikunterricht

Größe: px
Ab Seite anzeigen:

Download "14 Astronomie im Physikunterricht"

Transkript

1 Udo Backhaus 14 Astronomie im Physikunterricht 14.1 Einführung Die Astronomie stand am Anfang der wissenschaftlichen Beschäftigung des Menschen mit seiner Umwelt. Die langfristige Beobachtung des Himmels und seiner Veränderungen führte zu der Entdeckung von Regelmäßigkeiten und zu dem Versuch, sie sich kalendarisch und astrologisch nutzbar zu machen. Bei den Griechen führten diese Erfahrungen zur Entwicklung mathematischer und geometrischer Modelle, deren Eigenschaften weit über die beobachteten Phänomene hinausgingen. In der beginnenden Neuzeit bildete die Schwierigkeit, die Bewegungen der Planeten genauer zu beschreiben und vorherzusagen, den Ausgangspunkt für die Überwindung der Vorstellung von der Erde als Mittelpunkt der Welt und für die Entwicklung der modernen Naturwissenschaft. Galileis Trägheitsgesetz und die von Newton aufgestellten Bewegungsgesetze, die die grundsätzliche Kluft zwischen Himmel und Erde aufhoben, wären ohne das Streben, das Planetenproblem zu lösen und damit die Stellung der Erde und des Menschen in der Welt neu zu definieren, undenkbar geblieben. Auch heute steht die Astronomie, insbesondere die moderne Kosmologie, an der Spitze aktueller naturwissenschaftlicher Fragestellungen und Entwicklungen, z.b. in der Hochenergiephysik. Die Bilder, die moderne Teleskope vom Himmel holen, finden große öffentliche Aufmerksamkeit. Sie werden heute, trotz aller scheinbaren Unveränderlichkeit des Himmels, als Abbildungen von Vorgängen heftigster Dynamik interpretiert, die in unvorstellbaren Entfernungen und vor unvorstellbar langer Zeit! stattgefunden haben und immer noch stattfinden. Die Behandlung astronomischer Themen im Schulunterricht, die aus diesen Gründen auf großes Interesse bei den Schülern stößt, ist allerdings mit spezifischen Problemen verbunden: Die Untersuchungsgegenstände sind so weit entfernt und von so großen Ausmaßen, dass im Allgemeinen naturwissenschaftliche Experimente, also die gezielte Manipulationen der untersuchten Explodierender Stern Kollidierende Galaxien

2 Astronomie im Physikunterricht Diskrepanz zwischen Gewusstem und Erfahrenem Beispiel: Entstehung der Mondphasen Erdschatten? Objekte nicht möglich und die Menschen deshalb auf die Rolle passiver Beobachter beschränkt sind. Diese Beobachtungen können zum größten Teil nur nachts (also nicht zur Schulzeit) und mit komplexen Geräten (Teleskopen, Spektrometern, Raumsonden, Beschleunigern usw.) durchgeführt werden. Fast alle astronomischen Vorgänge laufen sehr langsam ab. Sie erfordern also einen sehr langen Atem bei der Beobachtung und Aufzeichnung oder sehr indirekte Schlüsse, um ihrer Dynamik auf die Spur zu kommen. Die Folge dieser Schwierigkeiten ist, dass astronomische Aussagen in der Regel nur über lange Ketten logischer Schlussfolgerungen mit unmittelbar zu machenden Erfahrungen zusammenhängen. Die Diskrepanz zwischen Gewusstem (d.h. angelesenem und aus dem Fernsehen übernommenem Wissen) und Erfahrenem ist deshalb in der Astronomie besonders groß und sie beschränkt sich nicht auf die Aussagen, deren Gegenstände unmöglich selbst zu erfahren sind. Auch bei elementaren astronomischen Aussagen fehlt oft jede Anbindung an eigene Beobachtungen und Erlebnisse. Diese Aussage soll im Folgenden kurz am Beispiel der Entstehung der Mondphasen erläutert werden. Bei Umfragen zeigt sich immer wieder, dass Befragte jeden Alters und unterschiedlichster Bildung (sogar unabhängig vom Umfang des erfahrenen Astronomieunterrichts!) sich die Phasengestalten des Mondes dadurch erklären, dass der Schatten der Erde auf den Mond falle. Ist diese Erklärung beim Sichelmond im allerersten Moment vielleicht noch einleuchtend, so erstaunt sie hinsichtlich des Halbmondes (müsste dafür doch die Erde eine Scheibe sein!) und noch mehr beim fast vollen Mond (Hohlerde!). Um mit Wagenschein zu sprechen: Nicht die Unkenntnis als solche ist es, die hier bestürzt. Anständige Unkenntnisse, ehrliche, von schwierigen Dingen, gehören zur Bildung. Aber hier ist die Wahrheit leicht zu sehen; und noch leichter wäre zu bemerken, dass es der Erdschatten unmöglich sein kann, der den Mond aushöhlt. (Wagenschein 1992, S. 62) Dabei sind die Mondphasen ein gängiges Thema des Optik- Unterrichts in Schule und Hochschule! Offensichtlich erreicht das übliche Diagramm zur Erklärung der Mondphasen von außen die Lernenden nicht:

3 14.1 Einführung 487 Es erfordert einen abstrakten Prozess des Standortwechsels: Wir müssen uns in Gedanken auf die Erdoberfläche zurückversetzen und uns vorstellen, wie von dort die beleuchtete Hälfte des Mondes zu sehen wäre. Und wir müssen uns vorstellen, wie Sonne und Mond über den Himmel wandern, wenn die Erde sich um ihre eigene Achse dreht - u nd wir mit ihr! Und selbst wenn uns gelingt, erklärt das Diagramm Phänomene, die die meisten von uns noch nicht wahrgenommen haben, z.b. dass der junge zunehmende Mond nur am frühen Abend zu sehen ist, der abnehmende Halbmond aber bereits mittags untergeht und warum der Vollmond im Sommer so viel niedriger steht als im Winter. Es ist nicht damit getan, im Klassenraum eine Kugel halbseitig zu beleuchten. Zwar machen diese und weitere Demonstrationen v on Analogien (Ball in der Sonne zeigt dieselbe Gestalt wie der darüber stehende Mond, aus unterschiedlichen Richtungen betrachtete runde Gegenstände im Lichte der Sonne) plausibel, dass die Mondphasen so zustande kommen könnten. Es könnte aber auch anders sein: Eine sich drehende, nur halbseitig (selbst-) leuchtende Kugel würde dieselben Gestalten zeigen! Eine naturwissenschaftliche Erklärung wird erst daraus, wenn die Aussagen gut zu anderen beobachtbaren Phänomenen passen -insbesondere also zu den sich mit der Phasengestalt ändernden Auf- und Untergangszeiten des Mondes. In geozentrischer Sichtweise stellen sich die Phänomene folgendermaßen dar: Wenn man, beginnend kurz nach Neumond, jeden zweiten Abend kurz nach Sonnenuntergang zum Himmel sieht, dann wandert der Mond in zwei Wochen von tief im Westen über hoch im Süden nach tief im Osten. Simultan dazu ändert sich die Phasengestalt vom Sichelmond über den Halbmond zumvollmond. Wenn man bei dieser Wanderung des Mondes die gerade untergegangene Sonne mit in den Blick nimmt (eine Idee, auf die Lernende von allein kaum kommen können!), dann erkennt man allmählich, wie der Mond als eine dunkle Kugel imlicht der Sonne hängt, und zwar einer sehr weit schräg hinter dem Mond schwebenden riesigen Sonne. Das ist ein großer Augenblick: Die Himmelskuppel löst sich im Raum auf. (Wagenschein 1992, S. 63) Anhand dieses Beispiels lassen sich unschwer vier Ursachen für die große Diskrepanz zwischen Gewusstem und Erfahrenem ausmachen: Übliche Erklärung der Mondphasen Abendliche Mondbewegung Der Halbmond im Lichte der Sonne Gründe für die Diskrepanz

4 Astronomie im Physikunterricht Verstädterung, moderne Medien und ähnliche Veränderungen der Lebenswelt haben zu einer Entfremdung des Menschen von der Natur geführt. Hinsichtlich unmittelbarer astronomischer Erfahrungen kommt die zunehmende Lichtverschmutzung unserer Umwelt hinzu. Die dadurch hervorgerufene mangelnde Kenntnis der Phänomene hat zur Folge, dass Modelle und Theorien Erklärungen für Vorgänge liefern, die nicht gegenwärtig sind, die also noch nicht beobachtet worden sind und deren Charakteristika unbekannt, vielleicht sogar unvorstellbar sind: Das Modell beantwortet nie gestellte Fragen. Ein voreiliger Übergang von der geozentrischen zur heliozentrischen Beschreibung überfordert das Abstraktionsvermögen der Lernenden und vergrößert den Abstand zwischen Beobachtung und Erklärung. Astronomische Zahlenangaben überschreiten das menschliche Vorstellungsvermögen bei weitem. Wenn die zugehörigen Probleme und Messverfahren überhaupt thematisiert werden, dann ist ihre Darstellung oft so grob vereinfachend, dass man sie auch als falsch bezeichnen könnte. Es ist hier nicht der Platz für eine gründliche Diskussion des Verhältnisses zwischen geozentrischer und heliozentrischer B etrachtungsweise. Deshalb soll sich hier auf den letzten Punkt konzentriert werden und am Beispiel eigener Messversuche zur Bestimmung der Größe des Weltalls aufgezeigt werden, inwieweit astronomi sche Entfernungsmessungen exemplarisch sein können für die astronomische Erkenntnisgewinnung, dafür also (um mit Wagens chein zu sprechen), wie man so etwas wissen kann, was es also heißt, Astronomie und Physik zu betreiben. Dabei bewährt sich die heliozentrische Sichtweise insofern, als es erst durch sie möglich wird, aus den Beobachtungen quantitative Aussagen über Entfernungen abzuleiten Astronomische Entfernungsmessung Astronomische Einheit Die Entfernung zwischen Erde und Sonne ist eine der fundamentalen Konstanten der Astronomie: die Astronomische Einheit. Ihr Zahlenwert ist die Grundlage nicht nur zur Bestimmung der Größe und der Struktur des Weltraumes, sondern auch für die Messung der astrophysikalischen Eigenschaften von Planeten und Sternen. Alle mit der Sonnenentfernung zusammenhängenden astrometrischen

5 14.3 Übersicht über die Messmethoden 489 Effekte sind jedoch sehr klein, weil die Sonne unglaublich weit entfernt ist. Die Messung der so genannten Sonnenparallaxe war deshalb während mehrerer hundert Jahre eines der Hauptprobleme der Astronomie, und es ist bis heute schwi erig, die Sonnenentfernung in der Schule anhand eigener Messwerte zu bestimmen. Bei der Beschäftigung mit diesem Problem kann jedoch viel über Physik und Astronomie gelernt werden. Sonnenparallaxe 14.3 Übersicht über die Messmethoden Bis heute besteht die sicherste Methode, die Entfernung eines weit entfernten astronomischen Objektes zu bestimmen, darin, seine trigonometrische Parallaxe zu messen. Der zugrunde liegende Effekt ist jedem vom Auto- oder Zugfahren bekannt: Die Gegenstände der Umgebung scheinen sich gegenüber dem Hintergrund in der entgegengesetzten Richtung zu bewegen, und zwar umso schneller, je näher sie sind. Trigonometrische Parallaxe Abb. 14.1: Dreiecke, in denen man Winkel messen muss, wenn man a ) die Mondentfernung direkt trigonometrisch bestimmen, b ) die Sonnenentfernung mit der Mondentfernung vergleichen, c ) die Sonnenparallaxe von der Erde aus direkt messen, d ) die Parallaxe eines Fixsterns auf der Basis des Erdbahnradius messen will.

6 Astronomie im Physikunterricht Will man auf diese Weise die Sonnenparallaxe messen, muss man ihre Position am Sternenhimmel von verschiedenen Stellen der Erde aus messen. Dabei muss man Winkel in einem Dreieck messen, dessen Seitenlängen sich wie 24000:1 verhalten. Nach dem Versuch, ein solches Dreieck zu zeichnen, kann man sich die Schwierigkeit, die Parallaxe der Sonne zu messen, vorstellen. Tatsächlich ist es bis heute unmöglich, die Entfernung der Sonne auf diese Weise direkt zu bestimmen! Drei prinzipielle Auswege bieten sich an: Aristarchs Idee bestand darin, die Entfernung der Sonne nicht als Vielfaches des Erdradius, sondern als Vielfaches des Abstandes zwischen Erde und Mond zu bestimmen. Dabei muss man Winkel in einem Dreieck mit einem Seitenverhältnis von nur 400:1 messen. Die zweite Möglichkeit, größere und damit leichter zu messende Winkel zu erhalten, besteht darin, im Sonnensystem eine Entfernung zu messen, die kleiner als die zu Sonne ist, und diese auf die Entfernung zur Sonne hochrechnen. Der dritte Ausweg eröffnet sich durch die Heranziehu ng physikalischer Gesetzmäßigkeiten, die es ermöglichen, aus den Zahlenwerten anderer physikalischer Größen den Abstand zwischen Erde und Sonne zu berechnen. Die wichtigsten sind die Messung von Lichtlaufzeiteffekten und die Auswertung des Doppler-Effektes. Im Folgenden sollen einige Methoden etwas genauer dargestellt und die mit ihnen verbundenen Probleme angedeutet werden Messung der Sonnenentfernung nach Aristarch Aristarchs Idee Die am einfachsten zu verstehende Methode zur Messung der Entfernung zwischen Erde und Sonne beruht auf der genialen Idee von Aristarch, der die Sonnenentfernung dadurch bestimmte, dass er bei Halbmond den Winkelabstand zwischen Sonne und Mond beobachtete. Bei Halbmond liegt in dem Dreieck Erde - Mond - Sonne ein rechter Winkel beim Mond. Wenn man also den Winkel zwischen Mond und Sonne bei Halbmond misst, kennt man in dem Dreieck alle Winkel und damit das Verhältnis der Entfernungen zu Sonne und Mond, und die Entfernung Erde Sonne kann zeichnerisch oder rechnerisch als Vielfaches der Mondentfernung ermittelt werden.

7 14.5 Messungen mit einem Sextanten 491 Leider ist über Aristarchs Messungen nichts überliefert. Aus seinem Zahlenwert für dieses Vielfache (18-20) kann man aber schließen, dass er den Winkel zu 87 o annahm. Dieser Wert ist jedoch viel zu klein: Er beträgt tatsächlich fast genau 90 o. Trotzdem wurde Aristarchs Angabe fast 2000 Jahre ungeprüft übernommen. In dieser großen Diskrepanz deuten sich gravierende Probleme bei der Messung an: Der genaue Zeitpunkt des Halbmondes ist mit den Augen nur ungenau zu bestimmen - selbst mit einemfernrohr. Der Winkel zwischen Mond und Sonne muss offensichtlich sehr genau gemessen werden. Aristarchs Ergebnis 14.5 Messungen mit einem Sextanten Sextanten sind Messgeräte, mit denen Winkelabstände zwischen Objekten am Himmel sehr genau gemessen werden können. Sie wurden früher in der Seefahrt für die astronomische Navigation benutzt. Heute kann man sie antiquarisch oder als Lehrmittelgeräte erwerben. Da der Aufbau des Sextanten die gleichzeitige Beobachtung von Mond und Sonne ermöglicht, liegt die Idee nahe zu versuchen, den Winkel zwischen Mond und Sonne mit einem Sextanten zu messen. Im Folgenden werden beispielhaft die Ergebnisse einer Messung am 29. April 1993 dargestellt (Vornholz et al. 1996). An diesem Tag trat das 1. Viertel laut astronomischem Jahrbuch um MEZ ein. Leider waren wetterbedingt nur Messungen zwischen Uhr und Uhr möglich. Der Sextant Halbmond am Abb. 14.2: Grafische Darstellung der Messergebnisse

8 Astronomie im Physikunterricht Verwirrenderweise war bereits der erste, um Uhr gemessene, Winkel größer als 90 o : 90 o 36.6'! Wir maßen jedoch weiter, um ein Gefühl für die Messgenauigkeit zu bekommen und später evtl. auf 90 o extrapolieren zu können. Dabei konnten wir schon während der Messungen bemerken, dass sich der Mond innerhalb von Minuten von der Sonne entfernt und zwar ziemlich gleichmäßig. Die grafische Darstellung der Messergebnisse bestätigte den linearen Anstieg. Die Ausgleichsgerade ergab als Zeitpunkt für das 1. Viertel Uhr MEZ! Diskussion der Messergebnisse Unterschiedliche Halbmondzeitpunkte an verschiedenen Orten Halbmond und 1. Viertel Die entscheidende Idee zur Klärung des scheinbaren Widerspruchs die Winkelsumme im Dreieck Erde - Mond - Sonne scheint größer als 90 o sein! geht von den folgenden Fragen aus: Was ist der Unterschied zwischen Halbmond und 1. Viertel? Für welchen Punkt der Erde wird eigentlich in einem Jahrbuch der Zeitpunkt des 1. Viertels angegeben? Wenn auf der Tagseite der Erde gerade das 1. Viertel eintritt (die Winkeldistanz zwischen Sonne und Mond beträgt dann 90 o.), ist Halbmond bereits vorbei. Die Winkeldistanz zwischen Sonne und Mond ist dann auf der Nachtseite noch deutlich kleiner als 90 o. Die Erde ist etwa viermal so groß wie der Mond. Sie erscheint deshalb, vom Mond aus betrachtet, unter einem Winkel von etwa 2 o. Um diesen Winkel können sich also die von verschiedenen Punkten der Erde aus gemessenen Winkeldistanzen zwischen Mond und Sonne maximal unterscheiden. Der Mond braucht etwa vier Stunden, um auf seiner Bahn um die Erde um 2 o weiterzuwandern. Die Zeitpunkte für das 1. Viertel können sich deshalb für verschiedene Orte um bis zu vier Stunden unterscheiden! Abb. 14.3: Zum Einfluss der Mondparallaxe auf den Halbmondzeitpunkt an verschiedenen Orten der Erde

9 14.5 Messungen mit einem Sextanten 493 Die Folgerung ist naheliegend: Die im astronomischen Kalendern angegebenen Zeiten beziehen sich auf den Erdmittelpunkt Vergleich mit Computerberechnungen Zur Überprüfung der Messergebnisse ist also ein Computerprogramm nötig, das für jeden beliebigen Ort auf der Erde und für jeden Zeitpunkt die genauen topozentrischen, d.h. auf den Ort des Beobachters bezogenen, Koordinaten von Sonne und Mond berechnen und damit deren Winkeldistanz und die Mondphase bestimmen kann (siehe z. B. Vornholz et al. 1996). Abb. 14.4: Vergleich der Messergebnisse mit berechneten Werten Nach den Computerberechnungen trat am Beobachtungsort der Halbmond bereits um Uhr MEZ ein. Die Winkeldistanz zwischen Sonne und Mond betrug dabei 89 o 51'42''. Nach der linearen Extrapolation unserer Messwerte hätten wir um diese Uhrzeit eine Winkeldistanz von 89 o 50'45'' gemessen. Mit diesem Wert für die Winkeldistanz zwischen Sonne und Mond bei Halbmond erhalten wir den gesuchten Abstand zwischen Erde und Sonne: Die Sonne ist 372-mal so weit entfernt wie der Mond. Damit sind wir am Ziel und haben einen sehr guten Wert für die Astronomische Einheit erhalten! Wir konnten ihn jedoch nur erhalten, weil wir den Zeitpunkt für den Halbmond berechnet haben. Computerergebnisse Methodische und didaktische Empfehlungen Die Schwierigkeiten machen deutlich, dass nach dieser Methode durch eigene Messungen in der Schule kein akzeptabler Wert für die Astronomische Einheit zu gewinnen sein wird. Trotzdem kann aber

10 Astronomie im Physikunterricht Qualitative Ergebnisse Quantitative Ergebnisse Phasenbestimmung durch Ausmessen der Phasengestalt? bei dem Versuch, die Messung von Aristarch nachzuvollziehen, viel gelernt werden! Die Messungen mit dem Sextanten können ab der fünften Klasse durchgeführt werden. Dafür ist es zunächst erforderlich, günstige Termine zu erkennen: Sonne und Halbmond müssen gleichzeitig am Himmel zu sehen sein, möglichst in ähnlicher Höhe über dem Horizont (1. Viertel am frühen Nachmittag oder Letztes Viertel am frühen Vormittag). Bei diesen Messungen sind bereits die qualitativen Ergebnisse sehr interessant: Bei Halbmond beträgt der Winkelabstand zwischen Sonne und Mond ungefähr 90 o. Die Sonne muss also viel weiter entfernt sein als der Mond und der ist doch schon unheimlich weit weg! Die Phasengestalt des Mondes hat etwas mit der Winkeldistanz zwischen Mond und Sonne zu tun: Der Mond entfernt sich erstaunlich schnell von der Sonne - bereits nach einigen Minuten kann man es messen! Zu dem Zeitpunkt, der in einem astronomischen Jahrbuch für das 1. Viertel angegeben ist, ist die gemessene Winkeldistanz bereits deutlich größer als 90 o. Anhand obiger Zeichnung wird klar, dass dieser Effekt mit der Größe der Erde zu tun hat: der erste eigene Nachweis der endlichen Mondentfernung! Von der 10. Klasse an können auch quantitative Schlüsse aus den Messungen gezogen werden: Aus der zeitlichen Veränderung des gemessenen Winkels kann die Zeit abgeschätzt werden, die zwischen zwei Neumonden vergeht (synodischer Monat). Aus der gemessenen Winkeldistanz zwischen Sonne und Mond zum im Kalender angegebenen Zeitpunkt für das 1. Viertel kann das Verhältnis aus Mondentfernung und Erdradius grob abgeschätzt werden. Da die Winkeldistanz zwischen Sonne und Mond offenbar sehr genau gemessen werden kann, könnte man auf die Idee kommen, in Abwandlung des Gedankenganges zu versuchen, den Phasenwinkel zum Zeitpunkt des 1. Viertels zu bestimmen (ca o). Ein Blick durchs Fernrohr bei Halbmond zeigt jedoch, dass es auch mit einem großen Fernrohr unmöglich sein dürfte, die erforderliche Genauigkeit zu erzielen. Auch gründliche Versuche, mit Hilfe von Mondfotos den Phasenwinkel zu bestimmen, führen zu keinen befriedigenden Ergebnissen (Schmidt et al. 2004).

11 14.6 Die Entfernung des Mondes Die Entfernung des Mondes Aristarchs Methode liefert die Entfernung der Sonne als Vielfaches der Mondentfernung. Die Griechen kannten sie seit Hipparch mit befriedigender Genauigkeit. Die am leichtesten zu verstehende Messmethode besteht allerdings in der direkten Messung der trigonometrischen Parallaxe des Mondes: Der Mond übertrifft in der Kunst des Mitlaufens alle irdischen Dinge. Jeder noch so ferne Horizont ist noch nahe, verglichen mit ihm, noch ganz vorn vor dem r iesigen Abgrund, d er ihn von uns trennt. (Richtiger: Dass sein Abstand so riesig ist, erkennen wir daran, dass er so perfekt mitläuft wie nichts Irdisches.) (Wagenschein 1988, S. 275) Wagenschein macht hier darauf aufmerksam, dass alle Entfernungen am Himmel so groß sind, dass alle alltäglichen Methoden zur Abstandsmessung oder abschätzung versagen. Das unbeobachtbare Zurückbleiben aller himmlischen Objekte, sogar des Mondes, hinter der eigenen Bewegung, die fehlende Parallaxe also, lässt sich nur im Falle des Mondes doch noch sichtbar machen, indem man die eigene Bewegung auf der Erde durch gleichzeitige Beobachtung des Himmels von verschiedenen Orten der Erde aus ersetzt. Anhand zweier Zeichnungen erläuterte Wagenschein, dass für einen Beobachter in Kapstadt nicht nur der ganze Himmel auf dem Kopf steht (weil der Beobachter selbst auf dem Kopf steht ), sondern dass für ihn der Mond dichter an nördliche Nachbarsterne herangerückt ist als für einen Beobachter in Berlin: Der Mond ist bei der fiktiven Reise nach Süden nach Norden zurückgeblieben. Als Wagenschein diesen Effekt 1962 beschrieb, gab es noch keine einfache Möglichkeit, das Gedankenspiel in die Tat umzusetzen. Heute dagegen ist es relativ leicht, selbst Bilder aufzunehmen, die die Parallaxe des Mondes, seine endliche Entfernung also, dem aufmerksamen, aber unvoreingenommenen Betrachter sichtbar machen. Wagenscheins Veranschaulichung der Mondentfernung Kooperatives Projekt zur Messung der Mondparallaxe Dazu muss der Mond von weit voneinander entfernten Orten aus gleichzeitig so fotografiert werden, dass seine unterschiedliche Position relativ zum (als unendlich fern angenommenen) Sternen- oder Planetenhintergrund erkennbar wird. Um die Position eindeutig

12 Astronomie im Physikunterricht erkennen zu können, müssen auf den Fotos mindestens zwei Bezugsobjekte sichtbar sein. Besonders geeignet sind deshalb Tage, an denen der Mond an zwei nahe beieinander stehenden Planeten vorüberwandert. Auch Mondfinsternisse bieten, wenn auch recht selten, gute Gelegenheiten für Sternfeldaufnahmen mit Mond Beispiel: Der Mond zwischen Saturn und Jupiter Mondparallaxe am Am 9. Dezember 2000 wanderte der Mond an den hellen Planeten Jupiter und Saturn vorbei. An diesem Tag fotografierten Schüler und Amateurastronomen in Deutschland, Bulgarien, Spanien und Namibia (Skandinavien und Portugal lagen leider unter einer dichten Wolkendecke!) den Mond, und es entstanden zum Vergleich geeignete Aufnahmen mit großer nord-südlicher Basis (Deutschland/Namibia) und großer ost-westlicher Basis (Bulgarien/Teneriffa). Abb. 14.5: Der Mond zwischen Jupiter (J) und Saturn (S), am um Uhr UT von Koblenz (links) und Namibia (rechts) aus fotografiert Die Abbildungen zeigen beispielhaft den Mond, wie er sich den Fotografen in Koblenz und Namibia um 21 Uhr UT darstellte. Auf beiden Bildern sind Jupiter und Saturn als helle Punkte deutlich zu erkennen. Auf den ersten Blick fällt auf, dass sich der hellere Jupiter einmal links, einmal rechts von Saturn befindet: Der Fotograf in Namibia stand auf dem Kopf oder war es der in Deutschland? Eins der Bilder muss also um 180 o gedreht werden, damit sich Norden im Bild ungefähr oben befindet.

13 14.6 Die Entfernung des Mondes 497 Deutlich ist die unterschiedliche Konstellation Jupiter-Mond-Saturn zu erkennen: Der Mond hat auf die Ortsveränderung nach Namibia mit einem nördlichen Zurückbleiben reagiert! Noch deutlicher wird diese parallaktische Verschiebung des Mondes, wenn man die beiden Bilder o skaliert, dass der Abstand Jupiter-Saturn gleich groß ist, und die beiden Bilde so übereinander legt, dass die beiden Planeten zur Deckung kommen: Die Verschiebung ist etwa doppelt so groß wie der Monddurchmesser! Diese Positionsveränderung entspricht gerade dem parallaktischen Winkel in der nebenstehenden Abbildung: Anpeilung des Mondes die sich daraus ergebende Mondentfernung Abb. 14.6: Kombination obiger Abbildungen (links): Die Bilder wurden so gedreht und skaliert, dass die Bilder von Jupiter und Saturn jeweils zur Deckung kommen und Norden oben ist. Rechts: Kombination von Bildern aus Bulgarien und Teneriffa Auswertung Den Abstand zwischen Jupiter und Saturn kann man z. B. mit einem Sextanten messen: Er betrug 8,79 o. Mit diesem Wert kann man den Maßstab der Bilder bestimmen und die parallaktische Verschiebung des Mondes messen. Der parallaktische Winkel ergibt sich zu 1,2 o. Bestimmt man darüber hinaus aus den geografischen Koordinaten der beiden Beobachtungsorte ihren linearen Abstand als Vielfaches des Erdradius, dann ergibt sich aus dem parallaktischen Winkel schließlich, dass der geozentrische Abstand des Mondes 57,86 Erdradien beträgt ein Ergebnis, das nur um 0,2% oder 809 km vom wahren Wert abweicht (Backhaus 2001). Für die Teilnehmer eines solchen Projektes ist es ein großes Erlebnis, Teil eines weltumspannenden Projektes zu sein und beim Fotografieren das Gefühl haben zu können, dass im selben Moment Gleichgesinnte an den verschiedensten Orten der Erde an demselben Ziel arbeiten. Selbst gemessene Mondentfernung: 57,86 R E

14 Astronomie im Physikunterricht 14.7 Abstandsverhältnisse imsonnensystem Die Bewegung der Planeten über den Sternenhimmel ist das entscheidende Phänomen, das die Menschen auf die Idee brachte, dass die Erde nicht der Mittelpunkt der Welt ist sondern zusammen mit den anderen Planeten die Sonne umläuft. Diese heliozentrische Sichtweise macht es, anders als das antike geozentrische Weltmodell, möglich, durch Beobachtung der Planeten herauszufinden, wie sich alle Abstände im Sonnensystem zueinander verhalten, z.b. um welchen Faktor Jupiter weiter von der Sonne entfernt ist als die Erde. Um diesem Gedanken folgen zu können, müssen Lernende allerdings mit den beobachtbaren Erscheinungen vertraut sein Bestimmung der Bahnradien Bahnradius innerer Planeten Wie für physikalische Betrachtungen typisch, müssen bei der Ableitung der Bahnradien Vereinfachungen gemacht werden. So sind die folgenden Überlegungen nur richtig unter folgenden Bedingungen: Alle Planeten bewegen sich in der Ebene der Ekliptik. Die Bahnkurven sind Kreise. Die Winkelgeschwindigkeit jedes Planeten ist konstant. Unter diesen Voraussetzungen ist für die inneren Planeten die Bestimmung des Bahnradius einfach: Man misst dazu lediglich mehrfach den Winkelabstand zwischen Planet und Sonne (kurz vor Sonnenuntergang ist das grob bereits durch Peilen über ein großes Geodreieck möglich!) und bestimmt auf diese Weise den größten auftretenden Wert η max. In dieser Stellung muss das Dreieck Erde Planet Sonne beim Planeten rechtwinklig sein. Es gilt dann also r cosη = r = cosη AE. Pl max Pl max r E Auf diese Weise ergab sich beispielsweise bei der Verfolgung von Venus als Vorbereitung des Venustransits 2004 für Venus am ein maximaler Winkelabstand von der Sonne von 47 (durch Peilung über Nägel) bzw ' (mit Sextant). Ihr Abstand von der Sonne war zu demzeitpunkt also etwa 0,73-mal so groß wie der der Erde von der Sonne. (

15 14.7 Abstandsverhältnisse im Sonnensystem 499 Einen äußeren Planeten muss man, um seinen Bahnradius zu bestimmen, während seiner Rückläufigkeit verfolgen. Das ist einfach, da er in dieser Zeit der Sonne fast gegenübersteht und deshalb fast die ganze Nacht durch zu sehen ist. Gelingt es, den Planeten am Tage seiner Opposition zu beobachten und seine Position am Sternenhimmel zu bestimmen, und wiederholt man das wenigstens einmal während der Rückläufigkeit des Planeten, dann kann man den Bahnradius nach der folgenden Beziehung berechnen (Backhaus 1997 a): Bahnradius äußerer Planeten r Pl sin( ε + η) = r sin( β + η) E Dabei sind ε und β die Zentralwinkel, die von der Verbindung Sonne Planet zwischen den beiden Zeitpunkten der beiden Beobachtungen überstrichen worden sind. Diese Winkel kann man mit Hilfe der siderischen Umlaufzeiten bestimmen. δ ist der Winkel, um den der Planet in der Zwischenzeit seine Position relativ zum Sternenhintergrund verändert hat Bestimmung des Radius der Marsbahn Voraussetzung für Beobachtungen der Marsbewegung ist die Fähigkeit der Schüler, bestimmte Sternbilder unabhängig von ihrer Stellung am Himmel wiederzuerkennen. Gibt man den Schülern von Zeit zu Zeit Tipps für geeignete Beobachtungszeitpunkte und stellt ihnen eine geeignete Sternkarte zur Verfügung, dann können sie Mars abends selbständig verfolgen, wenn sie nicht zu weit von zu Hause einen geeigneten Beobachtungsort gefunden haben mit nicht zu hohem Horizont und nicht zu viel Lichtverschmutzung. Sie können dann die beobachteten Marspositionen in die Karte eintragen, nachdem sie sich Entfernungs- und Winkelbeziehungen zwischen Mars und den Nachbarsternen eingeprägt haben: Mars auf einer Geraden mit zwei Sternen oder mit ihnen ein gleichseitiges, gleichschenkliges oder rechtwinkliges Dreieck bildend. Es ist erstaunlich, wie oft man solche Konstellationen finden kann. Mars im Löwen... am am (Fotos von Sandra Stein)

16 Astronomie im Physikunterricht Abb. 14.7: Beispiel: Ein Teil der Marsschleife 2005/06 im Sternbild Stier, beobachtet mit Studierenden mit bloßen Augen und eingetragen in eine Sternkarte Radius dermarsbahn: 1,46 AE Die Abbildung zeigt die Marsschleife, die zusammen mit Studierenden im Wintersemester 2005/06 aufgezeichnet wurde. Das Bild gibt allerdings nichts von der Faszination wieder, die die Studierenden bei den Beobachtungen empfunden haben! Wertet man die in die Karte eingezeichneten Positionen aus, nachdem man die Position am Tage der Opposition, dem 7. November 2005, durch Interpolation gewonnen hat, dann ergibt sich nach der obigen Gleichung der Radius der Marsbahn zu etwa 1,46 Erdbahnradien, also zu 1,46 AE in Übereinstimmung mit dem wahren Wert am 7. November Aber wie groß ist die Astronomische Einheit? 14.8 Internet-Projekt: Auswertung des Venustransits am 8. Juni 2004 Um einen der sehr seltenen Vorübergänge von Venus vor der Sonnenscheibe zur Bestimmung der Sonnenentfernung und damit des fehlenden Maßstabs! nutzen zu können, wurde in einem weltweiten Projekt, an dem Schüler, Lehrer und Amateurastronomen, aber auch Planetarien und professionelle Sternwarten von Sri Lanka bis Peru und von Schweden bis Südafrika beteiligt waren, versucht, an ver-

17 14.8 Internet-Projekt: Auswertung des Venustransits am 8. Juni schiedenen Orten zu exakt gleichen Zeitpunkten aufgenommene Transitfot os zu gewinnen. Wenn man solche Fotos mit gleicher Größe und Orientierung übereinander legt, machen sie die parallaktische Verschiebung von Venus direkt sichtbar und erlauben eine mathematisch relativ einfache und nachvollziehbare Auswertung. Grundidee und Auswertung entsprechen w eitgehend dem bei der Messung der Mondentfernung angewendeten Verfahren. Die eigentliche Messgröße bei diesem Verfahren ist der (Winkel-) Abstand zweier Venusscheibchen, die von verschiedenen Orten aus zeitgleich aufgenommen wurden. Ziel des Projektes war es jedoch, nicht nur die parallaktische Verschiebung zu messen, sondern auch alle Größen selbst zu bestimmen, die zur Ableitung der Sonnenentfernung erforderlich sind, insbesondere also den Erdradius, den linearen Abstand der beiden Beobachtungsorte (und dafür die eigenen geografischen Koordinaten), den Bahnradius der Venus und den Winkelradius der Sonne. Das Projekt ist an anderer bereits beschrieben worden Stelle (Backhaus 2005). Die endgültigen Ergebnisse werden zum Zeitpunkt des Erscheinens dieses Buches gerade zusammengestellt und im Internet veröffentlicht ( VenusProject). Deshalb soll hier nur die Bestimmung der Sonnenentfernung durch direkten Vergleich zweier Transitfotos kurz beschrieben werden. Ziele des Transitprojekts Die parallaktische Verschiebung von Venus und die Entfernung der Sonne Um die Orientierung der aufgenommenen Fotos einfach bestimmen zu können, wurde verabredet, die Fotos je zweimal im Abstand von 90 oder 120 Sekunden mit feststehender Kamera zu belichten. Die gegenseitige Verschiebung der beiden Abbildungen der Sonne zeigt dann die exakte Ost-West-Richtung. Skaliert man die Bilder auf dieselbe Größe, dreht sie so, dass die Ost-West-Richtung parallel zu einer Bildkante verläuft, und verschiebt die Bilder so gegeneinander, dass die zuerst aufgenommenen Sonnenbilder exakt übereinander liegen, dann wird der Parallaxeneffekt an Venus direkt sichtbar (im Bild unten links, Solche Bildmanipulationen sind heute mit jedem Bildbearbeitungsprogramm möglich, wenn die Bilder erst in digitaler Form vorliegen.). Essen, 8.00 UT Namibia, 8.00 UT

18 Astronomie im Physikunterricht Abb. 14.8: Kombination zweier Bilder aus Essen und Namibia nach geeigneter Skalierung, Drehung und Verschiebung Selbst gemessene Sonnenentfernung Die in Essen gemessenen Venuspositionen Der lineare Abstand der beiden Beobachtungsorte ergab sich aus den geografischen Koordinaten zu Δ =1.19R E, der Projektionswinkel zu näherungsweise 90 o. Mit den selbst gemessenen Werten für den Radius der Venusbahn ( r V =0,73 AE) und den Erdradius ( R E =6365 km) ergibt sich daraus der Abstand zur Sonne zu d S = km. Um eine noch größere Genauigkeit zu erzielen, wurden während des Transits ganze Bildserien aufgenommen, die es ermöglichen, an die gemessenen Positionen eine Gerade anzupassen und den statistischen Fehler dadurch zu minimieren Schlussfolgerungen Der Nachvollzug der historischen Beobachtungen und der Versuch, eigene Messdaten zu gewinnen, erwiesen sich als schwieriger als erwartet: Die Ansprüche an die Genauigkeit beim Fotografieren hatten wir unterschätzt, mancher Versuch, die eigene Position oder, in Kooperation mit weit entfernten Partnern, den Erdradius mit Hilfe von Messungen mit einem Schattenstab zu bestimmen, scheiterte zunächst an ungenügenden Absprachen oder an zu ungenauen Messungen. Es war aber gerade das Ziel des Projektes, solche Probleme kennen zu lernen und mit ihnen fertig zu werden. Tatsächliche Messungen sind nun einmal viel komplexer als die in Lehrbüchern dargestellten Prinzipien. In der Auseinandersetzung mit dieser Komplexität erfährt und lernt man, was es heißt, Wissenschaft zu betreiben. Nicht zu ersetzen sind die Erfahrungen, die alle Beteiligten bei der internationalen Kommunikation und Kooperation sammeln konnten, insbesondere aber das emotionale Erlebnis, maßgeblich an einem weltumspannenden Projekt beteiligt zu sein.

19 14.9 Astronomisches Schlechtwetter-Praktikum Astronomisches Schlechtwetter- Praktikum Nicht immer ist das Wetter gut, wenn im Unterricht ein astronomisches Phänomen behandelt oder astronomisch-physikalischen Fragestellungen nachgegangen werden soll. Nicht immer lassen sich nächtliche Beobachtungen organisieren oder der Rahmen für ein langfristiges Projekt schaffen. Nicht immer stehen die erforderlichen Beobachtungs- und Messgeräte in der Schule zur Verfügung. Für solche Fälle wurde ein Astronomisches Schlechtwetter- Praktikum geschaffen. Ihm liegt die Idee zugrunde, selbst dann, wenn direkte eigene Erfahrungen und Messungen unmöglich sind, möglichst nahe an den Erfahrungen Anderer (Schüler, Studierender, aber natürlich auch professioneller Astronomen) zu bleiben und Bilder und Daten, deren Aufnahme nachvollziehbar ist, mit unterschiedlicher Genauigkeit auszuwerten. Zur Zeit enthält das Praktikum die folgenden Aufgaben: Die Mondentfernung Der Radius der Marsbahn Die Messung der Entfernung zur Sonne Die Methode von Aristarch Die Methode von Ole Römer Der Venustransit 2004 Parallaxenmessung an Kleinplaneten Doppler-Effekt am Sonnenrand Doppler-Variation eines Sternspektrums Eigenbewegung und Parallaxe von Barnards Pfeilstern: Die Entfernung der Hyaden Die Art der Aufgabenstellung soll an zwei Beispielen kurz erläutert werden. Die vollständigen Aufgaben können über das Internet bezogen werden: Ziel des Praktikums Die Praktikumsaufgaben Beispiel: Die Rotation der Sonne und die Astronomische Einheit Die Linien inhoch aufgelösten Spektren des Sonnenrandes zeigen eine kleine gegenseitige Doppler-Verschiebung (Janßen 1999). Sie wird dadurch hervorgerufen, dass sich der Ostrand aufgrund der

20 Astronomie im Physikunterricht Rotation der Sonne auf das Telekop zubewegt, der Westrand sich dagegen von ihm entfernt. Bestimmt man aus dieser Verschiebung die Geschwindigkeit des Randes relativ zum Teleskop, dann kann man aus der bekannten Rotationsdauer die Größe der Sonne (in Kilometern) ableiten. Vergleich mit ihrer scheinbaren (Winkel-) Größe liefert dann die Entfernung der Sonne. Bereits die Ableitung aufgrund dieser leicht zu verstehenden prinzipiellen Idee liefert ein recht befriedigendes Ergebnis. Es kann allerdings durch Berücksichtigung von Nebeneffekten weiter verbessert werden. Abb. 14.9: Spektrum vom Ostrand (oben) und Westrand der Sonne (aus Janßen 1999) Beispiel: Die Entfernung von Barnards Pfeilstern Die Fixsterne schienen noch fast 300 Jahre nach der Entwicklung des heliozentrischen Systems unendlich weit entfernt zu sein, weil eine parallaktische Reaktion der Sterne auf den Jahresumlauf der Erde um die Sonne unmessbar war. Heute dagegen ist die so genannte Fixsternparallaxe bereits in der Reichweite der Teleskope gut ausgestatteter Amateure und Schulsternwarten gelangt. Passgenau übereinandergelegte Fotos desselben Himmelsausschnittes können deshalb den Nachweis liefern, dass Fixsterne nicht an der Himmelskuppel fixiert sind. Die im Wesentlichen geradlinige und gleichförmige Bewegung erscheint dabei im Rhythmus unserer Jahreszeiten mehr

21 14.9 Astronomisches Schlechtwetter-Praktikum 505 oder weniger moduliert der Nachweis, dass sie nicht unendlich weit entfernt sind. Abb : Barnards Pfeilstern am (Süden), , , und (aus Heiser et al. 1996) Die scheinbare Sternbewegung erweist sich als Überlagerung aus Eigenbewegung und parallaktischer Bewegung. Die Praktikumsaufgabe besteht darin, in obigem Bild die beiden Effekte zu trenn en und herauszufinden, wie schnell sich Barnards Pfeilstern senkrecht zur Blickrichtung bewegt und wie weit er von uns entfernt ist. Literatur Backhaus, U. (1990). Bestimmung der Radien von Planetenbahnen mit Fernglas und Sternkarte. Praxis der Naturwissenschaften/Physik 39/5, 10 Backhaus, U. (1997 a). Radius und Neigung der Marsbahn. Astronomie und Raumfahrt 34 (4), 31 Backhaus, U. (1998). Von der Beobachtung astronomischer Phänomene zu eigenen Messungen. Vorträge auf der Frühjahrstagung der DPG in Regensburg Backhaus, U. (2001). Simultaneously Photographing of the Moon. In: Vorträge auf der Frühjahrstagung der DPG in Bremen Backhaus, U. (2004). Der Venustransit 2004 Eine einmalige Chance zur Vernetzung von Wissen, Verfahren und Menschen. Der mathematische und naturwissenschaftliche Unterricht 57/4, 217 Backhaus, U. (2005). Forschen und forschendes Lernen beim Venustransit Computer im Unterricht 57, 34 Heiser, E., Schröder, R. (1996). Eigenbewegung und Parallaxe von BarnardsPfeilstern. Sterneund Weltraum 35/5, 388 Janßen, K. (1999). Spektroskopie der Sonne, Praktikumsversuche für den Astrophysik-Unterricht, Universitätssternwarte Göttingen, Mai 1999 Lermer, R. (1989). Grundkurs Astronomie. München: Bayerischer Schulbuchverlag

22 Astronomie im Physikunterricht Schmidt, A., Backhaus, U. (2003). Kann die Sonnenentfernung durch Phasenmessungen am Mond bestimmt werden? Vorträge auf der Frühjahrstagung der DPG in Augsburg Vornholz, D., Backhaus, U. (1996). Wer hat recht Aristarch oder der Sextant? Astronomie und Raumfahrt 31, 20 Wagenschein, M. (1988). Naturphänomene sehen und verstehen. Stuttgart: Klett Wagenschein, M. (1992). Verstehen lehren. Weinheim: Beltz

Messung der Astronomischen Einheit nach Aristarch (mit Lösung)

Messung der Astronomischen Einheit nach Aristarch (mit Lösung) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch (mit Lösung) 1 Einleitung Bis ins 17. Jahrhundert

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen 1 Einleitung Die Mondentfernung (mit Lösungen) Als Aristarch versuchte, die Sonnenentfernung

Mehr

Wie weit ist der Mond entfernt? Die Mondentfernung, in 25 Stunden mit drei (bis vier) verschiedenen Verfahren selbst bestimmt

Wie weit ist der Mond entfernt? Die Mondentfernung, in 25 Stunden mit drei (bis vier) verschiedenen Verfahren selbst bestimmt Wie weit ist der Mond entfernt? Die Mondentfernung, in 25 Stunden mit drei (bis vier) verschiedenen Verfahren selbst bestimmt Udo Backhaus, Universität Duisburg-Essen Der Parallaxen-Effekt Parallaxe und

Mehr

Die Parallaxe des Mondes (Moonproject 2000)

Die Parallaxe des Mondes (Moonproject 2000) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Parallaxe des Mondes (Moonproject 2000) Abbildung 1: Der Mond am 9. Dezember 2000 um 21:00

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern

Eigenbewegung und Parallaxe von Barnards Pfeilstern Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern 1 Einleitung Der Parallaxeneffekt ist jedem,

Mehr

Die Parallaxe des Mondes (Moonproject 2000) (mit Lösungen)

Die Parallaxe des Mondes (Moonproject 2000) (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Parallaxe des Mondes (Moonproject 2000) (mit Lösungen) Abbildung 1: Der Mond am 9. Dezember

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Marsbahn (mit Lösungen) 1 Einleitung Planeten fallen durch ihre große und veränderliche

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen)

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) 1 Einleitung Der Parallaxeneffekt

Mehr

Simultaneously Photographing of the Moon

Simultaneously Photographing of the Moon 1 Simultaneously Photographing of the Moon Udo Backhaus, Universität Koblenz Im Rahmen eines internationalen Projektes wird durch gleichzeitiges Fotografieren des Mondes und des Nachthimmels von weit entfernten

Mehr

Messung der Astronomischen Einheit durch Spektroskopie der Sonne

Messung der Astronomischen Einheit durch Spektroskopie der Sonne Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer (mit Lösungen) 1 Einleitung Misst man um die

Mehr

Kann die Sonnenentfernung durch Phasenmessungen am Mond bestimmt werden?

Kann die Sonnenentfernung durch Phasenmessungen am Mond bestimmt werden? Didaktik der Physik Frühjahrstagung Augsburg 2003 Kann die Sonnenentfernung durch Phasenmessungen am Mond bestimmt werden? A. Schmidt, Regionale Schule Sprendlingen, U. Backhaus, Universität Essen Abbildung

Mehr

Parallaktische Entfernungsmessung

Parallaktische Entfernungsmessung Parallaktische Entfernungsmessung U. Backhaus 1 Die geometrische Parallaxe Wenn man an der ausgestreckten Hand einen Gegenstand, z.b. einen Apfel, vor sich hält und die Augen abwechselnd schließt, beobachtet

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Messung der Astronomischen Einheit nach Aristarch

Messung der Astronomischen Einheit nach Aristarch Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch 1 Einleitung Bis ins 17. Jahrhundert war die

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer Einleitung Misst man um die Zeit der Jupiteropposition

Mehr

Totale Mondfinsternis, Mond knapp verfinstert. Mond in 7 Stellungen kombiniert, zeigt Wanderung durch den Erdschatten.

Totale Mondfinsternis, Mond knapp verfinstert. Mond in 7 Stellungen kombiniert, zeigt Wanderung durch den Erdschatten. Totale Mondfinsternis, Mond knapp verfinstert. Mond in 7 Stellungen kombiniert, zeigt Wanderung durch den Erdschatten. 2 In dieser Bildkombination lässt sich die Grösse des Erdschattens abschätzen. 3 Vergleich

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

Wie lang ist Sylt? oder

Wie lang ist Sylt? oder Wie lang ist Sylt? oder Wie bestimmt man auf Sylt den Erdradius? Dieter Vornholz, Olbers-Planetarium Bremen Udo Backhaus, Universität Osnabrück, Fachbereich Physik 29. August 2005 Ist Sylt lang genug,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

Prüfungsthemen im Fach Astronomie (Übung)

Prüfungsthemen im Fach Astronomie (Übung) Prüfungsthemen im Fach Astronomie (Übung) 1.1. Vergleichen Sie das Horizontsystem mit dem Äquatorialsystem mit der Sternkarte und dem vorliegenden Himmelsglobus! Erklären Sie dabei auch die Begriffe Himmelsäquator

Mehr

Wie weit ist eigentlich der Mond entfernt?

Wie weit ist eigentlich der Mond entfernt? Wie weit ist eigentlich der Mond entfernt? Im letzten Jahrbuch wurde schon ausführlich dargestellt, was eine Sonnenfinsternis ist und wie wir am CFG die aufregende Sonnenfinsternis am 20.3.2015 begangen

Mehr

4.05 Vom Planetarium zur Ansicht am Himmel

4.05 Vom Planetarium zur Ansicht am Himmel 4.03 Leere Kärtchen und Tabellen als Grundlage 4.04 Planetarien selber zeichnen 4.05 Vom Planetarium zur Ansicht am Himmel Inhalt 2 Der ungewohnte Weg was ist das Ziel? 4 Planetarium A 7 Planetarium B

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

Großer Wagen. zum Sternbild. Großer Bär

Großer Wagen. zum Sternbild. Großer Bär B1 Sterne / Sternbilder Termin:....................... 1. Suchen Sie auf einer Sternkarte die Sternbilder Großer Bär, Kleiner Bär und Kassiopeia. 2. Bereiten Sie eine Skizze vor, die den Horizont zeigt

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

Das geozentrischen Weltbild

Das geozentrischen Weltbild Das geozentrischen Weltbild Hier Firmenlogo hinzufügen von Alexander Erlich Physik LK 11/2 März 2005 Altes Gymnasium 1 Claudio Ptolemäus * ca. 100 n. Chr., ca. 160 n.chr. wahrscheinlich griechischer Herkunft

Mehr

Abschlusstest der Unterrichtseinheit Astronomische Entfernungsbestimmung

Abschlusstest der Unterrichtseinheit Astronomische Entfernungsbestimmung Abschlusstest der Unterrichtseinheit Astronomische sbestimmung Codename: Expertengruppe: 1. Vielleicht haben Sie nun eine Vorstellung über Größen und en im Sonnensystem: Stellen Sie sich vor, die Sonne

Mehr

Experimentelle Astrophysik

Experimentelle Astrophysik Experimentelle Astrophysik Bachelor Freiwillige Veranstaltung Lehramt Wahlmodul Master in Kombination mit anderer 2 SWS Veranstaltung Experimentelle Astrophysik, 2 SWS, (4 Cr) 1. Vorlesung Montag 24. April

Mehr

Der Venustransit 2004

Der Venustransit 2004 UDO BACKHAUS Deenustransit 004 Eine einmalige Chance zuernetzung von Wissen, Verfahren und Menschen Schulpraxis Aus deermessung eines Venustransits von verschiedenen Orten derde aus ließ sich lange Zeit

Mehr

9000 Jahre Venustransits Gerhart Klaus, Grenchen

9000 Jahre Venustransits Gerhart Klaus, Grenchen 9000 Jahre Venustransits Gerhart Klaus, Grenchen Im Anschluss an den ausgezeichneten Artikel von THOMAS BAER im Orion 321 Seite 41, in welchem die theoretischen Grundlagen für einen Venustransit dargstellt

Mehr

Sonne, Mond und Sterne Bekanntes selbst entdeckt!

Sonne, Mond und Sterne Bekanntes selbst entdeckt! Sonne, Mond und Sterne Bekanntes selbst entdeckt! Teil IV: Mondbeobachtung Markus Schlager Das Himmelzelt offenbart uns nicht nur das unendliche Weltall, sondern macht im Besonderen unser Raumschiff Erde

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 In dieser Aufgabe bestimmen Sie anhand gegebener Lichtkurven von Cepheiden in der Spiralgalaxie M100 im

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits

Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits (mit

Mehr

Kurzinformation für Lehrkräfte

Kurzinformation für Lehrkräfte Kurzinformation für Lehrkräfte Gegenstand: Gebiet: Titel: Physik Astronomie Der Sternenhimmel im Winter Schulstufen: 7 bis 10 Lernziele: Hinweis: Kennenlernen einiger bekannter Wintersternbilder Das Jahr

Mehr

Aus dem Verein Wie entsteht der Himmelskalender?

Aus dem Verein Wie entsteht der Himmelskalender? Aus dem Verein Wie entsteht der Himmelskalender? Hermann-Michael Hahn Die Tabelle der astronomischen Ereignisse am Schluss des Heftes basiert auf den Daten, die ich regelmäßig für zwei andere Verlagsprodukte

Mehr

Fehlgeschlagene Versuche zur Erklärung von Expansion des Universums und Urknall. Zchg. (a) Zchg. (b) Zchg. (c) Zchg. (d)

Fehlgeschlagene Versuche zur Erklärung von Expansion des Universums und Urknall. Zchg. (a) Zchg. (b) Zchg. (c) Zchg. (d) Fehlgeschlagene Versuche zur Erklärung von Expansion des Universums und Urknall Grundlage : Simon Singh in "Big Bang" Abb. 67 / S.265 siehe Anhang Hubbles Beobachtungen ließen den Schluss zu, dass das

Mehr

Per Rätselrallye durch die Galaxie. Eine Rätselrallye im Technisches Museum Wien

Per Rätselrallye durch die Galaxie. Eine Rätselrallye im Technisches Museum Wien Eine Rätselrallye im Technisches Museum Wien Gleich kannst du losstarten mit einer spannenden Rätselrallye durch das Technische Museum Wien. Schau im Plan und auf den Fotos nach, wo du die Ausstellungsstücke

Mehr

6 Gravitation (gravitación, la)

6 Gravitation (gravitación, la) 6 Gravitation Hofer 1 6 Gravitation (gravitación, la) A1: Informiere dich über unser Sonnensystem und trage dein Wissen in Form eines Kurzreferates vor. 6.1 Weltbilder 6.1.2 Das geozentrische Weltbild(concepto

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten)

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Klasse 7 Physik Vorbereitung zur 1. Lernkontrolle im November 2018 Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Checkliste Was ich alles können soll Ich kenne die wichtigen Teile / Abschnitte

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

Doppelplanet Erde - Mond

Doppelplanet Erde - Mond Doppelplanet Erde - Mond Eine Gedankenreise zur Erde Von einem Ort in der Milchstraße, der 700 Billionen Kilometer von der Sonne entfernt ist ( ungefähr 75 Lj) wollen wir gedanklich mit Lichtgeschwindigkeit

Mehr

Forschen und forschendes Lernen beim Venustransit 2004

Forschen und forschendes Lernen beim Venustransit 2004 Abbildung 1: Von Namibia und Essen aus betrachtet hat Venus eine etwas unterschiedliche Position vor der Sonne. Forschen und forschendes Lernen beim Venustransit 2004 Udo Backhaus Universität Duisburg-Essen

Mehr

Astronomie. Verlag Harri Deutsch Thun Frankfurt/Main. Ein Grundkurs für Schulen, Volkshochschulen und zum Selbststudium. Mit Aufgaben und Lösungen

Astronomie. Verlag Harri Deutsch Thun Frankfurt/Main. Ein Grundkurs für Schulen, Volkshochschulen und zum Selbststudium. Mit Aufgaben und Lösungen Astronomie Ein Grundkurs für Schulen, Volkshochschulen und zum Selbststudium Mit Aufgaben und Lösungen 4., überarbeitete und erweiterte Auflage 99 Verlag Harri Deutsch Thun Frankfurt/Main ! I INHALTSVERZEICHNIS.

Mehr

Der Tanz der Jupiter-Monde

Der Tanz der Jupiter-Monde T.H. Der Tanz der Jupiter-Monde V1.1 Thomas Hebbeker 27.10.2012 Motivation Messung der Bahndaten der 4 Galileischen Jupitermonde Umlaufzeiten, Bahnradien Überprüfung des III. Keplerschen Gesetzes Berechnung

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Parabelfunktion in Mathematik und Physik im Fall des waagrechten

Parabelfunktion in Mathematik und Physik im Fall des waagrechten Parabelfunktion in Mathematik und Physik im Fall des waagrechten Wurfs Unterrichtsvorschlag, benötigtes Material und Arbeitsblätter Von der Physik aus betrachtet.. Einführendes Experiment Die Kinematik

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Physik-Prüfung. vom 4. Oktober Lichtausbreitung, Schatten

Physik-Prüfung. vom 4. Oktober Lichtausbreitung, Schatten Physik-Prüfung vom 4. Oktober 2011 Lichtausbreitung, Schatten Hinweise und Modalitäten: - Beginnen Sie erst mit der Prüfung, wenn das Zeichen dafür gegeben wurde. - Erlaubte Hilfsmittel: Papier, Schreibzeug,

Mehr

Bestimmung der Astronomischen Einheit mit Merkur- und Venustransit-Bilder. Roland Brodbeck

Bestimmung der Astronomischen Einheit mit Merkur- und Venustransit-Bilder. Roland Brodbeck Bestimmung der Astronomischen Einheit mit Merkur- und Venustransit-Bilder Roland Brodbeck Theorie Inhalt Etwas Theorie zur Bestimmung der Astronomischen Einheit (AE) Ergebnis des Merkurtransits Ergebnis

Mehr

gute Gründe, das Ereignis nicht zu verpassen

gute Gründe, das Ereignis nicht zu verpassen 5 gute Gründe, das Ereignis nicht zu verpassen 1 Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 Am Montag, den 9. Mai 2016 findet ab 13 Uhr ein Naturschauspiel

Mehr

deutschsprachige Planetarien gute Gründe, das Ereignis nicht zu verpassen

deutschsprachige Planetarien gute Gründe, das Ereignis nicht zu verpassen deutschsprachige Planetarien 5 gute Gründe, das Ereignis nicht zu verpassen Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 http:// Weitere Links (eine kleine

Mehr

Bestimmung der Radien von Planetenbahnen mit Fernglas und Sternkarte

Bestimmung der Radien von Planetenbahnen mit Fernglas und Sternkarte Bestimmung der Radien von Planetenbahnen mit Fernglas und Sternkarte von U. Backhaus Wie viele, denen die Kepler schen Gesetze so leicht von der Zunge gehen, haben jemals einen Planeten gesehen, das heißt,

Mehr

Astronomy On-Line: Measuring the Distance to the Sun

Astronomy On-Line: Measuring the Distance to the Sun Astronomy On-Line: Measuring the Distance to the Sun U. Backhaus, Universität Koblenz 1 Einleitung In der zweiten Hälfte des Jahres 1996 veranstaltete die European Association for Astronomy Education (EAAE)

Mehr

Die tatsächlichen Größen- und Abstandsverhältnisse von Sonne, Erde und Mond bildet das Tellurium aus Platzgründen nicht ab.

Die tatsächlichen Größen- und Abstandsverhältnisse von Sonne, Erde und Mond bildet das Tellurium aus Platzgründen nicht ab. Tellurium Me08/17 Tellus (lateinisch Erde ) ist in der römischen Mythologie die Gottheit der mütterlichen Erde, daher auch oft Terra Mater genannt, und entspricht der griechischen Gaia. (Wikipedia) Das

Mehr

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Wilhelm Kley & Andrea Santangelo Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2013 Astronomie

Mehr

Oktober Astro- Wissenswertes im Oktober 2016

Oktober Astro- Wissenswertes im Oktober 2016 Oktober Astro- Wissenswertes im Oktober 2016 Venus, Mars und Saturn sind theoretisch am Abendhimmel noch sichtbar. Knapp über dem Südwesthorizont, in Linthal aber von den Bergen verdeckt. Genauso ist Merkur

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie 1 Einleitung U. Backhaus, Universität Duisburg-Essen Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Mehr

Wo finde ich die Planeten?

Wo finde ich die Planeten? Das Sonnensystem Wo finde ich die Planeten in einer Sternkarte? Tabellen mit Koordinatenangaben für alle Planeten Wo finde ich die Planeten? Ephemeridentabellen für alle Planeten bis ins Jahr 2030 Diese

Mehr

Astronomie mit einer Sonnenuhr

Astronomie mit einer Sonnenuhr Astronomie mit einer Sonnenuhr Udo Backhaus, H Joachim Schlichting, Universität Osnabrück (aus: W Kuhn (Hrsg): Vorträge der Tagung der DPG 987 in Berlin, S 99) Einleitung Im Anschluss an den vorhergehenden

Mehr

Von der Beobachtung astronomischer Phanomene. U. Backhaus, Universitat Koblenz

Von der Beobachtung astronomischer Phanomene. U. Backhaus, Universitat Koblenz Von der Beobachtung astronomischer Phanomene zu eigenen Messungen U. Backhaus, Universitat Koblenz Alle Lehrplane und Reformen scheinen bis jetzt nicht daran zu zweifeln, da es in diesem Alter (8 Jahre)

Mehr

Name & Klasse: Naturwissenschaft und Technik Datum: Trigonometrie. Trigonometrie. Wir interessieren uns hier lediglich für rechtwinklige Dreiecke.

Name & Klasse: Naturwissenschaft und Technik Datum: Trigonometrie. Trigonometrie. Wir interessieren uns hier lediglich für rechtwinklige Dreiecke. Trigonometrie Trigonometrie Wir interessieren uns hier lediglich für rechtwinklige Dreiecke. Satz des Pythagoras Mit dem Satz des Pythagoras ist es möglich in einem rechtwinkligen Dreieck aus zwei bekannten

Mehr

gute Gründe, das Ereignis nicht zu verpassen

gute Gründe, das Ereignis nicht zu verpassen 5 gute Gründe, das Ereignis nicht zu verpassen Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 Am Montag, den 9. Mai 2016 findet ab 13 Uhr ein Naturschauspiel

Mehr

Astronomie und Fotografie

Astronomie und Fotografie Astronomie und Fotografie Ausgangspunkt: Wie erklärt man sich folgende Sternspuren-Aufnahmen? Aufnahmerichtung nach Westen: Foto 1 Aufnahmerichtung nach Norden: Foto 2 Einführung des Modells Himmelskugel

Mehr

KOMETEN-NEWS - TEIL 13 [06. Jan.] Kometen 45P/Honda Mrkos Pajdušáková

KOMETEN-NEWS - TEIL 13 [06. Jan.] Kometen 45P/Honda Mrkos Pajdušáková KOMETEN-NEWS - TEIL 13 [06. Jan.] Kometen 45P/Honda Mrkos Pajdušáková Der Komet 45P/Honda Mrkos Pajdušáková ( 45P ) wurde am 3. Dezember 1948 zuerst von dem japanischen Amateur Minoru Honda, danach unabhängig

Mehr

T.Hebbeker T.H. V1.0. Der Tanz der Jupiter-Monde. oder. Auf den Spuren Ole Rømers

T.Hebbeker T.H. V1.0. Der Tanz der Jupiter-Monde. oder. Auf den Spuren Ole Rømers T.H. Der Tanz der Jupiter-Monde V1.0 oder Auf den Spuren Ole Rømers Thomas Hebbeker 25.06.2012 Motivation Messung der Bahndaten der 4 Galileischen Jupitermonde Umlaufzeiten, Bahnradien Überprüfung des

Mehr

Eudoxos von Knidos. Erwachende Wissenschaft Teil 15. Von den Sumerern zu den Griechen. Wegbereiter der geozentrischen Planetentheorie

Eudoxos von Knidos. Erwachende Wissenschaft Teil 15. Von den Sumerern zu den Griechen. Wegbereiter der geozentrischen Planetentheorie Erwachende Wissenschaft Teil 15 Von den Sumerern zu den Griechen Eudoxos von Knidos Wegbereiter der geozentrischen Planetentheorie 408 v. Chr. 355 v. Chr. Was wir über die Person Eudoxos von Knidos wissen

Mehr

Hallo, liebe Schülerinnen und Schüler!

Hallo, liebe Schülerinnen und Schüler! Hallo, liebe Schülerinnen und Schüler! Wir, die Arbeitsgruppe Physikdidaktik am Fachbereich Physik der Universität Osnabrück, beschäftigen uns damit, neue und möglichst interessante Themen für den Physikunterricht

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Durchmesser und Tiefe eines Mondkraters

Durchmesser und Tiefe eines Mondkraters 1 Durchmesser und Tiefe eines Mondkraters Mit Hilfe eines Fotos sollen Durchmesser und Tiefe des Kraters Albategnius (φ = -11,6, = +3,8 ) bestimmt werden. Das Foto entstand am 6.12.2016 bei Halbmond gegen

Mehr

Signalgeschwindigkeit und Wahrnehmung

Signalgeschwindigkeit und Wahrnehmung Signalgeschwindigkeit und Wahrnehmung Udo Backhaus, Universität Duisburg-Essen 17. März 2005 Wenn man einen sich bewegenden Körper hört oder sieht, nimmt man ihn nicht so wahr, wie er im Moment der Wahrnehmung

Mehr

Wo stehen die Planeten am Himmel?

Wo stehen die Planeten am Himmel? Das Sonnensystem Wo stehen die Planeten am Himmel? Anleitungen zum Auffinden von Planeten mit verschiedenen Hilfsmitteln Wo stehen die Planeten am Himmel? Inhaltsverzeichnis Seiten Einführung, allgemeine

Mehr

Orientierung am Himmel

Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Orientierung am Himmel Himmelspole, Himmelsäquator und

Mehr

Kräfte und Bewegungen. Die Schülerinnen und Schüler. beschreiben unterschiedliche Phänomene in Verkehrssituationen

Kräfte und Bewegungen. Die Schülerinnen und Schüler. beschreiben unterschiedliche Phänomene in Verkehrssituationen Jahrgangsstufe EF Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Verkehrsphysik Wie lassen sich Bewegungen vermessen und analysieren?

Mehr

Rainer Köthe. 12 o populäre Irrtümer über. Sonne, Mond. Von funkelnden Fixsternen, kleinen grünen Männchen und dem unendlichen Universum

Rainer Köthe. 12 o populäre Irrtümer über. Sonne, Mond. Von funkelnden Fixsternen, kleinen grünen Männchen und dem unendlichen Universum Rainer Köthe 12 o populäre Irrtümer über Sonne, Mond und Sterne Von funkelnden Fixsternen, kleinen grünen Männchen und dem unendlichen Universum Cartoons von Friedrich Werth KOSMOS INHALT Universitäts-

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Unsere Erde. Die anderen Planeten heissen: Die Erde ist der fünft grösste Planet unsres Sonnensystems. Der grösste Planet ist, der kleinste ist.

Unsere Erde. Die anderen Planeten heissen: Die Erde ist der fünft grösste Planet unsres Sonnensystems. Der grösste Planet ist, der kleinste ist. Was ist überhaupt die Erde? Aufnahmen aus dem Weltraum haben inzwischen überzeugend bewiesen, was die Menschen schon vor langer Zeit herausgefunden hatten, aber selbst nicht sehen konnten: dass unsere

Mehr

Arbeitsweisen der Physik

Arbeitsweisen der Physik Übersicht Karteikarten Klasse 7 - Arbeitsweisen - Beobachten - Beschreiben - Beschreiben von Gegenständen, Erscheinungen und Prozessen - Beschreiben des Aufbaus und Erklären der Wirkungsweise eines technischen

Mehr

Augen auf: Die Begegnung mit Florence [30. Aug.]

Augen auf: Die Begegnung mit Florence [30. Aug.] Augen auf: Die Begegnung mit Florence [30. Aug.] Der Asteroid 3122 Florence (vormalige Bezeichnung 1981 ET 3 bzw. 1983 CN 1 ) ist ein Gesteinsasteroid der Amor-Gruppe und als erdnahes Objekt (NEO, Near-Earth

Mehr

Dezember. Astro- Wissenswertes im Dezember Der Mond:

Dezember. Astro- Wissenswertes im Dezember Der Mond: Dezember Astro- Wissenswertes im Dezember 2016 Am 21.Dezember um 11.44 Uhr ist Wintersonnenwende. Dies bedeutet, dass die Tage wieder länger werden. Die Sonne geht durch den tiefsten Punkt ihrer Laufbahn.

Mehr

Astronavigation

Astronavigation Astronavigation 1. Lektion: Nordsternbreite Der Nordstern steht genau über dem Nordpol (stimmt nicht, ich weiß, aber die Differenz ignorieren wir zunächst mal). Mit einem Sextanten misst man den Winkel

Mehr

Die Parallaxe von 61 Cygni anhand von Amateuraufnahmen selbst bestimmt!

Die Parallaxe von 61 Cygni anhand von Amateuraufnahmen selbst bestimmt! Die Parallaxe von 61 Cygni anhand von Amateuraufnahmen selbst bestimmt! E. Heiser,R.Groß, U. Backhaus Naturwissenschaftlicher Verein Osnabrück, Universität Koblenz 1 Einleitung Der Parallaxeneffekt ist

Mehr

Sterne (6) Beobachtungsgrößen

Sterne (6) Beobachtungsgrößen Sterne (6) Beobachtungsgrößen Welche Sternparameter können aus Beobachtungen abgeleitet werden? Beobachtungsparameter Position als Funktion der Zeit Helligkeit als Funktion der Zeit Farbe Polarisation

Mehr

Der Venustransit als astronomische Sensation im 18. Jhdt

Der Venustransit als astronomische Sensation im 18. Jhdt Der Venustransit als astronomische Sensation im 18. Jhdt Ulrich Schreiber Technische Universität München Geodätisches Observatorium Wettzell Die Suche nach der Größe unseres Sonnensystems Eigentlich geht

Mehr

Betrachten einer Mondfinsternis Wahrnehmungen und Gedanken

Betrachten einer Mondfinsternis Wahrnehmungen und Gedanken Wahrnehmungen und Gedanken UDO BACKHAUS Die bewusste Beobachtung einer Mondfinsternis ist immer wieder faszinierend und kann zu vielfältigen astronomischen und optischen Überlegungen anregen. In den Jahren

Mehr

Warum ist der Winter kalt?

Warum ist der Winter kalt? Warum ist der Winter kalt? didaktisches Material für Lehrkräfte zum Planetariumsprogramm Autoren Gerd Thiele und Peter Rahmfeld, Planetarium Cottbus Grafik Carolyn Mielke, carographic.de Seite 1 von 9

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Hipparchos von Nicäa. Erwachende Wissenschaft Teil 14. Von den Sumerern zu den Griechen. Der bedeutendste beobachtende Astronom der Antike

Hipparchos von Nicäa. Erwachende Wissenschaft Teil 14. Von den Sumerern zu den Griechen. Der bedeutendste beobachtende Astronom der Antike Erwachende Wissenschaft Teil 14 Von den Sumerern zu den Griechen Hipparchos von Nicäa Der bedeutendste beobachtende Astronom der Antike 190 v. Chr. 120 v. Chr. Über das Leben von Hipparch ist nur wenig

Mehr