"Produktion und Logistik"
|
|
|
- Rudolf Bayer
- vor 8 Jahren
- Abrufe
Transkript
1 Prof. Dr. Jutta Geldermann, Dipl.-Kfm. Harald Uhlemair Klausur im Fach "Produktion und Logistik" zur Veranstaltung "Produktion und Logistik" Wintersemester 2007/08 Name:... Vorname:... Matrikelnummer:... Fachrichtung:... Falls Sie eine bevorzugte Korrektur benötigen, nennen Sie bitte den (nachprüfbaren!) Grund:... Aufgabe: erreichbare Punkte: erreichte Punkte: Hinweise: in der Klausur verwendete Maßeinheiten: ME (Mengeneinheiten) und GE (Geldeinheiten); i. d. R. sind bei Rechnungen zwei Nachkommastellen ausreichend
2 Name: 2 Aufgabe 1 (18 Punkte) Gegeben ist die folgende Gesamtkostenfunktion: K(x) = 5x 3-15x x + 50 a) Ermitteln Sie die Funktion der Grenzkosten. b) Ermitteln Sie die Funktion der totalen Stückkosten. c) Ermitteln Sie die Funktion der variablen Stückkosten. d) Ermitteln Sie die Funktion der fixen Stückkosten. e) Bestimmen Sie die Schwellenwerte des 4-Phasenschemas. Berechnen Sie den x-wert und den Gesamtkostenwert. Endpunkt Phase I: Berechnung: x-wert: Gesamtkosten:
3 Name: 3 Endpunkt Phase II: Berechnung: x-wert: Gesamtkosten: Endpunkt Phase III: Berechnung ist hier nicht erforderlich! Geben Sie nur den Ansatz an.
4 Name: 4 Aufgabe 2 (12 Punkte) In einem Unternehmen wird das Produkt X auf einem Aggregat gefertigt. Es sind die folgenden Verbrauchsfunktionen in Abhängigkeit von der Leistungsschaltung bekannt: v 1 ( d) = d d + 8 mit dem Faktorpreis q 1 = 2 GE/ME 24 4 v ( d ) 2 mit dem Faktorpreis q 2 = 5 GE/ME 2 = 1 v 3 ( d) = d + 7 mit dem Faktorpreis q 3 = 6 GE/ME 3 v 4 ( d ) = d mit dem Faktorpreis q 4 = 4 GE/ME Die Leistungsschaltung kann stufenlos zwischen der Minimalleistung d min in Höhe von 1 ME/Stunde und der Maximalleistung d max in Höhe von 8 ME/Stunde variiert werden. Die maximale tägliche Betriebszeit t max beträgt 10 Stunden. a) Ermitteln Sie die aggregierte bewertete Verbrauchsfunktion des Aggregates und bestimmen Sie die optimale Leistungsschaltung.
5 Name: 5 b) Bestimmen Sie die variablen Stückkosten bei optimaler Leistungsschaltung (zeitliche Anpassung) des Aggregates und bei intensitätsmäßiger Anpassung und nennen Sie die Gültigkeitsbereiche. c) Stellen Sie die Gesamtkostenfunktion auf, wenn der Betrieb mit Fixkosten in Höhe von GE arbeitet.
6 Name: 6 Aufgabe 3 (18 Punkte) In einem zweistufigen Fertigungsprozess werden die Faktorarten (Rohstoffe R 1, R 2, R 3 ) eingesetzt um ein Produkt X zu fertigen. Die Abteilungen A 1 und A 2 stellen die Zwischenprodukte Z 1 und Z 2 her. Die Abteilung A 3 erstellt das Endprodukt X. Die Direktbedarfsmatrix lautet: R 1 R 2 R 3 Z 1 Z 2 X R R R Z Z X Der Primärbedarf einer Periode beträgt in Stück: Z 1 : 150 Z 2 : 250 X: 1000 a) Zeichnen Sie den zugehörigen Gozintographen.
7 Name: 7 b) Ermitteln Sie den Bruttogesamtbedarf nach VAZSONYI oder dem Gozintolisten- Verfahren.
8 Name: 8 c) Wie würden Sie vorgehen, wenn Lagerbestände zu berücksichtigen wären? (Kurze verbale Antwort). Aufgabe 4 (12 Punkte) In einem Unternehmen ist ein Rohstoff zu disponieren. Eine Bestellung beansprucht 30 Minuten Arbeitszeit des Disponenten, der einen Stundenlohn von 20,- erhält. Der Einkaufspreis einer ME des Rohstoffs beträgt 4,-. Der jährliche Zinssatz beläuft sich auf 8%. a) Bestimmen Sie die optimale Bestellmenge sowie die optimale Bestellhäufigkeit für einen Monatsbedarf von ME. Geben Sie die Gesamtkosten an. (Es ist keine Ganzzahligkeit gefordert!)
9 Name: 9 b) Skizzieren Sie (unabhängig von Aufgabenteil a) allgemein die zur Bestimmung der optimalen Bestellhäufigkeit erforderlichen Kostenverläufe in Abhängigkeit von der Bestellhäufigkeit (n). Kennzeichnen Sie die optimale Bestellhäufigkeit. Zeichnen Sie auch das Gesamtkostenminimum ein.
10 Name: 10 Aufgabe 5 (22 Punkte) Ein Unternehmen möchte die Produktionsmengen x 1 und x 2 so bestimmen, dass der Deckungsbeitrag maximiert wird. Unter Beachtung der Kapazitätsrestriktionen der bei der Produktion eingesetzten drei Aggregate ergibt sich das folgende lineare Programm: DB = 4x 1 + 3x 2 Max! I 2x 1 + 4x 2 32 II x 1 + x 2 10 III 2x 1 + x 2 18 x 1 0 x 2 0 a) Zeichnen Sie alle Restriktionen des linearen Programms und schraffieren Sie den zulässigen Bereich. (Maßstab: 2 Kästchen entsprechen 1 ME) b) Ermitteln Sie graphisch die optimale Lösung und kennzeichnen Sie diese.
11 Name: 11
12 Name: 12 c) Stellen Sie das Ausgangs-Simplextableau zur Startecke (0/0) auf. d) Führen Sie einen Optimierungsschritt durch und geben Sie das neue Simplextableau an.
13 Name: 13 e) Im weiteren Verlauf ergibt sich folgendes Tableau: BV x 1 x 2 y 1 y 2 y 3 T x x y k i - g i e 1 ) Liegt ein Optimaltableau vor? (Begründung) e 2 ) Wie lauten die Basisvariablen und welche Werte haben sie?
14 Name: 14 e 3 ) Welcher Zielfunktionswert ergibt sich in dem Tableau und wie wird er berechnet? (Geben Sie zwei mögliche Berechnungswege an.) Aufgabe 6 (10 Punkte) Aus zwei Legierungen L 1 und L 2 wird durch Zusammenschmelzen eine neue Legierung hergestellt. 100 kg der Legierung L 1 enthalten 70 kg Kupfer, 10 kg Nickel und 20 kg Zink. 100 kg der Legierung L 2 enthalten 50 kg Kupfer, 10 kg Nickel und 40 kg Zink. Die neue Legierung soll mindestens 30 kg Kupfer, 5 kg Nickel und 12 kg Zink enthalten. 1 kg der Legierung L 2 kostet 4/3 mal so viel wie 1 kg von L 1. Wie viel kg von jeder Legierung müssen verwendet werden, damit die Bedingungen zu möglichst geringen Kosten erfüllt sind? (Anmerkung: Sowohl in a) als auch in b) sind keine Simplexberechnung notwendig. Es sollen lediglich die Optimierungsansätze dargestellt werden!) a) Stellen Sie das lineare Optimierungsmodell auf (duales Problem).
15 Name: 15 b) Stellen Sie das Problem aus Teilaufgabe a) als primales Optimierungsproblem dar. Aufgabe 7 (8 Punkte) Zeichnen Sie zur folgenden Technikmatrix den zugehörigen I/O-Graphen und erläutern Sie, welcher Produktionsstrukturtyp beschrieben ist
16 Name: 16 Aufgabe 8 (10 Punkte) a) Welche Aufgaben umfasst die Produktionsprogrammplanung?
17 Name: 17 b) Was bedeutet die Grenzproduktivität? c) Was versteht man unter intensitätsmäßiger Anpassung? d) Welche Bedeutung hat das Wissensmanagement in der industriellen Produktion?
18 Name: 18 e) Was versteht man im Innovationsmanagement unter dem not-invented-here-syndrom? f) Was bedeutet die Fragmentierung des Automobilmarktes für die Automobilproduktion?
19 Name: 19
20 Name: 20
"Produktion und Logistik"
Prof. Dr. Jutta Geldermann, Dipl.-Kfm. Harald Uhlemair Klausur im Fach "Produktion und Logistik" zur Veranstaltung "Produktion und Logistik" Sommersemester 2007 Name:... Vorname:... Matrikelnummer:...
Kurs Grundlagen der Linearen Algebra und Analysis
Aufgabe B0513 Lineare Optimierung Ein Unternehmen stellt drei Endprodukte P 1,P und P 3 her. Die jeweils zur Produktion einer Mengeneinheit des jeweiligen Endproduktes benötigten Mengeneinheiten des Zwischenproduktes
Abbildung 1: Graphische Lösung der ersten Übungsaufgabe
Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe
Übungsblatt 4. Aufgabe (Mengenplanung bei einer Produktart; linearer Umsatz- und Kostenverlauf)
Übungsblatt 4 Aufg. 4.1 (Mengenplanung bei einer Produktart; linearer Umsatz- und Kostenverlauf) In einem Einproduktunternehmen liegen folgende Informationen über das Erzeugnis vor: Stückpreis: 15 GE Variable
AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR THEORIE DER LEISTUNGSERSTELLUNG PROF. DR. DR. H.C. G. FANDEL. Aufgabe Σ
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: PRÜFER: 19. MÄRZ 2009, 09 00 11 00 UHR PROF. DR. DR. H.C. G. FANDEL
Klausur zur Vorlesung Operations Research im Wintersemester 2009/10
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Klausur zur Vorlesung Operations Research im Wintersemester 2009/10
Präsenzveranstaltung B-Modul Theorie der Leistungserstellung. Thomas Solga. Hagen, 17. Februar 2014
Präsenzveranstaltung B-Modul Theorie der Leistungserstellung Thomas Solga Hagen, 17. Februar 2014 2014 FernUniversitän Hagen, Fakultät für Wirtschaftswissenschaft Das Werk ist urheberrechtlich geschützt.
AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR THEORIE DER LEISTUNGSERSTELLUNG 17. SEPTEMBER 2009, UHR
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: PRÜFER: 17. SEPTEMBER 2009, 09 00 11 00 UHR PROF. DR. DR. H.C. G.
RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen
RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Lineare Algebra 03.2.994 (WS 94/95) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben;
Übungsblatt 1. a) Wie können diese drei Bereiche weiter unterteilt werden?
INSTITUT FÜR BETRIEBSWIRTSCHAFTLICHE PRODUKTIONS- UND INVESTITIONSFORSCHUNG Georg-August-Universität Göttingen Abteilung für Unternehmensplanung Prof. Dr. Dr. h. c. Jürgen Bloech Aufgabe. (Produktionsfaktorsystem)
Seite 1. ax² + bx + c = 0. Beispiel 1. Die Gewinnschwelle ist G'(x) = 0
Seite 1 Beispiel 1 Die variablen Kosten eines Produktes lassen sich durch die Funktion Kv(x) = -0,1 x² + 10x beschreiben, die fixen Kosten betragen 120 GE. Die Erlösfunktion ist gegeben durch die Funktion
Übungsaufgaben zur Vorlesung BWL A Produktion:
Betriebswirtschaftslehre, insbes. Produktionswirtschaft Prof. Dr. Stefan Betz Übungsaufgaben zur Vorlesung BWL A Produktion: Aufgabe 1 Definieren Sie die folgenden Begriffe, und grenzen Sie diese voneinander
Klausur zur Vorlesung Operations Research im Sommersemester 2009
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Operations Research im Sommersemester 2009 Hinweise:
Beschäftigungsglättung
Beschäftigungsglättung Erläutern Sie das Problem der Beschäftigungsglättung. Mit welchen Planungsansätzen kann man es lösen? Gegeben sei folgende prognostizierte Nachfragezeitreihe (40, 80, 60, 110, 30,
KAUFM. BERUFSKOLLEGS II / FACHOBERSCH. - Hauptprüfung Aufgabe 7 - Aufgabe
90 KAUFM. BERUFSKOLLEGS II / FACHOBERSCH. - Hauptprüfung 000 - Aufgabe 7 - Aufgabe Punkte 7.1. Die Differentialkosten eines Unternehmens sind gegeben durch K (x) = 0,06x 3,8x+c, c IR. Bestimmen Sie die
AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 19.09.2016 Prüfer: Prof. Dr. Andreas
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 22.09.2015, 15.30 17.30 Uhr Aufgabe 1 2 3 4 5 6 Gesamt Maximale Punktzahl 6 11 7 13 7 6 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur
Abschlussprûfung Berufskolleg. Prüfungsaufgaben aus Baden-Württemberg. Ökonomie: Produktion- Kosten - Gewinn. Jahrgänge 2002 bis 2016
Abschlussprûfung Berufskolleg (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg Ökonomie: Produktion- Kosten - Gewinn Jahrgänge 2002 bis 2016 Ab 2009 beinhaltet ein Aufgabenteil die Gaußsche
Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2010
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
AUFGABENTEIL. Modul-Abschlussklausur zum. B-Modul Nr , Theorie der Leistungserstellung. 29. März 2012, 9:00 bis 11:00 Uhr
Fakultät für Wirtschaftswissenschaft AUFGABENTEIL Modul-Abschlussklausur zum B-Modul Nr. 31531, Theorie der Leistungserstellung Termin: Prüfer: 29. März 2012, 9:00 bis 11:00 Uhr Prof. Dr. Dr. h. c. Günter
AUFGABENTEIL. Modul-Abschlussklausur zum. B-Modul Nr , Theorie der Leistungserstellung. 25. September 2014, 9:00 bis 11:00 Uhr
Fakultät für Wirtschaftswissenschaft AUFGABENTEIL Modul-Abschlussklausur zum B-Modul Nr. 31531, Theorie der Leistungserstellung Termin: Prüfer: 25. September 2014, 9:00 bis 11:00 Uhr Prof. Dr. Dr. h. c.
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 2015 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 2015 1 Die
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Mathematik. Juni 2016 AHS. Kompensationsprüfung 9 Angabe für Kandidatinnen/Kandidaten
Name: Datum: Klasse: Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 9 Angabe für Kandidatinnen/Kandidaten Hinweise
a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix.
Lineare lgebra / nalytische Geometrie Leistungskurs ufgabe 4 Kosten und Gewinne Ein Betrieb stellt aus den Rohstoffen R 1, R 2, R 3 und R 4 die Zwischenprodukte Z 1, Z 2, Z 3 und Z 4 her und aus diesen
Lösungen. Kostentheorie
Lösungen Kostentheorie Kostentheorie 1 Seite 1 Kostentheorie 2 Seite 10 Kostentheorie 3 Seite 23 Kostentheorie 4 Seite 25 Kostentheorie 5 Seite 26 Kostentheorie 6 Seite 41 1 Kostentheorie 1_0 Kostenfunktion:
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 22.03.2011, 15.30 17.30 Uhr Aufgabe 1 2 3 4 5 6 Gesamt Maximale Punktzahl 7 7 12 10 8 6 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur
Klausur Wirtschaftsmathematik VO
Klausur Wirtschaftsmathematik VO 01. Oktober 2016 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner
Mathematik-Klausur vom und Finanzmathematik-Klausur vom
Mathematik-Klausur vom 27.09.2010 und Finanzmathematik-Klausur vom 04.10.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:
Wird nach dem Prinzip assemble-to-order produziert, so erfolgt die Endmontage spezifisch für den jeweiligen Kundenauftrag.
Aufgabe Richtig oder Falsch? (0 Punkte) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an. Stimmt Ihre Bewertung einer Aussage so
Analysis in der Ökonomie (Teil 1) Aufgaben
Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher
Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.
Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen
Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2012
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 2016 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 2016 1 Die
Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006
AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 14.09.2015 Prüfer: Prof. Dr. Andreas
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 24.09.2018, 14.00 16.00 Uhr Aufgabe 1 2 3 4 5 Gesamt Maximale Punktzahl 7 12 10 10 11 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur besteht
Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)
HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-
Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:
WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 25.09.2017, 14.00 16.00 Uhr Aufgabe 1 2 3 4 5 Gesamt Maximale Punktzahl 5 20 15 5 5 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur besteht
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:
Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)
HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-
Aussage: richtig falsch
Aufgabe 1 (15 Minuten) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an! Stimmt Ihre Bewertung einer Aussage so gibt es einen Punkt.
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 7. September 2013 Bearbeitungszeit:
Mathematik-Klausur vom und Finanzmathematik-Klausur vom
Mathematik-Klausur vom 15.07.2008 und Finanzmathematik-Klausur vom 08.07.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3, Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3, Dauer der Klausur:
Prüfung. Aktivitätsanalyse und Kostenbewertung (11018) für FWW
Prüfung Aktivitätsanalyse und Kostenbewertung (11018) für FWW Prüfer: Prof. Dr. Luhmer Winter 2010/2011 Hinweise: Die Prüfung umfasst 9 Aufgaben, die alle zu bearbeiten sind. Die Bearbeitungszeit beträgt
Aufgaben als 2-er Gruppenarbeit am Anfang des 2. Vorlesungsblocks (2. Semester)
Aufgaben als 2-er Gruppenarbeit am Anfang des 2. Vorlesungsblocks (2. Semester) Aufgabe 1 Ein Produktionsunternehmen möchte eine bestimmte Ware x auf einem Gütermarkt anbieten. a) Nennen Sie die wichtigsten
Probeklausur Optimierung
Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)
KLAUSUR. Name. Vorname. Matrikelnummer. Teilnehmer-Nr. Unterschrift. Erzielte Bonuspunkte aus der Vorklausur: Zur Beachtung. Bitte nicht ausfüllen
Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Sommersemester 2018 31.7.2018 Name Vorname Matrikelnummer Teilnehmer-Nr. Unterschrift Erzielte Bonuspunkte aus der Vorklausur: Punkte
Ansgar Schiffler Untersuchung einer ökonomischen Funktion
Ein Unternehmen verkauft sein Produkt zum Preis von 1,5 GE / ME. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben: y = K(x) = 0,4x³ 4,4x² + 18,18x + 10,3 Es gilt: y: Kosten
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 2 (Modul) Termin: 15.
Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester
Produktion und Organisation VL 9: Produktion Die Gutenberg-Produktionsfunktion
JProf. Dr. T. Kilian [[email protected]] Produktion und Organisation VL 9: Produktion Die Gutenberg-Produktionsfunktion WS 2010/2011 JProf. Dr. T. Kilian 0 Inhalt I. Grundbegriffe II. Produktionsfunktionen
Prüfungsklausur Mathematik I für Wirtschaftsingenieure am
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 9.2.28 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 7 gesamt erreichbare P. 5 3 3+5
Marketing. Übungsaufgaben Kapitel 6. Konditionenpolitik
Fachhochschule Schmalkalden, M.Sc. Annette Liebermann Übungsaufgaben Kapitel 6 Konditionenpolitik 6.2 Preistheorie Aufgabe 2 Anwendungsaufgabe Preiselastizität der Nachfrage : Eine AG will ein neues Produkt
KLAUSUR. Name. Vorname. Matrikelnummer. Teilnehmer-Nr. Unterschrift. Zur Beachtung. Bitte nicht ausfüllen. Fakultät für Wirtschaftswissenschaft
Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Wintersemester 2011/2012 21.2.2012 Name Vorname Matrikelnummer Teilnehmer-Nr. Unterschrift Bonuspunkte Punkte Zur Beachtung Die Klausur
Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.
Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe
Aufgaben zu Teil I 1. 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff.
Aufgaben zu Teil I 1 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff. Kontrollfragen 1 1) Was versteht man unter dem Betriebswirtschaftlichen Rechnungswesen,
Mathematik für Ökonomen II
RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen II 3..993 (WS 9/93) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben; pro Aufgabe sind
WHB12 - Mathematik Übungen für die Klausur am
Aufgabe 1: Sie sehen den Graphen der Gewinnfunktion eines Monopolisten. Sie lautet G(x) = -0,4x² + 3,6x 3,2. G(x) (Euro) 6 5 4 3 2 1-1 1 2 3 4 5 6 7 8 9 10 x (Stück) -2-3 -4 a) Wie hoch sind die Fixkosten
Workshop Kontexte aus den Wirtschaftswissenschaften bei der Zentralmatura AHS. 1. Gewinnfunktion (bifie - Aufgabenpool)
Christian Dorner & Stefan Götz 24. Februar 2015 Workshop Kontexte aus den Wirtschaftswissenschaften bei der Zentralmatura AHS 1. Gewinnfunktion (bifie - Aufgabenpool) 1 Christian Dorner & Stefan Götz 24.
Nachfrage im Angebotsmonopol
Nachfrage im Angebotsmonopol Aufgabe 1 Bearbeiten Sie in Ihrem Buch auf der Seite 42 die Aufgabe 13. Aufgabe 2 Die Birkholz AG hat bei einem Marktforschungsunternehmen ermitteln lassen, dass die Nachfrager
WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen
WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen In einem mathematischen betriebswirtschaftlichen relevanten Modell ist die Gesamtkostenfunktion, demnächst einfach Kostenfunktion K(x) genannt,
Produktions- und Kostentheorie
1. Einführung 94 1.1 Allgemeine Kostenbegriffe 94 1.2 Kapazität 94 1.3 Fixkosten 95 1.4 Grenzkosten 96 1.5 100 1.6 Produktionsfunktionen (Überblick) 101 2. Produktionsfunktion vom Typ B 102 2.1 Verbrauchsfunktionen
Kurvendiskussion: Ganzrationale Funktionen 2. Grades: 1. f(x) = x². 2. f(x) = x² - x f(x) = 2x² - 12x f(x) = - 4x² + 4x + 3
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Kurvendiskussion: Ganzrationale Funktionen 2.
Wirtschaft postgradual Fach. Studiengang. Rechnungswesen II, Kosten- und Leistungsrechnung Art der Leistung. Prüfungsleistung Klausur-Knz.
Studiengang Wirtschaft postgradual Fach Rechnungswesen II, Kosten- und Leistungsrechnung Art der Leistung Prüfungsleistung Klausur-Knz. Datum 29.06.02 Die Klausur enthält 13 Aufgaben, zu deren Lösung Ihnen
Klausur zur Modulprüfung ABWL1 SoSe14 2. Termin 13. Oktober 2014
Klausur zur Modulprüfung ABWL1 SoSe14 2. Termin 13. Oktober 2014 Name: Vorname: Matrikel-Nr.: Studiengang, Abschluss: Hiermit erkläre ich mich nach 39(10) der AllgStuPO prüfungsfähig. Ein Rücktritt bzw.
757-2 Gonzinto Graph
09 / 00 A zu a) Gozinto - Graph Aufbau der Gozinto - Graph besteht wie eder Graph aus einer Menge von Punkten bzw. Knoten, die teilweise durch Linien bzw. Kanten oder auch Pfeile miteinander verbunden
Aufgabe Summe
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
Matrizen und Determinanten
Matrizengleichungen Matrizen und Determinanten In Abschnitt 3.3 wird gezeigt, wie man ein lineares Gleichungssystem in Form einer Matrixgleichung anschreiben und anschließend mithilfe der Matrizenrechnung
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 24.03.2009, 15.30 17.30 Uhr Aufgabe 1 2 3 4 5 Gesamt Maximale Punktzahl 7 14 12 11 6 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur besteht
WHB11 - Mathematik Klausurübungen für die Klausur Nr. 3 AFS 3 Analysis: Ökonomische lineare Funktionen
Basiswissen für die Klausur Fixkosten sind Kosten, die unabhängig von der produzierten Menge anfallen, d.h. sie sind immer gleich, egal ob 20 oder 50 oder 100 Stück von einem Gut produziert werden. Man
Klausur zur Vorlesung Logistik im WS 04/05
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Logistik im WS 04/05 Hinweise: Die Klausur besteht aus 14 Seiten
Klausur Mathematik. Note:
Fachhochschule Südwestfalen Fachhochschule Münster Hochschule Bochum Verbundstudiengang Wirtschaftsingenieurwesen Hochschule Bochum Hochschule für Technik und Wirtschaft Klausur Mathematik Datum: 18.09.2010
Übungen zur Kostenfunktion kompetenzorientiert
Übungen zur Kostenfunktion kompetenzorientiert 1) Eine Mini Produktion von Topfpflanzen hat Fixkosten in der Höhe von 100 pro Monat. Für 10 Stück der Produktion rechnet man mit 150 Gesamtkosten, für 20
Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.
Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe
Marketing. Übungsaufgaben Kapitel 6. Konditionenpolitik
Fachhochschule Schmalkalden, M.Sc. Annette Liebermann Übungsaufgaben Kapitel 6 Konditionenpolitik 6.2 Preistheorie Aufgabe 2 Preiselastizität der Nachfrage: Erläutern Sie, was unter der Preiselastizität
c) f(x)= 1 4 x x2 + 2x Überprüfe, ob der Punkte A(3/f(3)) in einer Links- oder in einer Rechtskrümmung liegt!
Zusätzliche Aufgaben zum Üben für die SA_2 1) a) Leite eine Formel zur Berechnung des Scheitels einer Parabel mit Hilfe der Differentialrechnung her! b) Was kann man aus folgenden Berechnungen schließen?
Fallstudie 1: Planung von Fertigungslosgrößen
Seminar im WS 2005/2006 PD Dr. Anke Daub Seite 1 Fallstudie 1: Planung von Fertigungslosgrößen Ein Unternehmen stellt ein Produkt in einem dreistufigen Fertigungsprozess her, wobei die Maschinen in der
Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)
Name: Vorname: Termin: Prüfer: 27.09.2011, 15.30 17.30 Uhr Aufgabe 1 2 3 4 5 6 Gesamt Maximale Punktzahl 7 9 16 10 4 4 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur
