Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt

Größe: px
Ab Seite anzeigen:

Download "Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt"

Transkript

1 Aufgabenblatt 7 Wichtige Hinweise: Bitte Namen und Gruppennummer deutlich lesbar rechts oben auf allen Blättern der Abgabe angeben und alle Blätter der Abgabe zusammenheften (1 Zusatzpunkt!) Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt Aufgabe 1 (2+2+2 Punkte) Abbildung 1 und Abbildung 2 zeigen den vollständiger Datenpfad und Steuerleitungen sowie den Zustandsautomat des Steuerwerks in Abbildung 1 einer einfachen MIPS Implementierung. ALUOut, A, B, Instruction register, memory register und PC sind Register in Abbildung 1 (Datenpfad). Falls die Steuerleitungen ALUOp = 00 oder -1 sind, addiert die ALU, ansonsten wird die Operation durch das funct Feld (s.u.) im R-Typ Befehlsformat bestimmt. Es ist eine Teilmenge des vollständigen Befehlssatzes implementiert. Diese Teilmenge enthält Zugriff auf Hauptspeicher: lw, sw arithmetische und logische Befehle (nur Befehlstyp R): add, sub, and, or und shl Verzweigungsbefehle: beq (branch-equal-zero) und j (jump) Die Befehle haben folgendes Format: R-Typ 0 rs rt rd shamt funct lw oder sw 35 oder 43 rs rt Adresse branch 4 rs rt Adresse Beim R-Typ gibt das Feld funct die Funktion der ALU an, shamt wird für Schiebebefehle benötigt und kann hier ignoriert werden. rs und rt sind Quellregister, rd ist das Zielregister. Es handelt sich um eine Implementierung, die mehrere Takte benötigt um einen Befehl abzuarbeiten. Der Befehlszyklus besteht aus bis zu fünf Schritten (Befehl holen, Befehl dekodieren, Ausführen/Adressberechnung, Speicherzugriff, Rückschreiben). (a) Beschreiben Sie die vier Schritte eines R-Befehls anhand von Abbildung 1. Machen Sie durch Einfärben deutlich welche Einheiten aktiv sind (Sie können die Grafik kopieren oder von der Übungsseite herunterladen). (b) Berechnen Sie wie viele CPI die einzelnen Befehlstypen (lw, sw, j und R-Typ) benötigen. Ein Anwendungsprogramm hat folgende Befehlsverteilung 24% Loads 12% Stores 44% arithmetische und logische Befehle 18% bedingte Verzweigungen (beq) 1

2 Abbildung 1: Datenpfad einer einfachen MIPS-Implementierung ALUOp =00 ALUOp 3 ') W 'L = p (O Memory access (O p= 'S W') 5 Memory access 7 MemRead IorD =1 MemWrite IorD =1 RegDs RegW MemtoR 4 Write-back step RegDst=0 RegWrite MemtoReg=1 Abbildung 2: Zustandsautomat für das Steuerwerk in Abbildung 1 2

3 2% Sprünge (j) Wie viele Takte werden im Mittel pro Befehl benötigt? (c) In der Implementierung in der Abbildung können nur zwei Registerinhalte addiert werden. Fügen Sie zum Datenpfad und Zustandsautomat noch einen add immediate Befehl hinzu, der den Inhalt eines Registers und eine im immediate Feld des Befehls kodierte Konstante addiert. Erläutern Sie die Ausführen-Phase wie in Teilaufgabe a. Der add immediate Befehl hat folgendes Befehlsformat: addi 8 rs rd immediate Aufgabe 2 (2+2+2 Punkte) Gegeben ist das folgende MIPS Assembler-Programm:.data size:.word 6 vec1:.word 10.word 5.word -4.word 2.word 1.word -3 vec2:.word 10.word 20.word -25.word -50.word 100.word -10 sum:.word 0.space 48.text main:.set noreorder.set noat.globl main add $3, $0, $0 lui $3, 0x1000 # Basisaddresse des Datensegments laden addi $1, $3, size lw $1, 0($1) sll $1, $1, 2 add $1, $1, $3 3

4 addi $8, $0, 0 loop: addi $1, $1, -4 addi $12, $1, vec1 lw $12, 0($12) addi $13, $1, vec2 lw $13, 0($13) multu $12, $13 mflo $4 add $8, $8, $4 add $6, $12, $13 addi $7, $1, sum sw $6, 0($7) bne $1, $3, loop nop end: jr $31 nop Der von dem Simulator probe modellierte Prozessor besitzt eine Pipeline und unterstützt Bypassing, so dass im Idealfall ein CPI-Wert von 1 erreicht werden kann. Bei ungeschickter Programmierung (wie im folgenden Beispiel) kann es allerdings zu Load Stalls (auf das Zielregister eines Load-Befehls wird bereits im drauf folgenden Befehl zugegriffen) und Structural Stalls kommen. Ebenso ist Delayed Branching implementiert, d.h. bei (bedingten) Sprüngen, die genommen werden, wird nicht die komplette Pipeline gelöscht, so dass die auf Sprungbefehle folgenden Anweisungen stets ausgeführt werden. Dadurch kann es notwendig sein, zusätzliche NOP-Befehle einzufügen. Der Simulator kann auf allen ralab-rechnern mit dem Kommando probe gestartet werden (alternativ können Sie den Simulator auch als jar-file von der Vorlesungswebseite herunterladen und auf Ihrem eignen Rechner installieren. Benutzen Sie dabei unbedingt die aktuelle Version!). Das zu simulierende Programm wird über den Menüpunkt File Open geladen, es wird dabei automatisch geparsed. Im Menüpunkt Debug finden Sie die Option next step, mit der Sie das Programm schrittweise abarbeiten können. Durch einen Rechtsklick in den Quellcode können Sie Breakpoints setzen und wieder löschen. Mit run aus dem Debug-Menü können Sie das Programm anschließend starten. (a) Speichern Sie das Programm auf einem ralab-rechner (die Datei kann von der Homepage heruntergeladen werden). Starten Sie das Programm und/oder führen Sie es schrittweise aus. Was tut das Programm? (b) Im Menüpunkt Options configure Processor kann man verschiedene Eigenschaften des Prozessors und seiner Pipeline steuern. Schalten Sie erst Bypassing und dann zusätzlich die RAW Detection ab. Welche Auswirkungen hat das auf das Programm? (c) Schedulen Sie das Program bei abgeschaltetem Bypassing und RAW Detection. Lösen Sie dabei Konflikte durch Einfügen von nops und Umsortieren von Befehlen. Ziel ist ein möglichst schnell laufendes Programm das die gleiche Semantik wie das 4

5 Abbildung 3: Datenpfad einer fünfstufigen Pipeline ohne IF-Phase ursprüngliche Programm hat. Tipp: wenn alle Konflikte aufgelöst sind, macht es keinen Unterschied mehr, ob man die RAW Detection ein- oder ausschaltet. Aufgabe 3 (1+1+2 Punkte) Die Abbildung 3 zeigt einen einfachen Datenpfad mit einer fünfstufigen Pipeline ohne die IF-Phase. Die Pipeline hat kein Bypassing. Das folgende Programmsegment führt zu Datenkonflikten: add r1, r2, r3 ; r1 := r2 + r3 sub r4, r2, r3 ; r4 := r2 - r3 mul r8, r5, r5 ; r8 := r5 * r5 sub r7, r8, r1 ; r7 := r8 - r1 div r6, r7, r4 ; r6 := r7 / r4 sw 0(r9), r6 ; mem[r9] := r6 (a) Erläutern Sie zwischen welchen Befehlen Datenkonflikte auftreten. (b) Geben Sie die Zahl der Befehlszyklen an, wenn der Compiler die Konflikte mit nop Anweisungen auflöst. Wo muss der Compiler diese Anweisungen einfügen? (c) Welche Erweiterung des Datenpfads kann diese Datenkonflikte auflösen. Tragen Sie für diese Erweiterung Daten- und Kontrollfluss in die Abbildung 3 ein. Aufgabe 4 (2+2+2 Punkte) Betrachten Sie das folgende Maschinenprogramm für einen fiktiven 2-Operanden-Prozessor. Pro Speicherzugriff werden Worte mit 4 Bytes gelesen. Zugriffe sind nur auf Speicherstellen, die ein Vielfaches von 4 sind möglich. Es sei keine Pipeline implementiert. Sie 5

6 können in der ganzen Aufgabe davon ausgehen, dass Fehlgriffe auf Daten beim Schreiben dazu führen, dass die Daten im Cache eingelagert werden. loop: sub r1, r1, #4 ; r1 := r1-4 lw r2, 0(r1) ; r2 := mem[r1 + 00] lw r3, 24(r1) ; r3 := mem[r1 + 24] add r4, r2, r3 ; r4 := r2 + r3 sw 48(r1), r4 ; mem[r1 + 48] := r4 bnez r1, loop ; PC := loop if r1 <> 0 nop Erstellen Sie eine geordnete Liste aller Speicherzugriffe bis zum Ende des zweiten Schleifendurchlaufes, bestehend aus der jeweiligen Adresse und der Art des Zugriffs (lesen oder schreiben, Daten oder Befehl). (a) Der Prozessor verfüge über einen vollassoziativen Cache mit 4 Rahmen à 8 Bytes. Die Ersetzungsstrategie sei least-recently-used, d.h. es wird immer der Rahmen überschrieben, für den der letzte Zugriff am längsten zurückliegt. Die Schreibstrategie sei write-back. Wie hoch ist die Trefferrate? (b) Wie hoch ist die Trefferrate bei 5 Rahmen à 8 Bytes? (c) Der Prozessor verfüge über zwei direkt abgebildete Caches für Programm und Daten. Der Programmcache habe 3 der Datencache 2 Rahmen à 8 Bytes. Wie hoch ist die Trefferrate? Aufgabe 5 (1+1 Punkte) Der UltraSPARC IIi Prozessor von SUN wird beispielsweise in einer SUN Ultra 5 Workstation verwendet. Der UltraSPARC IIi Prozessor kann 16 TB (1TB=1024 GB) (44 Bit-Adressen) virtuellen Speicher und 2 TB (41 Bit-Adresse) physikalischen Speicher verwalten. Die Speicherhierarchie sieht wie folgt aus: Level 1 Cache: 16 kb I-Cache und 16 kb D-Cache on-chip mit je 512 Einträgen. Der DCache ist direkt abgebildet und hat pro Eintrag zwei 16 Byte Blöcke mit getrennten valid Flags. Wird ein Tag im Cache ersetzt, so wird der Block mit dem angeforderten Wort ersetzt, beim anderen nur das valid Bit gelöscht, damit 16 und nicht 32 Byte aus dem Speicher gelesen werden müssen. TLB: Ist das angeforderte Wort nicht im Level 1 Cache, so wird auf den TLB zugegriffen. Der TLB hat 64 vollassoziative Einträge und wandelt die virtuelle Adresse (44 Bit) in eine physikalische Adresse (41 Bit) um. Dabei kann ein TLB Fehlgriff und/oder ein Seitenfehler auftreten. Level 2 Cache: Die Ultra 5 hat entweder 256 kb (277 MHz) oder 2 MB (333 MHz) Level 2 Cache (auch external Cache genannt). Dies ist ein schneller kleiner Speicher, allerdings nicht mehr auf dem Prozessorchip selbst. Die Einträge sind jeweils 64 Byte lang. Hauptspeicher Magnetische Speicher 6

7 Nehmen Sie an, unsere Ultra 5 Workstations haben Seitengrößen von 32 kb. (a) Wie groß wäre dann die Seitentabelle für jeden Prozess? Gehen Sie davon aus, daß in jedem Eintrag der Seitentabelle noch 6 Statusbits (z.b. dirty, referenced, write protected,...) für die Seite gespeichert werden. (b) Da oft mehr als 100 Prozesse gleichzeitig auf einen Server laufen, ist die in der Vorlesung beschriebenen Methode einer einstufigen Seitentabelle nicht praktikabel. Da die Seitentabelle genau wie der virtuelle Speicher viele ungenutzte Einträge enthält, bietet es sich an, eine hierarchische Seitentabelle zu implementieren. Die virtuelle Seitennummer wird in virtuelle Seitentabellennummer und -offset aufgeteilt. Der Offset ist 15 Bit lang und kann damit genau den Inhalt einer physikalischen Seite adressieren. In der obersten Hierarchieebene der Seitentabelle wird dann die virtuelle Seitentabellennummer einer Seite zugeordnet. In dieser befinden sich dann, mit dem virtuellen Seitentabellenoffset zugeordnet, die physikalischen Seitennummern. Wie groß ist die oberste Hierarchieebene der Seitentabelle (diese darf nicht auf die Festplatte ausgelagert werden)? 7

8 Bedingungen für die Ausstellung eines Übungsscheines: 1. Es müssen insgesamt 60% der Punkte aller Übungsblätter erreicht werden. 2. Es müssen mindestens 5 Übungsblätter bearbeitet werden. 3. Jeder, der eine Aufgabe zur Korrektur abgibt, muss in der Lage sein, diese in der entsprechenden Übungsstunde vorzurechnen! Wer dazu nicht in der Lage oder abwesend ist, bekommt für das gesamte Blatt keine Punkte. 4. Gruppenabgaben werden nicht gewertet (nur korrigiert). Gesamtpunktzahl Blatt: 24 Abgabetermin: Freitag, :00 im Kasten im 2. OG (vor Eingang Hapra) Institut für Technische Informatik, Pfaffenwaldring 47 8

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

2.3 Register-Transfer-Strukturen

2.3 Register-Transfer-Strukturen 2 2.3 Register-Transfer-Strukturen Kontext Die Wissenschaft Informatik befasst sich mit der Darstellung, Speicherung, Übertragung und Verarbeitung von Information [Gesellschaft für Informatik] 2, 24-2

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Rechnerstrukturen, Teil 2

Rechnerstrukturen, Teil 2 2 Rechnerstrukturen, Teil 2 Vorlesung 4 SWS WS 7/8 2.3 Register-Transfer-Strukturen Prof. Dr. Jian-Jia Chen Fakultät für Informatik Technische Universität Dortmund jian-jia.chen@cs.uni-.de http://ls2-www.cs.tu-.de

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus 4.2 Caches é Cache kommt aus dem Französischen: cacher (verstecken). é Er kann durch ein Anwendungsprogramm nicht explizit adressiert werden. é Er ist software-transparent, d.h. der Benutzer braucht nichts

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 21. Februar 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 24. Februar 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten

Mehr

Aufgabe 1 : Assembler

Aufgabe 1 : Assembler Sommer 2016 Technische Informatik I Lösungsvorschlag Seite 2 Aufgabe 1 : Assembler (maximal 23 Punkte) Hinweis: Auf der letzten Seite des Prüfungsbogens finden Sie eine Übersicht von Assemblerbefehlen.

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Rechnersysteme Studiengang: Bachelor (PF CSE / IF; WPF CV / WIF) am: 30. Juli 2008 Bearbeitungszeit: 120 Minuten

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Klausur Mikroprozessortechnik 29. März 2010

Klausur Mikroprozessortechnik 29. März 2010 Klausur Mikroprozessortechnik 29. März 2010 Name:... Vorname:... Matr.-Nr:... Studiengang:... Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 8 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Heute nur MIPS-Praxis (4 Aufgaben)

Heute nur MIPS-Praxis (4 Aufgaben) Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer Aufgabe 10.1 Gegeben sei folgendes Code-Fragment, das zwei geschachtelte Schleifen implementiert: addi $t0, $a0, 100 outer: addi $t1, $a1, 200 inner: lw $t4, 0($t0) lw $t5, 0($t1) add $t2, $t0, $t1 add

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 22.05.09 11-1 Heutige große Übung Ankündigung

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

9.1. Aufbau einer Befehlspipeline

9.1. Aufbau einer Befehlspipeline Kapitel 9 - Befehlspipelining Seite 191 Kapitel 9 Befehlspipelining 9.1. Aufbau einer Befehlspipeline Ein typischer Befehl in einer Maschine mit einem RISC-artigen Befehlssatz besteht aus den Operationen:

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Ziele der Übung Aufgabe 1 Ein lauffähiges Assembler-Programm Umgang mit dem Debugger Aufgabe 2 (Zusatzaufgabe) Lesen und Analysieren

Mehr

Computersysteme. Serie 11

Computersysteme. Serie 11 Christian-Albrechts-Universität zu Kiel Institut für Informatik Lehrstuhl für Technische Informatik Prof.Dr. Manfred Schimmler Dr.-Ing. Christoph Starke M.Sc. Vasco Grossmann Dipl.-Inf. Johannes Brünger

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Framework für Assignment A2 1 Übersicht Framework für Assignment A2 WH: Aufgabenstellung Klassen und Methoden Getting started Erste Instruktion aus Testdaten dekodieren 2 Aufgabenstellung Instruction-Set

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 11 am 06.07.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 5 am 25.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Datapath. Data Register# Register# PC Address instruction. Register#

Datapath. Data Register# Register# PC Address instruction. Register# Überblick über die Implementation Datapath Um verschiedene Instruktionen, wie MIPS instructions, interger arithmatic-logical instruction und memory-reference instructions zu implementieren muss man für

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Kapitel 11 RISC-Rechner

Kapitel 11 RISC-Rechner Kapitel 11 - RISC-Rechner Seite 219 Kapitel 11 RISC-Rechner (reduced instruction set computer, RISC) 11.1. Einleitung In den Achtzigerjahren änderten sich die Randbedingungen für Rechner: Hardware wurde

Mehr

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab...

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 2 1 1 2 0 2 1 0 Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 1 2 1 1 3 2 2 3 212 Um solche Tabellen leicht implementieren zu können, stellt Java das switch-statement

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Fachgebiet Architektur eingebetteter Systeme Rechnerorganisation Wiederholung

Fachgebiet Architektur eingebetteter Systeme Rechnerorganisation Wiederholung UE 4 Fachgebiet Architektr eingebetteter Systeme Rechnerorganisation Wiederholng AES Embedded Systems Architectre WS26/7 Alle Afgaben, die drch einpgekennzeichnet sind, sind für die eigenständige Vor-

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Parallelität auf Instruktionsebene Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC HSD RISC &CISC CISC - Complex Instruction Set Computer - Annahme: größerer Befehlssatz und komplexere Befehlen höhere Leistungsfähigkeit - Möglichst wenige Zeilen verwendet, um Aufgaben auszuführen - Großer

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr