Theoretische Informatik

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik"

Transkript

1 Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII SS

2 Einordnung der Theoretischen Informatik Informatik Wissenschaft von der Darstellung und Verarbeitung symbolischer Information durch Algorithmen Teilgebiete der Informatik: theoretisch technisch Sprachen zur Formulierung von Information und Algorithmen, Möglichkeiten und Grenzen der Berechenbarkeit durch Algorithmen, Grundlagen für technische und praktische (und angewandte) Informatik maschinelle Darstellung von Information Mittel zur Ausführung von Algorithmen praktisch Entwurf und Implementierung von Algorithmen angewandt Anwendung von Algorithmen 2

3 Theoretische Informatik ältester Zweig der Informatik (lange vor Computern) Mathematische Prinzipien: Abstraktion ermöglicht verallgemeinerte Aussagen und breit einsetzbare Verfahren, Ergebnisse und Verfahren oft nicht sofort praktisch anwendbar, müssen auf spezielle Situationen angepasst werden. Beweisbarkeit erfordert präzise Modellierung des Problems Nachweis der Korrektheit von Hard- und Software (Tests können dies nicht!) Wissen aus der theoretischen Informatik veraltet kaum. 3

4 Themen der theoretischen Informatik Formale Sprachen Repräsentation von Problemen in maschinenlesbarer Form (Mensch-Maschine-Kommunikation, Modellierung) Ausdrucksstärke und Flexibilität von Programmiersprachen Übersetzung höherer Programmiersprachen in ausführbaren Code Nachweis der Korrektheit von Algorithmen (Verifikation) Maschinenmodelle Möglichkeiten und Grenzen verschiedener Modelle zur Ausführung von Algorithmen Berechenbarkeitstheorie Welche Probleme sind überhaupt algorithmisch (mit Hilfe eines Computers) lösbar? Auch negative Antworten sind sehr hilfreich (sparen Aufwand für unlösbare Probleme). Komplexitätstheorie Für welche Probleme gibt es schnelle Algorithmen? 4

5 Inhalt der Lehrveranstaltung Formale Sprachen Alphabet, Wort, Sprache Wortersetzung Grammatiken, Chomsky-Hierarchie Maschinenmodelle Endliche Automaten Kellerautomaten Turing-Maschinen Berechenbarkeit berechenbare Funktionen Berechnungsmodelle These von Church algorithmische Entscheidbarkeit / Unentscheidbarkeit Komplexität Komplexitätsmaße Komplexitätsklassen P, NP, PSPACE jeweils mit vielen Beispielen 5

6 Literatur Uwe Schöning: Theoretische Informatik - kurzgefasst (Spektrum 2001) John E. Hopcroft, Jeffrey D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie (Addison-Wesley 1990) Dirk W. Hoffmann: Theoretische Informatik (Hanser 2009) Rolf Socher: Theoretische Grundlagen der Informatik (Hanser 2008) Ulrich Hedtstück: Einführung in die Theoretische Informatik (Oldenbourg 2007) Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik (Vieweg 2006) Alexander Asteroth, Christel Baier: Theoretische Informatik. Eine Einführung in Berechenbarkeit, Komplexität und formale Sprachen (Pearson 2002) Renate Winter: Theoretische Informatik (Oldenbourg 2002) 6

7 Organisation Vorlesung (in HS2) Z1 Donnerstag 15:20-16:50 Z1 Freitag 9:20-10:50 Z2 Donnerstag 15:20-16:50 Hausaufgaben (Voraussetzung zur Prüfungszulassung) schriftliche Aufgaben praktische Aufgaben (Autotool) Übungen 2 Gruppen Z2 Montag 9:20-10:50 Uhr in PBS 304 Z2 Montag 11:20-12:50 Uhr in 311 (Z2 Mittwoch ca. 13:30-15:00 Uhr in 311 Ausweichtermin, freiwillige Übungen für alle) Fragen zum Vorlesungsstoff Besprechung der schriftlichen Übungsaufgaben Prüfung: Klausur 90 min (Hilfsmittel: handgeschriebenes A4-Blatt) 7

8 Formale Sprachen natürliche Sprachen Rechtschreibung: korrekte Wörter Grammatik: Aufbau korrekter Sätze Definition von Programmiersprachen: Syntax Form der Sprachelemente Semantik Bedeutung der Sprachelemente und -strukturen Pragmatik Regeln zur zweckmäßigen Anwendung Syntax: Schlüsselwörter, Bezeichner, Darstellung von Zahlen,... Programmstrukturen: Form der Ausdrücke, Anweisungen, Deklarationen,... 8

9 Maschinenmodell: endlicher Automat Beschreibung des dynamischen Verhaltens von Systemen Modellierung von Abläufen Beispiele: Bedienoperationen an Geräten oder Software Schaltfolgen von Ampelanlagen Ablauf von Geschäftsprozessen Steuerung von Produktionsanlagen 9

10 Beispiel: Einlassautomat mit Karte definiert durch Zustände: gesperrt, frei Startzustand: gesperrt Aktionen (Eingabesymbole): Karte (anlegen), Durchgehen, Timeout Zustandsübergänge(gesperrt, Karte) frei (frei, Karte) frei (frei, Durchgehen) gesperrt (frei, Timeout) gesperrt definiert mögliche (erlaubte) Folgen von Aktionen ( Karte Karte ( Durchgehen + Timeout )) Diese Folgen lassen sich durch reguläre Ausdrücke darstellen. 10

11 Berechenbarkeit / Entscheidbarkeit Halteproblem: Kann ein Programm U existieren, welches für jedes beliebige Programm P (Eingabe als Quelltext) entscheidet, ob P nach endlich vielen Schritten anhält? Nein Folgerungen: Alle Versuche, ein solches Programm zu schreiben, müssen fehlschlagen. Suche nach Verfahren, die für möglichst viele Programme P entscheiden, ob P nach endlich vielen Schritten anhält, ist sinnvoller. 11

12 Komplexität Beispiel Primzahltest Problem: Ist eine gegebene Zahl n eine Primzahl? Instanz des Problems: Ist eine Primzahl? lösbar durch Algorithmus: 1. Für alle i {2,..., n}: Test: Ist n durch i teilbar? ja: Ende mit Ausgabe n ist nicht prim. nein: weiter (mit Test für i + 1) 2. Ausgabe: n ist prim. Test ist für große Zahlen aufwendig. Geht es besser? Was bedeutet aufwendig und einfach? Wie aufwendig ist eine Berechnung? Wie aufwendig ist die Lösung eines Problemes? 12

13 Beispiele banane ist ein Wort (Zeichenkette) mit Symbolen aus der Menge {a, b, e, n} neben und abbbeeeab auch, ananas und ab + bea nicht 2009 ist ein Wort mit Symbolen aus der Menge {0, 2, 9} 90 und auch, 2090 nicht (x + y) (z x) ist ein Wort mit Symbolen aus der Menge {x, y, z, (, ), +,, } ()xz(xy + auch, x + 3 z nicht ( p p) q ist ein Wort mit Symbolen aus der Menge {p, q,,,, (, )} q (p q) und )( p auch, p = q nicht otto holt obst. ist ein Wort mit Symbolen aus der Menge {otto, obst, holt,., },.otto..otto auch, los otto nicht 13

14 Begriffe Notationen: Für eine Menge A heißt A n = A A }{{} n = {w 1 w n i : w i A} Menge aller Wörter der Länge n über A (n-tupel, Vektoren, Listen, Zeichenketten) A = {n N} An A 0 = {ε} Menge aller Wörter über A mit leerem Wort ε Alphabet (endliche) Menge A von Symbolen Wort endliche Folge von Symbolen w = w 1 w n mit i {1,..., n} : w i A Länge eines Wortes w = Anzahl der Symbole in w Sprache Menge von Wörtern L A 14

15 Beispiele für Sprachen Menge aller englischen Wörter L 1 {a,..., z} Menge aller deutschen Wörter L 2 {a,..., z, ß,ä,ö,ü} Menge aller möglichen DNA L 3 {A, T, G, C} Menge aller natürlichen Zahlen in Dezimaldarstellung L 4 {0,..., 9} (evtl. mit führenden Nullen) Menge aller natürlichen Zahlen in Binärdarstellung (Bitfolgen beliebiger Länge) L 5 {0, 1} Menge aller deutschen Sätze L 6 (L 2 {.,,,!,?, (, ), }) Problem: Für die automatische Verarbeitung von Sprachen ist eine endliche Darstellung notwendig (auch für unendliche Sprachen). 15

16 Verkettung Verkettung von Wörtern: : A A A, wobei für alle Wörter u = u 1 u m A, v = v 1 v n A gilt u v = u 1 u m v 1 v n Beispiel: anne marie = annemarie Eigenschaften der Operation : ist assoziativ, d.h. für alle Wörter u, v, w A gilt (u v) w = u (v w) Das leere Wort ε ist neutral für, d.h. w A : (ε w = w ε = w) Damit ist (A,, ε) ein Monoid (Halbgruppe mit neutralem Element). ist nicht kommutativ. Gegenbeispiel: u = marie, v = anne u v = marieanne annemarie = v u 16

17 Umkehrung (gespiegeltes Wort) Umkehrung von w = w 1 w n : w R = w n w 1 Beispiele: marie R = eiram, 2009 R = 9002, 101 R = 101 ( to ( ( m (ate) R) R n ) R ) R =... Fakt Für jedes Wort w A gilt ( w R) R = w. Beweis: Für beliebiges w = w 1... w n A gilt w R = w n w 1 (nach Definition von R ) und damit (w R ) R = (w n w 1 ) R = w 1... w n (nach Def. von R ). Wegen w 1... w n = w gilt (w R ) R = w. Fakt Für zwei beliebige Wörter u, v A gilt (u v) R = v R u R. 17

18 Palindrome Palindrom: Wort w mit w = w R B: anna, neben, ε, jedes Wort der Länge 1 Die Menge aller Palindrome über dem Alphabet A ist L pal = {w A w = w R } = {w w R w A } {w a w R w A a A} }{{}}{{} L pal0 L pal1 Beispiele für Wörter aus L pal : otto = ot to = ot (ot) R für w = ot A = {a,..., z} reliefpfeiler = relief p feiler = relief p (relief ) R für w = relief A = {a,..., z} 1 = ε 1 ε = ε 1 ε R für A = {0, 1} ε = ε ε = ε ε R 18

19 Relationen auf Wörtern (binäre Relation = Menge geordneter Paare) Präfix-Relation (Anfangswort): A A Für zwei Wörter u = u 1 u m A, v = v 1 v n A gilt genau dann u v, wenn ein Wort w A existiert, so daß u w = v gilt. Beispiele: an anna (mit w = na) n anna tom tomate (mit w = ate) oma tomate für jedes Wort u A gilt ε u (mit w = u) für jedes Wort u A gilt u u (mit w = ε) 19

20 Postfix- und Infix-Relation Postfix-Relation: Für zwei Wörter u = u 1 u m A, v = v 1 v n A heißt u genau dann Postfix von v, wenn ein Wort w A existiert, so dass w u = v gilt. Beispiel: enten ist Postfix von studenten Infix-Relation (Teilwort, Faktor): Für zwei Wörter u = u 1 u m A, v = v 1 v n A heißt u genau dann Infix von v, wenn zwei Wörter w, w A existieren, so dass w u w = v gilt. Beispiel: uwe ist Infix von sauwetter satt ist kein Infix von sauwetter 20

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://www.fh-zwickau.de/~sibsc/ [email protected] SS 2012 1 Einordnung der Theoretischen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ [email protected] SS 2010 1 Einordnung der Theoretischen

Mehr

Theoretische Informatik Automaten und formale Sprachen

Theoretische Informatik Automaten und formale Sprachen Theoretische Informatik Automaten und formale Sprachen Prof. Dr. Sibylle Schwarz HTWK Leipzig, Fakultät IMN Gustav-Freytag-Str. 42a, 04277 Leipzig Zimmer Z 411 (Zuse-Bau) http://www.imn.htwk-leipzig.de/~schwarz

Mehr

Was bisher geschah. Modellierung von Aussagen durch Logiken. Modellierung von Daten durch Mengen

Was bisher geschah. Modellierung von Aussagen durch Logiken. Modellierung von Daten durch Mengen Was bisher geschah Modellierung von Aussagen durch Logiken Modellierung von Daten durch Mengen extensionale und intensionale Darstellung Mächtigkeiten endlicher Mengen, Beziehungen zwischen Mengen, =,

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sommersemester 2004 Christoph Kreitz Theoretische Informatik, Raum 1.18, Telephon 3060 [email protected] http://www.cs.uni-potsdam.de/ti/kreitz 1. Themen und Lernziele 2.

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 09.04.2013 Inhalt der Vorlesung Teil I: Automaten und formale Sprachen (Kurt Sieber)

Mehr

Ist eine algorithmische Problemstellung lösbar und wenn ja, mit welchen Mitteln? was ist eine algorithmische Problemstellung?

Ist eine algorithmische Problemstellung lösbar und wenn ja, mit welchen Mitteln? was ist eine algorithmische Problemstellung? Überblick 1. reguläre Sprachen endliche Automaten (deterministisch vs. nichtdeterministisch) Nichtregularität 2. Berechenbarkeit Registermaschinen/Turingmaschinen Churchsche These Unentscheidbarkeit 3.

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Informatik IV Theoretische Informatik

Informatik IV Theoretische Informatik Informatik IV Theoretische Informatik Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2019 Dozent: Prof. Dr. J. Rothe im Wechsel mit Jun.-Prof. Dr. D. Baumeister Prof.

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]

Mehr

Berechenbarkeitstheorie 1. Vorlesung

Berechenbarkeitstheorie 1. Vorlesung Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Zentrale Themen

Mehr

Theoretische Informatik für Medieninformatiker

Theoretische Informatik für Medieninformatiker Theoretische Informatik für Medieninformatiker Jan Johannsen Lehrveranstaltung im Sommersemester 27 / 6 Organisatorisches: Jede Lehrveranstaltungsstunde gliedert sich in einen Vorlesungsteil, dessen Länge

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen! Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit Sommersemester 2012 Prof. Dr. Nicole Schweikardt AG Theorie komplexer Systeme Goethe-Universität Frankfurt am Main Herzlich willkommen!

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2014 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2014) 0. Organisatorisches und Überblick 1 / 16

Mehr

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Thies Pfeiffer Technische Fakultät [email protected] Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 1 Exkurs: Formale

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

Grundlagen der Programmierung (Vorlesung 24)

Grundlagen der Programmierung (Vorlesung 24) Grundlagen der Programmierung (Vorlesung 24) Ralf Möller, FH-Wedel Vorige Vorlesung Anwendung im Bereich Compilerbau Inhalt dieser Vorlesung Turing-Maschinen Berechenbarkeitstheorie, Halteproblem Lernziele

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Einführung Ralf Möller Hamburg Univ. of Technology Übung Fr. 14:30-15:15 Max Berndt, D1025 Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,

Mehr

Einführung in die theoretische Informatik

Einführung in die theoretische Informatik SS 2015 Einführung in die theoretische Informatik Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/ Sommersemester 2015 THEO Kapitel 0 Organisatorisches Vorlesungen:

Mehr

Informatik III Grundlagen der theoretischen Informatik

Informatik III Grundlagen der theoretischen Informatik Sanders: Informatik III October 26, 2006 1 Informatik III Grundlagen der theoretischen Informatik Peter Sanders Übungen: Thomas Käufl Roman Dementiev und Johannes Singler Institut für theoretische Informatik,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Sanders: TGI October 20, 2015 1 Theoretische Grundlagen der Informatik Peter Sanders Übungen: Lorenz Hübschle-Schneider Tobias Maier Institut für theoretische Informatik Sanders: TGI October 20, 2015 2

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Algorithmen und Berechnungskomplexität I Prof. Dr. Institut für Informatik Wintersemester 2013/14 Organisatorisches Vorlesung Dienstag und Donnerstag, 12:30 14:00 Uhr (HS 1) Übungen 16 Übungsgruppen Anmeldung

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Sommersemester 2006 Christoph Kreitz / Holger Arnold Theoretische Informatik http://www.cs.uni-potsdam.de/ti/lehre/06-theorie-ii 1. Das Team 2. Lernziele und Lehrinhalte 3. Organisatorisches

Mehr

Vorlesung Automaten und Formale Sprachen Sommersemester 2018

Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Barbara König Automaten und Formale Sprachen 1 Das heutige Programm: Organisatorisches

Mehr

Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem

Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem -Problem Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Zum Aufwärmen: wir betrachten das sogenannte -Problem, bei dem ein Abenteurer/eine

Mehr

Grundkurs Theoretische Informatik

Grundkurs Theoretische Informatik Gottfried Vossen I Kurt-Ulrich Witt Grundkurs Theoretische Informatik Eine anwendungsbezogene Einführung - Für Studierende in allen Informatik-Studiengängen 5., durchgesehene Auflage Mit 147 Abbildungen

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Was bisher geschah. Darstellung von Sprachen Ausführen von Berechnungen

Was bisher geschah. Darstellung von Sprachen Ausführen von Berechnungen Was bisher geschah Alphabet, Wort, Sprache Operationen auf Wörtern: Spiegelung R, Verkettung Palindrome Relationen zwischen Wörtern: Präfix, Infix, Postfix Wortersetzungssystem S: Regeln (l r), Ersetzungsschritt

Mehr

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen

Mehr

Vorlesung Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2015

Vorlesung Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2015 Vorlesung Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2015 Prof. Barbara König Übungsleitung: Jan Stückrath Barbara König Automaten und Formale Sprachen 1 Das heutige Programm:

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Theoretische Informatik 2 Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! 1 / 19 Kapitel 1: Einführung

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Wintersemester 2003 Christoph Kreitz / Eva Richter Theoretische Informatik, Raum 1.19, Telephon 3064 {kreitz,erichter}@cs.uni-potsdam.de http://www.cs.uni-potsdam.de/ti 1. Das

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Prof. Dr. Institut für Informatik Abteilung V Wintersemester 2015/16 Dozenten und Tutoren Vorlesung Professor für Theoretische Informatik E-Mail: [email protected] Web: http://www.roeglin.org/ Büro:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 5. Algorithmen K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 21. Okt. 2015 1. Berechne 2 n. Zu lösende Probleme 2. Berechne die Fakultät einer nat. Zahl: n! = 1 * 2 *... n 3. Entscheide,

Mehr

Was bisher geschah Alphabet, Wort, Sprache

Was bisher geschah Alphabet, Wort, Sprache Was bisher geschah Alphabet, Wort, Sprache Wörter w A Operationen: Spiegelung R, Verkettung Palindrome Relationen: Präfix, Infix, Postfix, lexikographische, quasi-lexikographische Ordnung Sprachen L A

Mehr

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Holger Arnold Dieser Text befasst sich mit der Frage, unter welchen Bedingungen das Problem, zu bestimmen, ob die

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Stefan Rass System Security Research Group (syssec), Institute of Applied Informatics Alpen-Adria Universität Klagenfurt {stefan.rass}@aau.at 2017 WS 2017-09-29

Mehr

(Algebraische) Strukturen Beispiele (Träger-)Mengen (Individuenbereiche) mit Relationen (Eigenschaften, Beziehungen) und Funktionen (Operationen) auf

(Algebraische) Strukturen Beispiele (Träger-)Mengen (Individuenbereiche) mit Relationen (Eigenschaften, Beziehungen) und Funktionen (Operationen) auf Was bisher geschah Modellierung von Aussagen durch logische Formeln Daten durch Mengen, Multimengen, Folgen, Sprachen Zusammenhängen und Eigenschaften von Elementen von Mengen durch Relationen (Eigenschaften

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik von Dirk Hoffmann 2., aktualisierte Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42639 9 Zu Leseprobe schnell und portofrei erhältlich bei

Mehr

Allgemeines Halteproblem Hilberts 10. Problem

Allgemeines Halteproblem Hilberts 10. Problem Allgemeines Halteproblem Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Wiederholung: Modellierung in Prädikatenlogik

Wiederholung: Modellierung in Prädikatenlogik Was bisher geschah Modellierung von Aussagen durch logische Formeln Daten durch Mengen, Multimengen, Folgen, Sprachen Zusammenhängen und Eigenschaften von Elementen von Mengen durch Relationen (Eigenschaften

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Sommersemester 2006 Christoph Kreitz / Holger Arnold Theoretische Informatik http://www.cs.uni-potsdam.de/ti/lehre/06-theorie-ii 1. Das Team 2. Lernziele und Lehrinhalte 3. Organisatorisches

Mehr

Gegenstand der Vorlesung 1

Gegenstand der Vorlesung 1 Gegenstand der Vorlesung 1 I. Mittel zur Beschreibung/Spezifikation von Sprachen L; das sind Mengen von Zeichenreihen (Wörter) über einem Alphabet Σ. Bsp. Die Menge der (syntaktisch korrekten) Pascal-Programme

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 16.04.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt Organizatorisches Literatur Motivation und Inhalt Kurzer

Mehr

Informatik III. 1. Motivation und Organisation. Christian Schindelhauer

Informatik III. 1. Motivation und Organisation. Christian Schindelhauer 1. Motivation und Organisation Albert-Ludwigs-Universität Freiburg Institut für Informatik Wintersemester 2007/08 1 Organisation Motivation 2 2 Inhalt Endliche Automaten und Formale Sprachen Berechenbarkeitstheorie

Mehr

Grundkurs Theoretische Informatik

Grundkurs Theoretische Informatik Grundkurs Theoretische Informatik Eine anwendungsbezogene Einführung - Für Studierende in allen Informatik-Studiengängen Bearbeitet von Gottfried Vossen, Kurt-Ulrich Witt 6., erweiterte und überarbeitete

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2013/14

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2013/14 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? A. Gegeben eine kontextfreie Grammatik G. Gibt es ein

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

Automaten und Formale Sprachen 1. Vorlesung

Automaten und Formale Sprachen 1. Vorlesung Automaten und Formale Sprachen 1. Vorlesung Martin Dietzfelbinger 11. Oktober 2005 Hörer: Informatikstudierende im 3. Semester, Mathematikstudierende bei Bedarf Material: Skript, Folienkopien, Übungsblätter

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Theoretische Informatik Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 06. Dezember 2017 Die zentralen Fragen sind... Was kann man mit einem Computer nicht machen?

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Vorname Nachname Matrikelnummer Hinweise Für

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 3. Teilklausur 25. 07. 2007 Persönliche Daten bitte gut leserlich

Mehr

Satz von Rice. Lemma 39

Satz von Rice. Lemma 39 Unentscheidbarkeit Satz von Rice Das nächste Resultat zeigt, dass jede Eigenschaft der von einer Turing-Maschine berechneten Funktion unentscheidbar ist. Das bedeutet, es gibt keine Methode, mit der man

Mehr

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Christian Schwarz Markus Kaiser Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Klausur SoSe Juli 2013

Klausur SoSe Juli 2013 Universität Osnabrück / FB6 / Theoretische Informatik Prof. Dr. M. Chimani Informatik D: Einführung in die Theoretische Informatik Klausur SoSe 2013 11. Juli 2013 (Prüfungsnr. 1007049) Gruppe: Batman,

Mehr

DUDEN. Basiswissen Schule. Informatik Abitur. PAETEC Verlag für Bildungsmedien Berlin : Dudenverlag Mannheim Leipzig Wien Zürich

DUDEN. Basiswissen Schule. Informatik Abitur. PAETEC Verlag für Bildungsmedien Berlin : Dudenverlag Mannheim Leipzig Wien Zürich DUDEN Basiswissen Schule Informatik Abitur PAETEC Verlag für Bildungsmedien Berlin : Dudenverlag Mannheim Leipzig Wien Zürich vv 3 j Inhaltsverzeichnis 1 Grundbegriffe 7 1.1 Die Informatik als junge Wissenschaft

Mehr

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Wortproblem: der CYK-Algorithmus Pumping Lemma für kontextfreie Sprachen

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr