Automaten und Formale Sprachen
|
|
|
- Kai Max Kaufer
- vor 8 Jahren
- Abrufe
Transkript
1 Automaten und Formale Sprachen Einführung Ralf Möller Hamburg Univ. of Technology Übung Fr. 14:30-15:15 Max Berndt, D1025
2 Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2
3 Weitere Literatur U. Schöning: Theoretische Informatik kurz gefasst, Spektrum Akademischer Verlag John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison Wesley Publishing Company
4 Danksagung Kurs basiert auf Präsentationsmaterial von w G. Vossen (Uni Münster), K.-U. Witt (Hochschule Bonn-Rhein-Sieg) w Christian Sohler (TU Dortmund) w Thomas Ottmann (Uni Freiburg) w Lenore Blum (CMU)
5 Zentrale Fragestellungen Effiziente Algorithmen: Welche Probleme können effizient gelöst werden? Wie misst man Effizienz? Welche algorithmischen Methoden gibt es, Probleme zu lösen? Wie kann man Probleme mit geringstmöglichem Aufwand lösen? Wie gehen wir mit schweren Problemen um?
6 Wozu benötigen wir effiziente Algorithmen? Beispiele: Internetsuchmaschinen Berechnung von Bahnverbindungen Optimierung von Unternehmensabläufen Datenkompression Computer Spiele Datenanalyse Alle diese Bereiche sind (immer noch) Stoff aktueller Forschung im Bereich der Algorithmik!
7 Algorithmische Problemstellungen Typische Aufgabenstellung: Berechne die kürzeste Rundreise durch n Städte
8 Algorithmische Problemstellungen Typische Aufgabenstellung: Berechne die kürzeste Rundreise durch n Städte
9 Algorithmische Problemstellungen Typische Aufgabenstellung: Berechne die kürzeste Rundreise durch n Städte [Optimierungsproblem]
10 Algorithmische Problemstellungen Optimierungsprobleme (informal): Zulässigkeitsbedingung (Lösung ist eine Rundreise) Zielfunktion (Länge der Tour) Aufgabe: Finde beste zulässige Lösung
11 Algorithmische Problemstellungen Optimierungsprobleme (informal): Zulässigkeitsbedingung (Lösung ist eine Rundreise) Zielfunktion (Länge der Tour) Aufgabe: Finde beste zulässige Lösung Lösung ist zulässig, aber nicht optimal
12 Algorithmische Problemstellungen Optimierungsprobleme (informal): Zulässigkeitsbedingung (Lösung ist eine Rundreise) Zielfunktion (Länge der Tour) Aufgabe: Finde beste zulässige Lösung Keine zulässige Lösung Kosten (Summe der Kantenlängen) Kleiner als bei der besten Rundreise
13 Algorithmische Problemstellungen Typische Aufgabenstellung: Entscheide, ob eine Zahl prim ist
14 Algorithmische Problemstellungen Typische Aufgabenstellung: Entscheide, ob eine Zahl prim ist 2 -> prim 17 -> prim 99 -> nicht prim
15 Algorithmische Problemstellungen Typische Aufgabenstellung: Entscheide, ob eine Zahl prim ist [Entscheidungsproblem] 2 -> prim 17 -> prim 99 -> nicht prim
16 Algorithmische Problemstellungen Entscheidungsprobleme: Eigenschaft (Primzahl) Aufgabe: - Akzeptieren, wenn Eingabe die Eigenschaft besitzt - Zurückweisen, sonst Ausgabe: 1 (akzeptieren) oder 0 (zurückweisen)
17 Algorithmische Problemstellungen Typische Aufgabenstellung: Sortiere Folge von n Zahlen
18 Algorithmische Problemstellungen Typische Aufgabenstellung: Sortiere Folge von n Zahlen Eingabe: 9, 3, 2, 15, 17, 8
19 Algorithmische Problemstellungen Typische Aufgabenstellung: Sortiere Folge von n Zahlen Eingabe: 9, 3, 2, 15, 17, 8 Ausgabe: 2, 3, 8, 9, 15, 17
20 Algorithmische Problemstellungen Typische Aufgabenstellung: Sortiere Folge von n Zahlen [neue Art von Problem?]
21 Algorithmische Problemstellungen Neue Problemformulierung: Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen Inversion: Bezeichne x i die Zahl an Stelle i unserer Reihenfolge Das Paar (i,j) ist eine Inversion, wenn gilt i<j, aber x i > x j Position 6 Beispiel: 1, 5, 4, 7, 8, 3 (2,6) ist eine Inversion Position 2
22 Algorithmische Problemstellungen Neue Problemformulierung: Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen Lemma: Eine Reihenfolge ohne Inversionen ist aufsteigend sortiert.
23 Algorithmische Problemstellungen Neue Problemformulierung: Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen Lemma: Eine Reihenfolge ohne Inversionen ist aufsteigend sortiert. Lemma: Eine Reihenfolge mit Inversionen ist nicht aufsteigend sortiert.
24 Algorithmische Problemstellungen Erkenntnis: Durch geschickte Umformulierung kann man die meisten algorithmischen Probleme als Entscheidungs- oder Optimierungsprobleme formulieren Vorgehensweise: Wir werden zunächst Entscheidungsprobleme untersuchen und uns danach (ggf. in anderen Vorlesungen) mit Optimierungsproblemen beschäftigen
25 Langfristige Fragestellung Welche Entscheidungsprobleme können durch einen Rechner gelöst werden?
26 Formale Sprachen Wie kann man Entscheidungsprobleme allgemein formulieren? Annahme: Jede Eingabe kann als endliche Zeichenkette (Bitstring) beschrieben werden Bei Entscheidungsproblemen müssen wir bestimmen, ob eine Eingabe eine vorgegebene Eigenschaft hat Äquivalent: Bestimme die Menge der Bitstrings, die eine Eingabe mit der vorgegenene Eigenschaft kodieren
27 Formale Sprachen Beispiel: Primzahlerkennung Eingabe ist eine Zahl Kann Zahl durch Binärkodierung darstellen Muss alle Zahlen akzeptieren, deren Binärkodierung eine Primzahl ist L = {Bitstrings b : b ist die Binärdarstellung einer Primzahl} Enscheide, ob Bitstring b in L ist
28 Formale Sprachen Wichtige Erkenntnis: Man kann auf dieselbe Weise jedes Problem als Problem über Bitstrings formulieren Generalisiertes Problem: Sei L eine Menge von Bitstrings Entscheide, ob Eingabebitstring b in L liegt
29 0 11 0, Verarbeite Eingabe von links nach rechts 1 Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet
30 Ein Deterministischer Endlicher Automat (DEA) Zustände 0 q 1 0,1 1 1 q 0 0 q q 2 Zustände Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet
31 Ein Deterministischer Endlicher Automat (DEA) Zustände Endzustände(F) 0 q 1 0,1 1 1 q 0 Startzustand(q 0 ) 0 q q 2 Zustände Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet
32 Zustandsdiagramm des Automaten A swim Eigenschaften von A swim : Münzeingaben mit Werten 50, 100, 200 in beliebiger Reihenfolge Nach Einwurf von insgesamt 200 akzeptiert A swim : Eintritt freigegeben! Der Gesamtwert der bisherigen Eingabe ist im aktuellen Zustand vermerkt. 32
33 Startkonfiguration von A swim Eingabeband enthält Eingaben als Folgen von Zeichen Zustandsspeicher enthält jeweils aktuellen Zustand Programm, Kontrolle: Zustandsübergangsfunktion δ. 33
34 34 Rechnung des Automaten A swim
35 Konfiguration eines endlichen Automaten 35
36 Alphabete 36 Automaten verarbeiten Zeichenfolgen, die aus atomaren Symbolen bestehen. Menge der zugelassenen Zeichen: Endliches Alphabet Σ. Beispiele: w Σ = {50, 100, 200} Σ = 3 w Σ = {a 1, a 2, a 3,, a n } Σ = n w Σ = {a, b,., z} Σ = 26 w Σ = Σ = 0
37 Deterministische endliche Automaten Ein deterministischer endlicher Automat (DFA) ist gegeben durch eine endliche Menge Σ von Eingabezeichen eine endliche Menge S von Zuständen eine Übergangsfunktion δ : S x Σ S einen Anfangszustand s 0 S eine Endzustandsmenge F S Kurz: A = (Σ, S, δ, s 0, F) δ kann auch durch einen Zustandsübergangs Graphen oder als Menge von Tripeln (s, a, t) mit δ (s, a) = t gegeben sein δ ist manchmal nicht total (überall definiert) 37
38 Erweiterte Übergangsfunktion Die Zustandsübergangsfunktion δ kann von Zeichen auf Wörter erweitert werden: δ*: S x Σ* S definiert durch w δ*(s, ε) = s für alle s S w δ*(s, aw) = δ*(δ(s, a), w) für alle a Σ, w Σ* Für einen endlichen Automaten A = (Σ, S, δ, s 0, F) wird die von A akzeptierte Sprache (die Menge aller von A akzeptierten Eingabefolgen) L(A) Σ* definiert durch: L(A) = {w; δ*(s 0, w) F} 38
39 Beispiel s 0 s
40 Konfiguration eines endlichen Automaten 40
41 Konfigurationsübergänge 41 Ein Konfigurationsübergang (s, v) (t, w) kann stattfinden, wenn v = aw und δ(s, a) =t ist. Die Abarbeitung eines Wortes x = x 1 x 2 x r durch einen DFA kann als Folge von Konfigurationsübergängen beschrieben werden: (s 0, x 1 x 2 x r ) (s 1, x 2 x r ) (s r, ε ) Mit * wird die transitiv-reflexive Hülle von beschrieben. Beispiel: (start, )
42 (start, )
43 Reguläre Sprachen Für einen DFA A = (Σ, S, δ, s 0, F) ist L(A) = {w Σ* ; (s 0, w) * (s, ε), s F} die von A akzeptierte Sprache. Eine Sprache L Σ* heißt regulär, wenn es einen DFA A gibt mit L = L(A). Zwei DFA A und A heißen äquivalent, falls sie die gleiche Sprache akzeptieren, wenn also gilt: L(A) = L(A ). 43
Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen
Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag
Automaten und Formale Sprachen ε-automaten und Minimierung
Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung
Endliche Automaten. Grundlagen: Alphabet, Zeichenreihe, Sprache. Karin Haenelt
Endliche Automaten Grundlagen: Alphabet, Zeichenreihe, Sprache Karin Haenelt 1 Alphabet, Zeichenreihe und Sprache Alphabet unzerlegbare Einzelzeichen Verwendung: als Eingabe- und Ausgabezeichen eines endlichen
Formale Sprachen und endliche Automaten
Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche
Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!
Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit Sommersemester 2012 Prof. Dr. Nicole Schweikardt AG Theorie komplexer Systeme Goethe-Universität Frankfurt am Main Herzlich willkommen!
Theoretische Informatik
Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:
4.2.4 Reguläre Grammatiken
4.2.4 Reguläre Grammatiken Eine reguläre Grammatik ist eine kontextfreie Grammatik, deren Produktionsregeln weiter eingeschränkt sind Linksreguläre Grammatik: A w P gilt: w = ε oder w = Ba mit a T und
Übungsaufgaben zu Formalen Sprachen und Automaten
Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel
7 Endliche Automaten. 7.1 Deterministische endliche Automaten
7 Endliche Automaten 7.1 Deterministische endliche Automaten 7.2 Nichtdeterministische endliche Automaten 7.3 Endliche Automaten mit g-übergängen Endliche Automaten 1 7.1 Deterministische endliche Automaten
Operationen auf endlichen Automaten und Transduktoren
Operationen auf endlichen Automaten und Transduktoren Kursfolien Karin Haenelt 1 Notationskonventionen L reguläre Sprache A endlicher Automat DEA deterministischer endlicher Automat NEA nichtdeterministischer
5.4 Endliche Automaten
5.4 Endliche Automaten Ein endlicher Automat ist ein mathematisches Modell eines Systems mit Ein- und Ausgaben. Ein solches System befindet sich immer in einem internen Zustand. Beispiele Ein Register
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische
Vorlesung Berechenbarkeit und Komplexität Wintersemester 2016/17. Wer sind wir? Willkommen zu
Vorlesung Berechenbarkeit und Komplexität Wintersemester 2016/17 Prof. Barbara König Übungsleitung: Sebastian Küpper Willkommen zu Berechenbarkeit und Komplexität (Bachelor Angewandte Informatik, Duisburg
Informatik-Grundlagen
Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme
Überführung regulärer Ausdrücke in endliche Automaten
Der Algorithmus von Thompson Karin Haenelt 9.5.2010 1 Inhalt Quelle Prinzip des Algorithmus Algorithmus Konstruktion des Automaten Basisausdrücke Vereinigung, Konkatenation, Hülle Beispiel Implementierung
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Rolf Socher ISBN 3-446-22987-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22987-6 sowie im Buchhandel Einführung.. 13 2 Endliche
Reguläre Ausdrücke. Karin Haenelt
Reguläre Ausdrücke Karin Haenelt 25.04.2010 1 Inhalt Einführung Definitionen Kleene-Theorem Schreibweisen regulärer Ausdrücke Eigenschaften regulärer Sprachen 2 Was sind reguläre Ausdrücke? Reguläre Ausdrücke
2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht
Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen
c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}
2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?
Deterministische endliche Automaten - Wiederholung
Deterministische endliche Automaten - Wiederholung Die folgende Klasse Zahl stellt einen endlichen Automaten dar. Ermittle die Größen des Automaten und zeichne den Zustandsgraphen. Gib Zeichenfolgen an,
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 17.10.2005 1. Vorlesung 1 Kapitel I Motivation Motivation Komplexitätstheorie 01-2 Automaten und Formale
Herzlich willkommen!!!
Theoretische Informatik 2 Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! 1 / 19 Kapitel 1: Einführung
Informatik III Grundlagen der theoretischen Informatik
Sanders: Informatik III October 26, 2006 1 Informatik III Grundlagen der theoretischen Informatik Peter Sanders Übungen: Thomas Käufl Roman Dementiev und Johannes Singler Institut für theoretische Informatik,
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Theoretische Informatik 1
heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert
Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange
Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung
Formale Sprachen und Automaten
Avant Propos Formale Sprachen und Automaten Sie [die Theorie der formalen Sprachen] ist ein Musterbeispiel einer informatischen Theorie, weil es ihr gelingt, einen großen Bestand an Einsichten und Zusammenhängen
WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven
WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.
Theoretische Grundlagen der Informatik
Sanders: TGI October 20, 2015 1 Theoretische Grundlagen der Informatik Peter Sanders Übungen: Lorenz Hübschle-Schneider Tobias Maier Institut für theoretische Informatik Sanders: TGI October 20, 2015 2
Theoretische Informatik I
heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe
Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat
Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann [email protected] 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat
Automaten und formale Sprachen: Vorlesungsskript G. Brewka, A. Nittka
Automaten und formale Sprachen: Vorlesungsskript G. Brewka, A. Nittka Literatur: John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie,
Anwenundg regulärer Sprachen und endlicher Automaten
Proseminar Theoretische Informatik Dozent: Prof. Helmut Alt Anwenundg regulärer Sprachen und endlicher Automaten Madlen Thaleiser 30. Oktober 2012 Reguläre Sprachen Regulärer Ausdruck definiert über einem
Theoretische Informatik 1
heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M
Deterministische Turing-Maschinen
Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
Kapitel 2: Formale Sprachen Gliederung
Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten
Automaten und Formale Sprachen
Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien
Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie
Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit
Operationen auf endlichen Akzeptoren und Transduktoren
Operationen auf endlichen Akzeptoren und Transduktoren Definitionen, Algorithmen, Erläuterungen und Beispiele - eine Übersicht Karin Haenelt, 28.5.2010 ( 1 25.04.2004) Operationen auf endlichen Akzeptoren
Einführung in die Informatik
Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der
Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK
Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz
Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23
1/23 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich
Theoretische Informatik
Theoretische Informatik Sommersemester 2004 Christoph Kreitz Theoretische Informatik, Raum 1.18, Telephon 3060 [email protected] http://www.cs.uni-potsdam.de/ti/kreitz 1. Themen und Lernziele 2.
Kapitel 7: Kellerautomaten und kontextfreie Sprachen
Kapitel 7: Kellerautomaten und kontextfreie Sprachen Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : [email protected]
Endliche Automaten. Endliche Automaten J. Blömer 1/23
Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls
Induktive Definition
Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}
8. Turingmaschinen und kontextsensitive Sprachen
8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Einführung in Berechenbarkeit, Komplexität und formale Sprachen
Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................
Theoretische Informatik
Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ [email protected] SS 2011 1 Einordnung der Theoretischen
1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005
Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten
Kapitel 3: Reguläre Grammatiken und Endliche. Automaten
Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : [email protected]
Lösungsvorschläge Blatt 4
Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit
Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2
Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen endlichen Automaten akzeptiert wird ist regulär und jede reguläre Sprache wird von einem deterministischen endlichen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Endliche Automaten. Kapitel Deterministische endliche Automaten
Kapitel 2 Endliche Automaten In diesem Kapitel stellen wir besonders einfache abstrakte Rechnermodelle vor, die so genannten endlichen Automaten. Endlichkeit bezieht sich dabei auf die Gedächtnisleistung
Theoretische Informatik [TI] Bachelorstudiengang Informatik/IT-Sicherheit. Autoren: Prof. Dr. Steffen Lange Prof. Dr.
Bachelorstudiengang Informatik/IT-Sicherheit Theoretische Informatik [TI] Autoren: Prof. Dr. Steffen Lange Prof. Dr. Marian Margraf Hochschule Darmstadt Theoretische Informatik [TI] Studienbrief 1: Einführung
THEORETISCHE INFORMATIK
THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek @ Institut für Theoretische Informatik Technische Universität Braunschweig Dezember 28 Inhaltsverzeichnis Endliche Automaten. Mathematische Grundbegriffe......................
Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel
Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -
Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Thies Pfeiffer Technische Fakultät [email protected] Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 1 Exkurs: Formale
Lexikalische Programmanalyse der Scanner
Der Scanner führt die lexikalische Analyse des Programms durch Er sammelt (scanned) Zeichen für Zeichen und baut logisch zusammengehörige Zeichenketten (Tokens) aus diesen Zeichen Zur formalen Beschreibung
Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden
Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
Reguläre Sprachen und endliche Automaten
Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented
Es gibt drei unterschiedliche Automaten:
Automatentheorie Es gibt drei unterschiedliche Automaten: 1. Deterministische Endliche Automaten (DEA) 2. Nichtdeterministische Endliche Automaten (NEA) 3. Endliche Automaten mit Epsilon-Übergängen (ε-
Formale Sprachen und Automaten
Formale Sprachen und Automaten Kapitel 1: Grundlagen Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Ziel Einführung der wichtigsten
Automaten und Coinduktion
Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und
Übung zur Vorlesung Theoretische Information. Minimierungsalgorithmus
Übung zur Vorlesung Theoretische Information Minimierungsalgorithmus Folie Warum Automaten minimieren? Zwei endliche Automaten Automat q q Automat 2 q q Beide akzeptieren die selbe Sprache Welche? q 2
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Endliche Automaten. Deterministische Akzeptoren, nichtdeterministische Akzeptoren, nichtdeterministische Akzeptoren mit Epsilon-Übergängen
Endliche Automaten Deterministische Akzeptoren, nichtdeterministische Akzeptoren, nichtdeterministische Akzeptoren mit Epsilon-Übergängen Karin Haenelt 1 Themen 1. Endliche Automaten: Übersicht 2. Akzeptoren
Theorie der Informatik
Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Theoretische Informatik 1
Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009
Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache
Grundlagen der Informatik II
Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s
kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung
Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben
Lexikalische Analyse, Tokenizer, Scanner
Lexikalische Analyse, Tokenizer, Scanner Frühe Phase des Übersetzers Aufgabenteilung: Scanner (lokale) Zeichen (Symbol-)Analyse Parser Syntax-Analyse Aufgabe des Scanners: Erkennung von: Zahlen, Bezeichner,
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.
Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Endliche Automaten. Im Hauptseminar Neuronale Netze LMU München, WS 2016/17
Endliche Automaten Im Hauptseminar Neuronale Netze LMU München, WS 2016/17 RS- Flipflop RS-Flipflop Ausgangszustand 0 1 0 1 0 1 Set Reset neuer Zustand 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 Was ist ein endlicher
