Was Computer nicht berechnen können
|
|
|
- Wilfried Gerber
- vor 9 Jahren
- Abrufe
Transkript
1 Was Computer nicht berechnen können Hochschulinformationstag 13 Juni 2003 Christoph Kreitz Theoretische Informatik, Raum 119, Telephon
2 Computer haben unser Leben revolutioniert Integraler Bestandteil unseres Alltags Steuerungsmodule in Alltagsprodukten, e-commerce, Telephonnetze, Automobilkonstruktion, Luftfahrtkontrolle, Unglaubliche Leistungssteigerungen Verdopplung der Leistung alle 18 Monate bei sinkenden Kosten Billige Videokarten leistungsfähiger als teure Großrechner vor 20 Jahren Bisher kein Ende abzusehen Erstaunliche Fähigkeiten Schach auf Weltmeisterniveau, Autopilot in Flugzeugen In vielen Aspekten besser als der Mensch Zugänglich für Laien Vor 30 Jahren gab es nur sehr wenige Computerexperten Was Computer nicht berechnen können 1 13 Juni 2003
3 Informatik hat sehr viel erreicht Mathematische Analyse führt zu großen Erfolgen Wissenschaft der Berechnung (Theoretische Informatik) Grundsätzliche Methoden: was ist mit Symbolverarbeitung erreichbar? Wissenschaft der Rechenmaschine (Technische Informatik) Welche Mittel gibt es, um schnelle und große Computer zu bauen? Wissenschaft der Programmierung (Praktische Informatik) Welche Methoden/Strukturen unterstützen Entwicklung guter Software? Wissenschaft des Problemlösens (Angewandte Informatik) Welche Standardverfahren gibt es für bestimmte Anwendungen? Wissenschaft des Einsatzes von Informationstechnik (Humanwissenschaftliche Informatik) Auswirkungen, rechtliche Aspekte, Didaktik, Alles wird schneller, besser und einfacher Was Computer nicht berechnen können 2 13 Juni 2003
4 Es gibt genug offene Fragen Sind Korrekheitsgarantien möglich? Kein Systemabsturz, kein Aufhängen, keine falsche Resultate Wie effizient kann Software sein? Wieviel RAM, Plattenplatz, Rechenzeit wird benötigt? Skalierbarkeit: wie groß darf das Problem werden? Wie einfach kann Interaktion gemacht werden? Welche Freiheiten sind in der Formulierung von Programmen möglich? Wie natürlich darf die Sprache sein? Gibt es Grenzen? Können alle Aufgaben irgendwann von Computern übernommen werden? Machen Hardwaresteigerungen jedes Programm schnell genug? Kann eine Programmiersprache natürlich sein? Was Computer nicht berechnen können 3 13 Juni 2003
5 Prinzipielle Grenzen des Berechenbaren Gibt es Problemstellungen die prinzipiell unlösbar sind? Terminierung von Programmen Hält ein gegebenes Programm bei einer bestimmten Eingabe überhaupt an? Korrektheit von Programmen Löst ein gegebenes Programm eine bestimmte Aufgabe? Äquivalenz von Programmen Berechnen zwei Programme dasselbe? Optimalität von Programmen Kann man ein Programm in äquivalentes optimales Programm umwandeln? (optimal bzgl Programmlänge, Ausführungszeit, Platzbedarf, ) Keine dieser Fragestellungen kann universell mit einem Computerprogramm gelöst werden Was Computer nicht berechnen können 4 13 Juni 2003
6 Grundannahmen über Berechnungen Programme und Daten sind als Zahlen codierbar Programme und Daten werden als Bitfolgen dargestellt Bitfolgen für Daten können als Zahlen interpretiert werden Bitfolgen, die Programme darstellen, können durchnumeriert werden Computer sind universelle Maschinen Bei Eingabe beliebiger Programme und Daten berechnen sie das Ergebnis p i (j): Ergebnis der Anwendung von Programm i auf Zahl j Man kann Programme beliebig zusammensetzen Das Ergebnis ist ein neues Programm Was Computer nicht berechnen können 5 13 Juni 2003
7 Terminierung von Programmen kann nicht getestet werden Annahme: es gibt ein Programm zum Test auf Terminierung Term(i,j)=1 falls p i (j) hält (sonst 0) Konstruiere ein neues Programm Unsinn wie folgt: Unsinn(i)=0 falls Term(i,i)=0, ansonsten hält Unsinn nicht an p 0 p 0 (0) p 0 (1) p 0 (2) p 0 (3) p 0 (4) p 0 (5) p 0 (6) p 1 p 1 (0) p 1 (1) p 1 (2) p 1 (3) p 1 (4) p 1 (5) p 1 (6) p 2 p 2 (0) p 2 (1) p 2 (2) p 2 (3) p 2 (4) p 2 (5) p 2 (6) p 3 p 3 (0) p 3 (1) p 3 (2) p 3 (3) p 3 (4) p 3 (5) p 3 (6) p 3 p 3 (0) p 3 (1) p 3 (2) p 3 (3) p 3 (4) p 3 (5) p 4 (6) p 5 p 5 (0) p 5 (1) p 5 (2) p 5 (3) p 5 (4) p 5 (5) p 5 (6) Unsinn ist ein Programm, also hat es eine Nummer k (p k =Unsinn) Was macht p k auf seiner eigenen Nummer? Wenn p k (k) hält, dann Term(k,k)=1, also hält Unsinn(k) nicht??? Wenn p k (k) nicht hält, dann Term(k,k)=0, also hält Unsinn(k) an??? Was Computer nicht berechnen können 6 13 Juni 2003
8 Praktische Grenzen des Berechenbaren Was kann nicht mit vertretbarem Aufwand gelöst werden? Komplexität: Analyse benötigter Resourcen Zeitbedarf, Speicherbedarf, Plattenzugriffe, Netzzugriffe, Meßgröße unabhängig von Hardware, Programmiersprache, Compiler, Wachstumsfunktion in Abhängigkeit von der Größe der Eingabe Asymptotisches Verhalten ist interessant Komplexität großer Probleme Grobe Abschätzung reicht: Konstanten werden unbedeutend Gibt es Probleme, die nicht effizient lösbar sind? Was Computer nicht berechnen können 7 13 Juni 2003
9 Komplexität Typischer Probleme Sortieren von Listen der Länge n Suchen: log 2 n bei sortierter Liste, n sonst n log 2 n Matrixmultiplikation n 3 Multiprozessor-Scheduling Verteile n Prozesse derart auf eine Menge von Prozessoren, daß die Ressourcen der Rechner optimal genutzt werden Travelling Salesman (Message Routing) Minimiere Kosten einer Rundreise zwischen n verschiedenen Städten Binpacking Minimiere Anzahl von Verpackungsbehältern, um n verschieden große Gegenstände zu transportieren Primzahltests für Zahlen mit n bits Gut für offene kryptographische Systeme (wähle n > 200) Exponentielle Laufzeit macht das Problem praktisch unlösbar 2 n 2 n 2 n 2 n Was Computer nicht berechnen können 8 13 Juni 2003
10 Wie schnell wächst die Rechenzeit mit der Größe der Eingabe? Rechenzeiten auf 33 Ghz Prozessor Größe n Wachstum log 2 n 1ns 2ns 3ns 10ns 100ns n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs n 2 30ns 120ns 270ns 480ns 750ns 11µs 300µs 300s n 3 300ns 24µs 81µs 192µs 375µs 64µs 300ms 95y 2 n 300ns 300µs 300ms 300s 833h 95y 3 n 178µs 11s 173h 116y y Wieviel mehr kann man in der gleichen Zeit berechnen, wenn Computer um den Faktor 1000 schneller werden? log 2 n n n 2 n 3 2 n 3 n Problemsteigerung fach 1000-fach 31-fach 10-fach plus 10 plus 6 Was Computer nicht berechnen können 9 13 Juni 2003
11 Grenzen des Formulierbaren Was kann ein Computer fehlerfrei erkennen? Compilieren sollte schneller sein als Ausführung Scanner: Erkennungssysteme für lexikalische Einheiten in Programmen (Zahlen, Bezeichner) können keine korrekten Klammerausdrücke erkennen linear Parser: quadratisch Effiziente Erkennungssysteme für Syntax-/Strukturanalyse im Programmtext können nur Strukturen analysieren, die nicht von ihrem Kontext abhängen Rück- und Querbezüge sind kontextabhängige Eigenschaften und müssen einzeln behandelt werden exponentiell Was Computer nicht berechnen können Juni 2003
12 Grenzüberschreitung Grenzen sind Herausforderung zur Suche nach neuen Wegen Künstliche Intelligenz Heuristische Lösung unentscheidbarer Probleme Theorembeweisen, Programmverifikation und -Synthese (unvollständig) Approximierende und probabilistische Algorithmen Sehr effiziente, fast optimale Näherungslösungen ZB Primzahltest (logarithmisch statt linear) Selbstorganisation statt vorformulierter Lösungen Lernverfahren, Neuronale Netze, genetische Algorithmen Liefert tieferes Verständnis der Materie Was Computer nicht berechnen können Juni 2003
Theoretische Informatik
Theoretische Informatik Sommersemester 2004 Christoph Kreitz Theoretische Informatik, Raum 1.18, Telephon 3060 [email protected] http://www.cs.uni-potsdam.de/ti/kreitz 1. Themen und Lernziele 2.
Algorithmen und Datenstrukturen 1 Kapitel 5
Algorithmen und Datenstrukturen 1 Kapitel 5 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 5: Effizienz von Algorithmen 5.1 Vorüberlegungen Nicht
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
abgeschlossen unter,,,, R,
Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Eigene Entwicklungen Datenstrukturen Elementare Datentypen Abstrakte Datentypen Elementare
2. Effizienz von Algorithmen
Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]
Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung
Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik
es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)
Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise
Einstieg in die Informatik mit Java
1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
P, NP und NP -Vollständigkeit
P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle
11. Rekursion, Komplexität von Algorithmen
11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,
Asymptotik und Laufzeitanalyse
und Vorkurs Informatik SoSe13 08. April 2013 und Algorithmen = Rechenvorschriften Wir fragen uns: Ist der Algorithmus effizient? welcher Algorithmus löst das Problem schneller? wie lange braucht der Algorithmus
Einstieg in die Informatik mit Java
1 / 31 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 31 1 Überlegungen zur Effizienz 2 Landau-Symbole 3 Eier im Korb 4 Zyklische
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Einführung. Rechnerarchitekturen Entwicklung und Ausführung von Programmen Betriebssysteme
Teil I Einführung Überblick 1 2 Geschichte der Informatik 3 Technische Grundlagen der Informatik Rechnerarchitekturen Entwicklung und Ausführung von Programmen Betriebssysteme 4 Daten, Informationen, Kodierung
Das Studium im Fach Informatik
[Projekttage Studien- und Berufsorientierung der Jgst. 12] Fachbereich Informatik Fakultät für Mathematik und Informatik FernUniversität Hagen 17. Februar 2009 Was Informatik nicht ist Was ist Informatik?
Algorithmierung und Programmierung - immer aktuell. Material, S.54ff.
Algorithmierung und Programmierung - immer aktuell Material, S.54ff. Was scheint den wichtig für IU? Mittelschule (10): PC-Technik kennenlernen Anwendungen beherrschen Grundwissen Internet Verständnis
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine
( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Theoretische Informatik. Berechenbarkeit
Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was
Prof. Dr. Margarita Esponda
Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.
Grundlagen der Programmierung
GdP12 Slide 1 Grundlagen der Programmierung Vorlesung 12 Sebastian Iwanowski FH Wedel GdP12 Slide 2 Entwurf von Algorithmen Wie klassifiziert man Algorithmen? offensichtlich nicht durch die Unterscheidung
Grundlagen der Informatik
Jörn Fischer [email protected] Willkommen zur Vorlesung Grundlagen der Informatik ADS-Teil Page 2 Überblick Inhalt 1 Eigenschaften von Algorithmen Algorithmenbegriff O-Notation Entwurfstechniken
Definition der Kolmogorov-Komplexität I
Definition der Kolmogorov-Komplexität I Definition: Die Komplexität K A (x) eines Wortes x V + bezüglich des Algorithmus A ist die Länge der kürzesten Eingabe p {0, 1} + mit A(p) = x, d.h. in formalisierter
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Teil III. Komplexitätstheorie
Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein
2.2 Allgemeine (vergleichsbasierte) Sortierverfahren
. Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen
Einführung in die Informatik I (autip)
Einführung in die Informatik I (autip) Dr. Stefan Lewandowski Fakultät 5: Informatik, Elektrotechnik und Informationstechnik Abteilung Formale Konzepte Universität Stuttgart 24. Oktober 2007 Was Sie bis
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält
Simulation eines Quantencomputers
Simulation eines Quantencomputers J. Metzner, M. Schmittfull Simulation eines Quantencomputers p.1/34 Ziele des Projekts Entwicklung einer leistungsfähigen und effizienten Simulation eines Quantencomputers
Von der Natur lernen Optimierungsverfahren. Dr. Ute Vogel Universität Oldenburg Department für Informatik Umweltinformatik.
Von der Natur lernen Optimierungsverfahren Dr. Ute Vogel Universität Oldenburg Department für Informatik Umweltinformatik der Informatik Motivation Starre Strukturen Selbstorganisation Programmierung solcher
Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn
Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Theoretische Informatik I
Theoretische Informatik I Wintersemester 2004/05 Christoph Kreitz / Holger Arnold Theoretische Informatik {kreitz,arnold}@cs.uni-potsdam.de http://www.cs.uni-potsdam.de/ti/lehre/04-ws-theorie-i 1. Lehrziele
Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)
Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch
Theoretische Informatik II
Theoretische Informatik II Sommersemester 2006 Christoph Kreitz / Holger Arnold Theoretische Informatik http://www.cs.uni-potsdam.de/ti/lehre/06-theorie-ii 1. Das Team 2. Lernziele und Lehrinhalte 3. Organisatorisches
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Kapitel 3: Berechnungstheorie Gliederung
Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Einordnung 3.2. Berechnungsmodelle 3.3. Diskussion 3.4. Ergebnisse und
Von Labyrinthen zu. Algorithmen
Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert)
n 1. Der Begriff Informatik n 2. Syntax und Semantik von Programmiersprachen - 1 -
n 1. Der Begriff Informatik n 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik n "Informatik" = Kunstwort aus Information
Unentscheidbarkeitssätze der Logik
Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie
Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik Was ist ein Algorithmus? Ein Algorithmus ist eine eindeutige Handlungsvorschrift, [bestehend] aus endlich vielen, wohldefinierten
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf
Was ist Informatik? Alexander Lange
Was ist Informatik? Was ist Informatik? Alexander Lange 12.11.2003 Was ist Informatik? Inhalt 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Das Wort»Informatik«Die Idee Teilgebiete der Informatik Technische Informatik
Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1
Algorithmen und Datenstrukturen 1. EINLEITUNG Algorithmen und Datenstrukturen - Ma5hias Thimm ([email protected]) 1 Allgemeines Einleitung Zu den Begriffen: Algorithmen und Datenstrukturen systematische
Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1
Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in
Mehrband-Turingmaschinen und die universelle Turingmaschine
Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band
Algorithmen und Berechnungskomplexität I
Algorithmen und Berechnungskomplexität I Prof. Dr. Institut für Informatik Wintersemester 2013/14 Organisatorisches Vorlesung Dienstag und Donnerstag, 12:30 14:00 Uhr (HS 1) Übungen 16 Übungsgruppen Anmeldung
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr
Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018
1 Informatik II Vorlesung am D-BAUG der ETH Zürich Felix Friedrich & Hermann Lehner FS 2018 23 1. Einführung Algorithmen und Datenstrukturen, erstes Beispiel 24 Ziele der Vorlesung Verständnis des Entwurfs
Probabilistische Algorithmen
Probabilistische Algorithmen Michal Švancar Gerardo Balderas Hochschule Zittau/Görlitz 21. Dezember 2014 Michal Švancar, Gerardo Balderas (HSZG) Probabilistische Algorithmen 21. Dezember 2014 1 / 40 Inhaltsverzeichnis
Abschnitt 11: Korrektheit von imperativen Programmen
Abschnitt 11: Korrektheit von imperativen Programmen 11. Korrektheit von imperativen Programmen 11.1 11.2Testen der Korrektheit in Java Peer Kröger (LMU München) in die Programmierung WS 16/17 931 / 961
EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK
EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2014 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2014) 0. Organisatorisches und Überblick 1 / 16
Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009
Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm
5. Übungsblatt zu Algorithmen II im WS 2017/2018
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Thomas Worsch, Dr. Simon Gog Demian Hespe, Yaroslav Akhremstev 5. Übungsblatt zu Algorithmen II im WS
5. Theorie der Algorithmen. 5.1 Berechenbarkeit 5.2 Komplexität 5.3 Korrektheit und Verifikation 5.4 Endliche Automaten
5. Theorie der Algorithmen 5.1 Berechenbarkeit 5.2 Komplexität 5.3 Korrektheit und Verifikation 5.4 Endliche Automaten Praktische Informatik I Wolfgang Effelsberg 5. Theorie der Algorithmen 5a - 1 5.1
Übung Algorithmen I
Übung Algorithmen I 10.5.17 Sascha Witt [email protected] (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Listen Skip List Hotlist Amortisierte
Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt
Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/54 Datenstrukturen und Algorithmen Vorlesung 1: Algorithmische Komplexität Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification
Theoretische Informatik
Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis
Automaten und Formale Sprachen
Automaten und Formale Sprachen Einführung Ralf Möller Hamburg Univ. of Technology Übung Fr. 14:30-15:15 Max Berndt, D1025 Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,
11. Rekursion, Komplexität von Algorithmen
nwendung der Rekursion 11. Rekursion, Komplexität von lgorithmen Teil 2 Java-eispiele: Power1.java Hanoi.java Rekursiv definierte Funktionen - Fibonacci-Funktion - Fakultät, Potenz -... Rekursiver ufbau
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.
Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,
Theoretische Informatik
Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:
Das Problem des Handlungsreisenden
Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Einführung in die Informatik Algorithms II
Einführung in die Informatik Algorithms II Eigenschaften von Algorithmen Wolfram Burgard Cyrill Stachniss 14.1 Was können Computer berechnen? In Kapitel 1 haben wir gesagt, dass Programme die Umsetzung
Einführung in die Programmierung Wintersemester 2016/17
Einführung in die Programmierung Wintersemester 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund Einleitung Gliederung Zum Begriff Informatik Zum
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise
Teil 1 Kapitel 2 Rechner im Überblick 2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Frank Schmiedle Technische Informatik I 2.1 Rechnersichten Modellierung eines Rechners Zusammenspiel
Informatik 2-stündig
Klasse 11 Einführung in die objektorientierte Modellierung und Programmierung 20 Leitidee 3: Problemlösen und Modellieren kennen ein Konzept der objektorientierten Modellierung; können Beziehungen zwischen
Komplexität von Algorithmen
Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die
Informatik I: Einführung in die Programmierung
Informatik I: Einführung in die Programmierung 30. Ausblick Albert-Ludwigs-Universität Freiburg Bernhard Nebel 13.02.2016 1 13.02.2016 B. Nebel Info I 3 / 17 Programmieren jedenfalls ein bisschen Python-Programme
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.
Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,
2.7 Der Shannon-Fano-Elias Code
2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.
Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik
Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende
Einstieg in die Informatik mit Java
1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking
Theoretische Informatik II
Theoretische Informatik II Sommersemester 2006 Christoph Kreitz / Holger Arnold Theoretische Informatik http://www.cs.uni-potsdam.de/ti/lehre/06-theorie-ii 1. Das Team 2. Lernziele und Lehrinhalte 3. Organisatorisches
Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben
Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/12 23.10.2011 Themen: Asymptotische Laufzeit von Algorithmen Experimentelle Analyse von Algorithmen Aufgabe 1 ( Asymptotische Laufzeit ) Erklären Sie,
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen
lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer
