Von Labyrinthen zu. Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Von Labyrinthen zu. Algorithmen"

Transkript

1 Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert) liefert stets ein richtiges Ergebnis (ist korrekt) löst ein allgemeines Problem 1

2 Probleme, die nicht mit lösbar sind Fahre eine Strasse entlang zur City, nimm den letzten freien Parkplatz vor der City Schreibe die Lottozahlen vom nächsten Sonntag auf Beweise, dass ein beliebiger gegebener Algorithmus richtig oder falsch ist Erstelle einen Algorithmus zu einer beliebigen gegebenen Aufgabenstellung Phasen der Problemlösung mit Programmen Problemanalyse: Was soll getan werden? Spezifikation Lösungsdesign: Wie kommt man zur Lösung? Algorithmus Implementierung: Realisierung in einer Programmiersprache Programm Testen: hat der Algorithmus / das Programm Fehler? Testprotokoll 2

3 Beispiel: Suchen in einem großen Datenbestand 1 Problemanalyse Datenbestand besteht aus vielen gleichgestaltigen Einzeldaten Fragestellung lautet: Kommt ein gegebener Wert x im Datenbestand vor oder nicht? Ergebnis ist wahr oder falsch Es gibt keine Sortierung der Daten Lösungsdesign Vergleiche der Reihe nach alle Werte des Datenbestandes mit Wert x (sequentielle/lineare Suche) ist mindestens einer gleich x, ist Ergebnis wahr ist keiner mit x gleich, ist Ergebnis falsch Beispiel: Suchen in einem großen Datenbestand 2 Fragen zur Implementierung: In welcher Reihenfolge sollen die Daten verglichen werden? Gibt es bessere / schlechtere Reihenfolgen? Gibt es überhaupt immer eine Reihenfolge? Gibt es immer ein Ergebnis? Was ist die Precondition? 3

4 Beispiel: Suchen in einem großen Datenbestand 3 Lineare Suche ( x, gefunden): y erster Wert gefunden falsch solange (noch ein weiterer Wert existiert) falls (y = x) gefunden wahr y nächster Wert mit welchen Eingangswerten (Testdaten) soll man den Algorithmus testen? kein, ein, mehrere Werte im Datenbestand gesuchter Wert x am Anfang, in der Mitte, am Ende gesuchter Wert x nicht enthalten Beispiel: Suchen in einem großen Datenbestand 4 (Verbesserte Version) Lineare Suche ( x, gefunden): y erster Wert falls (y = x) gefunden wahr sonst gefunden falsch solange (noch ein weiterer Wert existiert) y nächster Wert falls (y = x) gefunden wahr Beobachtung: gefunden enthält stets das Ergebnis für den bereits untersuchten Datenbestand Der bereits untersuchte Datenbestand wächst in jedem Schritt um einen Wert an (allgemeine Strategie!) Was ist der Aufwand des Verfahrens? Kann man das Verfahren beschleunigen? 4

5 Optimierte Lineare Suche Lineare Suche 2 ( x, gefunden): y erster Wert solange (y x) und (noch ein weiterer Wert existiert) y nächster Wert falls (y = x) gefunden wahr sonst gefunden falsch In welchen Fällen ist die optimierte Version besser geworden? In welchen Fällen ist die optimierte Version gleich gut? In welchen Fällen ist die optimierte Version schlechter geworden? Suche in einem sortierten Datenbestand Aufgabenanalyse kann man in einem sortierten Datenbestand schneller suchen als in einem unsortierten? welche Datenbestände lassen sich sortieren? Lösungsdesign Lösungsstrategie Teile und Herrsche in jedem Schritt wird der noch zu untersuchende Datenbestand halbiert 5

6 Binäre Suche Beispiel: Werte -18, -8, -4, -4, -4, -1, 14, 15, 15, 24, 70, 89, 111 Indizes Binäre Suche ( x, gefunden): links erster Index rechts letzter Index gefunden falsch solange (links < rechts) m (links + rechts) / 2 falls (Wert(m) = x) gefunden wahr falls (Wert(m) < x) links m + 1 falls (Wert(m) > x) rechts m 1 In welchen Fällen ist die binäre Suche nicht besser als die lineare Suche? Was ist die Precondition der binären Suche? 6

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Einführung in die Informatik I Kapitel II.3: Sortieren

Einführung in die Informatik I Kapitel II.3: Sortieren 1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Wie beim letzten Mal - bitte besucht: http://pingo.upb.de/549170 Ihr seid gleich wieder gefragt... Übung Algorithmen I 4.5.16 Lukas Barth [email protected] (Mit Folien von Julian Arz, Timo Bingmann,

Mehr

Folge 13 - Quicksort

Folge 13 - Quicksort Für Abiturienten Folge 13 - Quicksort 13.1 Grundprinzip des Quicksort Schritt 1 Gegeben ist ein unsortierter Array von ganzen Zahlen. Ein Element des Arrays wird nun besonders behandelt, es wird nämlich

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 2. Vorlesung Prof. Dr. Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Einfache Suchverfahren Lineare Listen Sequentielle Suche

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten

Mehr

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren 2.3 Sortieren 2.3.1 Einleitung 2.3.2 Einfache Sortierverfahren 2.3.3 Höhere Sortierverfahren 2.3.4 Komplexität von Sortierverfahren 2.3.5 Spezielle Sortierverfahren 1 Selection-Sort Idee: Suche kleinstes

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Suchen in Texten Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Niedersächsisches Kultusministerium Juli 2015

Niedersächsisches Kultusministerium Juli 2015 18. Informatik A. Fachbezogene Hinweise Die Rahmenrichtlinien Informatik sind so offen formuliert, dass sie Raum für die Gestaltung eines zeitgemäßen Informatikunterrichts lassen. Neue Inhalte der Informatik

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Softwareentwicklung Probleme bei großer Software Life-Cycle-Modelle Teilphasen eines Software-Projekts Methoden und Werkzeuge 01101101 01011001 11010011 10011000 00000011 00011100

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

BUBBLE SORT. Können wir die gefundenen Algorithmen auch auf Listen mit mehr als drei Elementen ausdehnen?

BUBBLE SORT. Können wir die gefundenen Algorithmen auch auf Listen mit mehr als drei Elementen ausdehnen? BUBBLE SORT Voraussetzungen der Schüler: Die Schüler besuchen bereits das zweite Jahr den Informatikunterricht und sollten den Umgang mit Feldern und Unterprogrammen mittlerweile beherrschen. Im ersten

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Algorithmik Übung 3 Prof. Dr. Heiner Klocke. Sortierfolge nach Werten: 7 8 9 10 Bube Dame König As nach Farben: Karo ( ) Herz ( ) Piek ( ) Kreuz ( )

Algorithmik Übung 3 Prof. Dr. Heiner Klocke. Sortierfolge nach Werten: 7 8 9 10 Bube Dame König As nach Farben: Karo ( ) Herz ( ) Piek ( ) Kreuz ( ) Algorithmi Übung 3 Prof. Dr. Heiner Kloce Winter 11/12 16.10.2011 Divide&Conquer- Algorithmen lassen sich gut als reursive Algorithmen darstellen. Das Prinzip eines reursiven Algorithmus beruht darauf,

Mehr

Minimale Anzahl von Hinweisen bei Sudoku

Minimale Anzahl von Hinweisen bei Sudoku Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz [email protected] (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Grundlegende Sortieralgorithmen

Grundlegende Sortieralgorithmen Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch Sortieren in Java Man kann Sortierverfahren in einem imperativem oder einem objektorientierten Stil programmieren.

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus

Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus Problemreduktion durch Transformation am Beispiel des Erweiterten Euklidschen Algorithmus Wolfgang Windsteiger JKU Linz, A 4040 Linz, Austria Kurzfassung Transformation beschreibt im Wesentlichen die algorithmische

Mehr

BuK 2000 Lösungen Übungen

BuK 2000 Lösungen Übungen BuK 2000 Lösungen Übungen Dies sind private Lösungen, KEINE Musterlösungen, und somit nicht unbedingt korrekt! Trotzdem helfen Sie vielleicht. Wenn jemand die Musterlösungen hat her damit! http://s-inf.de

Mehr

Suchen. lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable

Suchen. lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable Suchen lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable Welche Nummer hat Herr Meier? Enthält Einträge (Elemente) der Form : Name, Vorname

Mehr

Beispiellösungen zu Blatt 7

Beispiellösungen zu Blatt 7 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Die handelsüblichen Papierformate DIN A0, DIN A usw. haben folgende praktische

Mehr

2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) :

2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) : 2 Sortieren Das Sortieren einer Datenfolge ist eines der am leichtesten zu verstehenden und am häufigsten auftretenden algorithmischen Probleme. In seiner einfachsten Form besteht das Problem darin, eine

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Informatik ohne Rechner

Informatik ohne Rechner Outline Einfu hrung Computer Science Unplugged Fakulta t WIAI, Otto-Friedrich Universita t Bamberg 29.10.2007 1 2 3 4 5 Was können Computer? Computer sind heute fast überall, nicht immer sehen sie wie

Mehr

Ein Blick voraus. des Autors von C++: Bjarne Stroustrup. 04.06.2005 Conrad Kobsch

Ein Blick voraus. des Autors von C++: Bjarne Stroustrup. 04.06.2005 Conrad Kobsch Ein Blick voraus des Autors von C++: Bjarne Stroustrup 04.06.2005 Conrad Kobsch Inhalt Einleitung Rückblick Nur eine Übergangslösung? Was würde C++ effektiver machen? Quelle 2 Einleitung Wo steht C++,

Mehr

Algorithmen und Datenstrukturen CS1017

Algorithmen und Datenstrukturen CS1017 Algorithmen und Datenstrukturen CS1017 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Organisatorisches und Einführung Lehrpersonal Dozent Dr. Letschert Tutoren Alissia Sauer Jonas

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Abstrakte Algorithmen und Sprachkonzepte

Abstrakte Algorithmen und Sprachkonzepte Abstrakte Algorithmen und Sprachkonzepte Thomas Röfer Begriff des Algorithmus Algorithmenaufbau Programmiersprachliche Grundkonzepte Interative und rekursive Algorithmen Rückblick Aufbau und Funktionsweise

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany [email protected] Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Testdokument (Universität Paderborn, Softwaretechnikpraktikum SS2006)

Testdokument (Universität Paderborn, Softwaretechnikpraktikum SS2006) Testdokument (Universität Paderborn, Softwaretechnikpraktikum SS2006) Alles, was in dieser Schriftart gesetzt ist, dient nur zur Erläuterung und sollte im fertigen Dokument nicht mehr enthalten sein! Projekt:

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann [email protected] FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Grenzwertanalyse. Domain-Testing. Ronny Schwierzinski, Bernd Rabe, Anna Bartwicki

Grenzwertanalyse. Domain-Testing. Ronny Schwierzinski, Bernd Rabe, Anna Bartwicki Grenzwertanalyse und Domain-Testing Ronny Schwierzinski, Bernd Rabe, Anna Bartwicki Überblick Einleitung Äquivalenzklassen Grenzwertanalyse Domain-Testing (Bereichstest) Invariant Boundaries Pfadbereichstest

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Programmierung, Algorithmen und Techniken. von Thomas Ohlhauser

Programmierung, Algorithmen und Techniken. von Thomas Ohlhauser Programmierung, Algorithmen und Techniken von Thomas Ohlhauser 1. Begriff Programmierung Entwicklung von Programmen inklusive der dabei verwendeten Methoden und Denkweisen. Ein Programm ist eine eine Zusammensetzung

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Teil III: Evaluationstest

Teil III: Evaluationstest Teil III: Evaluationstest Inhalt 1 Evaluationstest Teil 1: Fachwissen (inkl. Musterlösung)... 2 1.1 Rahmenbedingungen und Aufgaben... 2 1.2 Lösungsvorschläge zu den Aufgaben... 3 1.3 Verteilung der Punkte...

Mehr

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002 Prof. H. Herbstreith 30.01.2002 Fachbereich Informatik Leistungsnachweis Informatik 1 WS 2001/2002 Bearbeitungszeit 120 Minuten. Keine Hilfsmittel erlaubt. Aufgabe 1: 20 Punkte Vervollständigen Sie folgende

Mehr

Einführung in die Informatik Algorithms

Einführung in die Informatik Algorithms Einführung in die Informatik Algorithms Vom Problem zum Algorithmus und zum Programm Wolfram Burgard Cyrill Stachniss 1.1 Motivation und Einleitung In der Informatik sucht man im Normalfall nach Verfahren

Mehr

Die Funktion SVERWEIS(Suchkriterium;Matrix;Index;Bereich_Verweis)

Die Funktion SVERWEIS(Suchkriterium;Matrix;Index;Bereich_Verweis) Die Funktion SVERWEIS(Suchkriterium;Matrix;Index;Bereich_Verweis) Argumente: Suchkriterium: Ein Wert, Text oder Bezug, nach dem in der ersten Spalte eines Bereiches (Matrix) gesucht werden soll. Matrix:

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Inhaltsverzeichnis. Ingo R. Dölle / 15.02.2016 Seite 1 von 5

Inhaltsverzeichnis. Ingo R. Dölle / 15.02.2016 Seite 1 von 5 Inhaltsverzeichnis Inhaltsverzeichnis... 1 Daten sortieren und filtern... 2 Tabellen nach Zellinhalten sortieren... 2 Sortierreihenfolgen... 2 Nach den Zellinhalten einer Spalte sortieren... 2 Ursprüngliche

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: [email protected].

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: [email protected] Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Einführung in die Informatik I Kapitel II.1: Suchen

Einführung in die Informatik I Kapitel II.1: Suchen 1 Einführung in die Informatik I Kapitel II.1: Suchen Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr