Der Euklidische Algorithmus Dieter Wolke
|
|
|
- Valentin Fromm
- vor 9 Jahren
- Abrufe
Transkript
1 Der Euklidische Algorithmus Dieter Wolke Einleitung. Für den Begriff Algorithmus gibt es keine einheitliche Definition. Eine sehr knappe findet sich in der Encyclopaedia Britannica (1985) A systematic mathematical procedure that produces in a finite number of steps the answer to a question or the solution of a problem. Bei dem Wort Algorithmus handelt es sich um eine Verballhornung des Namens Muhammad al Khowarizmi. Sein Träger lebte im zehnten Jahrhundert in Persien und machte sich insbesondere um die Übertragung indischer Rechenbücher (Rechnen im Zehnersystem, Gebrauch der Null) ins Persische verdient. Vom Persischen gelangten diese Werke über das Arabische ins Abendland. Wann kann man einen Algorithmus als gut bezeichnen? 1. Er soll zuverlässig sein, deterministisch. Es gibt auch probabilistische, die zwar mit erdrückender Wahrscheinlichkeit, aber nicht mit letzter Sicherheit die richtige Antwort liefern. 2. Er soll leicht programmierbar sein und aus möglichst einfachen Einzelschritten bestehen. 3. Die Laufzeit soll kurz und der Speicherbedarf gering sein. 4. Eine Forderung, die weniger aus praktischen Gründen als aus mathematisch ästhetischen Gründen gestellt werden kann: Im Algorithmus soll eine pfiffige Idee stecken. Zu den meisten algorithmisch angreifbaren Problemen gibt es eine Fülle verschiedener Verfahren, zum Beispiel bei 1) der Berechnung der n ten Dezimalstelle der Zahl pi, 2) der Multiplikation zweier ganzer Zahlen und zahlloser anderer für Theorie und Praxis interessanter Fragestellungen. Vor allem im Zusammenhang mit kryptografischen Verfahren (Ver und Entschlüsselung von Nachrichten) ergibt sich die Notwendigkeit, Paare riesiger (500 Dezimalstellen und mehr) natürlicher Zahlen mit größtem gemeinsamen Teiler Eins zu finden. Hierzu eignet sich hervorragend der vor etwa 2300 Jahren von Euklid in den Elementen beschriebene Euklidische Algorithmus. Bis auf geringe Abänderungen wird dieses uralte Verfahren noch heute benutzt, und erfüllt, wie hier gezeigt werden soll, alle oben genannten Anforderungen. 1
2 2. Im Folgenden soll kurz an die zugrundeliegenden und sicher überwiegend bekannten Begriffe erinnert werden Für a Z und d N heißt d Teiler von a, wenn es ein c Z gibt mit a = cd. Gleichbedeutend: Die Division a durch d geht auf. Kurz: d a, andernfalls d a. Hinweis: Als Teiler sollen hier nur natürliche Zahlen d zugelassen sein, während die Vielfachen beliebig aus Z stammen können. Beispiele: 3 9, 3 ( 5), 7 0. Folgerung: Aus a 0 und d a folgt d a. Denn wegen a = cd ist c 0, also c 1. Und somit d c d = cd = a Für a Z wird die Menge der Teiler d von a mit T (a) bezeichnet. Beispiele: T (1) = {1}, T (p) = {1, p} für jede Primzahl p, T (0) = N, T (a) = T ( a) = T ( a ), T (28) = {1, 2, 4, 7, 14, 28}, T (100) = {1, 2, 4, 5, 10, 20, 25, 50, 100} d heißt gemeinsamer Teiler von a und b, wenn d sowohl a als auch b teilt. Die Menge aller gemeinsamen Teiler von a und b ist der Schnitt der Mengen T (a) und T (b) Falls mindestens eine der Zahlen a und b ungleich Null ist, besteht T (a) T (b) aus endlich vielen Elementen und hat somit ein größtes. Dies wird als größter gemeinsamer Teiler von a und b bezeichnet. Kurz: ggt (a, b) oder (a, b). Einige einfache Folgerungen. 1) Für a 0 ist (a, 0) = a, 2) (a, b) = ( a, b) = (b, a). Sind T (a) und T (b) bekannt, dann ist (a, b) leicht zu bestimmen, z.b. (100,28) = 4. Dieses Verfahren ist für die Praxis jedoch völlig ungeeignet. Bei 150 stelligen Dezimalzahlen etwa ist das Aufstellen der Mengen T (a) unzumutbar aufwändig Zwei Zahlen a und b die nicht beide = 0 sind heißen teilerfremd, wenn (a, b) = 1 ist Die Division mit Rest. Zu zwei Zahlen a Z und n N gibt es eindeutig q Z und r N 0 mit a = qn + r und 0 rn. r heißt der Rest bei der Division von a durch n. 2
3 Hinweis: Als q nimmt man die größte ganze Zahl a/n, die sogenannte Gauss Klammer [a/n]. Der Eindeutigkeitsbeweis wird indirekt geführt. 3. Der Euklidische Algorithmus. Nach 2.4. reicht es aus, den ggt für zwei natürliche Zahlen n 1, n 2 mit n 1 berechnen. Dazu führe man folgende Divisionen mit Rest durch n 2 zu (1) n 1 = q 1 n 2 + n 3, 0 < n 3 < n 2 (2) n 2 = q 2 n 3 + n 4, 0 < n 4 < n 3. (k 2) n k 2 = q k 2 n k 1 + n k, 0 < n k < n k 1 (k 1) n k 1 = q k 1 n k. Falls schon die erste Division aufgeht, ist offenbar (n 1, n 2 ) = n 2. Da die Reste n 3, n 4,... eine streng abnehmende Folge natürlicher Zahlen bilden, muss das Verfahren nach spätestens n 2 1 Divisionen abbrechen. n k ist der letzte nichtverschwindende Rest. Die Euklidische Aussage ist: ggt(n 1, n 2 ) = n k. Zum Beweis wird das Schema einmal von oben nach unten und dann von unten nach oben studiert. 1. Sei g = ggt (n 1, n 2 ). Dann ist insbesondere n 1 = c 1 g, n 2 = c 2 g und nach Division (1) n 3 = n 1 q 1 n 2 = (c 1 q 1 c 2 )g, also g n 2 und g n 3. Es folgt mit (2) in gleicher Weise g n 4, usw.... g n k 1, g n k, also ( ) g n k. 2. (k 1) besagt n k n k 1. n k 1 = q k 1 n k. Dies in (k 2) eingesetzt, ergibt n k 2 = (q k 2 q k 1 +1)n k, also n k n k 2. Dies erneut angewandt, gibt n k n k 3, usw... n k n 2, n k n 1. n k ist somit gemeinsamer Teiler von n 1 und n 2, also ( ) n k g. ( ) und ( ) zusammen führen zur Behauptung n k = (n 1, n 2 ). Beim Beispiel n 1 = 100, n 2 = 28 lautet das Schema (1) (2) (3) (4) 100 = = = = 3 4. Vier Divisionen reichen also aus, um (100,28) = 4 zu zeigen. Schon bei so kleinen Zahlen ist dies wesentlich einfacher als die Bestimmung aller Teiler. 3
4 4. Diskussion des Algorithmus. Das Verfahren ist nach obigem Beweis offenbar zuverlässig. Die Einzelschritte sind denkbar einfach. Speicherplatz ist praktisch nicht erforderlich, da bei jeder Division nur die zwei vorigen Reste nötig sind. Zur Laufzeit. Falls die Restefolge nur sehr langsam abnimmt, zum Beipiel in jedem Schritt nur um einen begrenzten Betrag, ist das Verfahren für große Zahlen sicher wertlos. Dies kann zum Glück nicht eintreten, denn es gelten die Ungleichungen ( ) n 3 < n 1 2, n 4 < n 2 2,... das heißt mehr als Halbierung der Reste nach zwei Schritten. Grob werden zum Abbau einer Zehnerpotenz höchstens sieben Schritte benötigt. Bei zwei 1000-stelligen Zahlen etwa höchstens 7000 Divisionen. Das ist großartig wenig. Die folgenden Beispiele demonstrieren dies. n 1 = = n 2 = = n 3 = n 4 = n 5 = n 6 = n 7 = n 8 = n 9 = n 10 = 275 = (n 1, n 2 ) 4
5 n 1 = = n 2 = = n n n n n n n n n n n n n n n n n n n n n n n n n n 28 = 11 = (n 1, n 2 ) Zum Beweis der ersten Ungleichung in ( )(die anderen ergeben sich in gleicher Weise). Im ersten Fall sei n 2 n 1 /2. Dann gilt n 3 < n 2 n 1 /2, wie behauptet. Ist im zweiten Fall n 1 /2 < n 2 < n 1, dann kann (1) nur die Gestalt n 1 = 1 n 2 + n 3 mit n 3 < n 1 /2 haben. Dass dem Euklidischen Algorithmus etwas Besonderes, keineswegs Selbstverständliches innewohnt, wird wohl jeder bestätigen. 5. Zur Häufigkeit der Paare teilerfremder Zahlen. Um Paare großer, teilerfremder Zahlen zu erhalten, wird man zufällig zwei Zahlen n 1 und n 2 wählen, und hoffen, dass sie mit einiger Wahrscheinlichkeit den ggt Eins liefern. Es werde für großes N w(n) definiert als der Quotient der Anzahl der Paare n 1, n 2 N mit (n 1, n 2 ) = 1 und der Anzahl aller Paare n 1, n 2 N, d.h. N 2. w(n) also die Wahrscheinlichkeit, bei zufälliger Wahl zweier Zahlen n 1, n 2 N ein Paar mit 5
6 ggt Eins zu erwischen. Man könnte erwarten, dass w(n) mit wachsendem N sehr klein wird, denn es stehen sehr viele Werte für den ggt zur Verfügung. Das überraschende, nicht ganz leicht zu beweisende Ergebnis ist w(n) 6 π 2 für N. Etwa zwei Drittel aller Paare sind teilerfremd. Es bestehen somit gute Aussichten, bei gegebenem, z.b stelligem n 1 rasch viele ähnlich große n 2 mit (n 1, n 2 ) = 1 zu finden. 6
2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.
2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist
Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv
ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g
4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9
Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden.
Chr.Nelius: Zahlentheorie (SoSe 2018) 1 Einleitung Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. (1) Zahlbereiche Unsere Zahlentheorie spielt sich im Bereich
Kapitel 6: Das quadratische Reziprozitätsgesetz
Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im
Lineare Algebra I 5. Tutorium Die Restklassenringe /n
Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
Euklidische Algorithmus, Restklassenringe (Z m,, )
Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der
Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!
Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor
2. Teilbarkeit. Euklidischer Algorithmus
O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Kanonische Primfaktorzerlegung
Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik
Euklidischer Algorithmus
Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man
4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente
4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente Buch VII der Elemente behandelt auch heute noch aktuelle Begriffe wie Teiler, Vielfache, ggt, kgv und Primzahl und ihre Eigenschaften.
Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen
Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln
Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18
Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig
1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl
Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl
Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf
Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf Carina Hilger Inhaltsverzeichnis 1 Der größte gemeinsame Teiler (ggt) 2 1.1
Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur
Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
3. Der größte gemeinsame Teiler
Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t
Grundlegendes der Mathematik
Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig
5. Der größte gemeinsame Teiler
Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t
Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Vorlesung Diskrete Strukturen Die natürlichen Zahlen
Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel
Der kleine Satz von Fermat
Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................
Beispiel: Primelemente in den Gaußschen Zahlen
Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Kanonische Primfaktorzerlegung
Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N
KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r
KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen
Unterlagen zu Polynomringen. Erhard Aichinger
Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein
Elementare Zahlentheorie
Euklid-1 Euklid sche Ringe (Das Rechnen in Z und in K[T]). Ist K ein Körper und f K[T] ein Polynom, so nennt man f normiert, falls f 0 gilt und der höchste Koeffizient von f gleich 1 ist. (Natürlich gilt:
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 11 Primzahltests: Fermat, Miller-Rabin Primzahltests Problem: Gegeben n. Ist n Primzahl? Naive Methoden: Ausprobieren: gehe der Reihe nach
1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3
Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende
Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung
Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen
3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt
Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.
Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
5 Stellenwertsysteme. Berechne q :=, und setze r := a q b. = 2.25, also q = 2.25 = 2 und = 3. Im Beispiel ergibt sich a b
5 Stellenwertsysteme In diesem kurzen Kapitel werden wir uns mit der übliche Darstellung natürlicher Zahlen dem Dezimalsystem beschäftigen. Grundlage ist die Division mit Rest, die wir zunächst auf die
U. Rausch, 2010 Ganze Zahlen 1
U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die
RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz
2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung
Beispiel: Primelemente in den Gaußschen Zahlen
Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
1.2 Mengenlehre-Einführung in die reellen Zahlen
.2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5
Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung)
Restklassen (die modulo-rechnung) Inhalt 4.1 4.1 Was Was sind sind Restklassen? [0], [0],[1], [1],...,...,[n 1] 4.2 4.2 Addition von von Restklassen [5] [5] + [7] [7] = [3] [3] 4.3 4.3 Multiplikation von
3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1
3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und
31 Polynomringe Motivation Definition: Polynomringe
31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome
1 Modulare Arithmetik
$Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler
Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.
1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
WS 2016/17 Torsten Schreiber
104 Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet die Rechtseindeutigkeit einer Relation? Was weiß man von einer surjektiven Funktion? Wann ist eine Funktion total / partiell? Welche
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
2: Restklassen 2.1: Modulare Arithmetik
2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.
schreiben, wobei p und q ganze Zahlen sind.
Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
3.5 Kryptographie - eine Anwendung der Kongruenzrechnung
1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring
10. Teilbarkeit in Ringen
70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement
1 Theorie der Kettenbrüche II
Theorie der Kettenbrüche II Vom ersten Vortrag erinnern wir, dass sich jede reelle Zahl α wie folgt darstellen lässt: α = a 0 + a + a 2 + mit a 0 Z und a i N >0 für jedes i Die Kettenbruchdarstellung lässt
Hauptsatz der Zahlentheorie.
Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch
Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg
1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung
8. Musterlösung zu Mathematik für Informatiker II, SS 2004
8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)
WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Polynomdivision. Definition führender Term. Algorithmus Polynomdivision
Polynomdivision Definition führender Term Sei f = a m x m +...+a 0 F[x]. Dann bezeichnen wir den führenden Term von f mit LT(f) = a m x m. Anmerkung: Für f, g F[x] gilt: grad(f) grad(g) LT(f) teilt LT(g).
In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.
Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16
WURZEL Werkstatt Mathematik Polynome Grundlagen
Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs
Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)
TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +
Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.
Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis
Kapitel 1 Die natürlichen und die ganze Zahlen
Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen
Elementare Zahlentheorie
1 Elementare Zahlentheorie Die Mathematik ist die Königin der Wissenschaften, die Zahlentheorie ist die Königin der Mathematik (C. F. Gauss) Dieses Kapitel handelt von den Eigenschaften der ganzen Zahlen
Vortrag zum Proseminar: Kryptographie
Vortrag zum Proseminar: Kryptographie Thema: Oliver Czernik 6.12.2005 Historie Michael Rabin Professor für Computerwissenschaft Miller-Rabin-Primzahltest Januar 1979 April 1977: RSA Asymmetrisches Verschlüsselungssystem
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
7 Die Sätze von Fermat, Euler und Wilson
53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer
Thema: Die Einheitengruppe des Restklassenrings /n
RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter
