Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013"

Transkript

1 Übungsblatt 11 Geometrische und Technische Optik WS 212/213 Diaprojektor und Köhler sche Beleuchtung In dieser Übung soll ein einfacher Diaprojektor designt und strahlenoptisch simuliert werden. Dabei müen sowohl die Abbildungsoptik als auch die Beleuchtungsoptik gerechnet werden. Die vorgegebenen Daten seien: Als Objektiv-Ersatz wird eine einfache Plankonvex-Linse aus BK7 mit Brennweite f Obj =12 mm verwendet (Durchmeer 6 mm, Mittendicke 2 mm). Ein Dia mit einem Durchmeer 36 mm x 24 mm soll im Bild die Größe 9 mm x 6 mm haben. Die Lichtquelle wird hier vereinfacht als eine rechteckige Fläche der Größe mm x 1 mm mit der Charakteristik eines Lambert-Strahlers angenommen. Der Abstrahlwinkel des Lambert-Strahlers darf in der Simulation bis zu 4 o betragen (wobei er in der Praxis natürlich sogar bis 9 o geht). Die Kondensor-Linse, die als Plankonvex-Linse mit asphärischer gekrümmter Fläche designt wird, soll die Lichtquelle um den Faktor 3 vergrößert auf die objektseitige Hauptebene der Objektiv-Linse abbilden (sogenannte Köhler sche Beleuchtung). Das Dia (hier vereinfacht als infinitesimal dünn angenommen) stehe mm hinter dem Scheitel der Kondensor-Linse. a) Machen Sie sich den nötigen Aufbau anhand einer kleinen Skizze klar und zeichnen Sie die Abstände symbolisch ein, die Sie mit Hilfe der Abbildungsgleichung erhalten. Beginnen Sie Ihre Überlegungen anhand der Abbildungsoptik, da sich das Design der paraxialen Daten der Kondensor-Optik dann daraus ergibt! Berechnen Sie auch aus der Linsengleichung den Krümmungsradius der Objektiv-Linse (sphärische Plankonvex- Linse) und der Kondensor-Linse (asphärische Plankonvex-Linse), wobei als Design- Wellenlänge nm angenommen wird und das Material der Kondensor-Linse das hochbrechende SF1 sei. b) Der Durchmeer der Kondensor-Linse mu mindestens so groß wie die Diagonale des Dias sein (43.3 mm), damit das Dia voll ausgeleuchtet wird. Aufgrund des konvergenten Strahlengangs hinter der Kondensor-Linse und dem endlichen Abstand von mm wird der Durchmeer der Kondensor-Linse auf 6 mm festgesetzt. Könnte dieser Durchmeer bei der in a) berechneten Brennweite mit einer sphärischen Plankonvex-Linse realisiert werden? Berechnen Sie nun die asphärische Rückfläche der Kondensor-Linse durch Optimierung der konischen Konstante und des Parameters a_4 und a_6 (andere Asphären-Parameter seien nicht zugelaen), indem der axiale Punkt der Lichtquelle in die objektseitige Hauptebene der Objektiv-Linse abgebildet wird. Beachten Sie, da Sie die Schrittweite der Parameter a_4 und a_6 bei der Optimierung auf kleine Werte setzen müen, da diese Parameter selbst auch kleine Werte haben müen, da sie mit r 4 bzw. r 6 multipliziert in die Flächengleichung eingehen! Die Mittendicke der Kondensor-Linse aus SF1 wird zwecks Vergleichbarkeit der Ergebnie auf 3 mm festgelegt. Beachten Sie, da Sie mit einem kleinen Durchmeer der Linse beginnen müen (z.b. 2 mm) und erst in einem zweiten und eventuell dritten Schritt den Durchmeer iterativ auf den endgültigen Wert von 6 mm setzen dürfen. c) Als Objekt werde ein Kreuz-Gitter aus absorbierenden Strichen mit Periode 1 mm und Breite. mm genommen (Gesamt-Apertur wie bei Dia). Simulieren Sie das gesamte System im Programm RAYTRACE. Wie gut ist die Abbildungsqualität? Wie herum sollte die Objektiv-Linse stehen? Was paiert mit der Bestrahlungtärke, wenn der Kondensor entfernt wird? Was paiert, wenn die Größe der Lichtquelle variiert wird?

2 Musterlösung: Zu a) Abbildungsoptik: Der Abbildungsmaßstab der Abbildungsoptik ist Obj =-2, die Brennweite f Obj =12 mm. Aus der Abbildungsgleichung folgt dann: bobj f ' Obj 1 Obj bzw. gobj f ' Obj 1 bobj gobj f ' Obj Obj In unserem Fall gilt also für das Objektiv der Abbildungsoptik: b Obj =312 mm, g Obj = mm Aus der Linsengleichung für eine Plankonvexlinse ergibt sich für den Krümmungsradius R Obj mit Brechzahl n BK7 (= nm)=1.214: R n 1 f ' 62.7 Obj mm BK 7 Obj Kondensor-Optik: Da die Lichtquelle in die objektseitige Hauptebene des Objektivs abgebildet werden soll und das Dia d= mm hinter dem Scheitel (=bildseitige Hauptebene) der Kondensor-Linse liegt, mu für die Bildweite der Kondensor-Linse b Kond gelten: bkond gobj d mm Aus der Abbildungsgleichung mit Kond =-3 folgt dann: bkond f ' Kond 32.4 mm 1 Kond 1 g Kond f ' 1 Kond mm Kond (Paraxialer) Krümmungsradius R Kond der asphärischen Rückfläche der Kondensor-Linse (n SF1 (= nm)=1.7432): R n 1 f ' Kond mm SF1 Kond Zu b) Die objektseitige Hauptebene der plankonvexen Kondensor-Linse liegt bei einer Mittendicke d m =3 mm im Abstand d m /n SF1 =17.21 mm rechts von der planen Seite. Der Objektpunkt bzw. die Lichtquelle liegt also mm mm = 26.6 mm vor der planen Seite. Der Bildpunkt liegt natürlich mm hinter dem Scheitel der asphärischen Rückfläche, da dort ja Scheitelebene und Hauptebene zusammen fallen. Die Optimierung liefert: K= a_4= e-6 a_6= e-11 Zu c) Setzt man den Scheitel der Kondensor-Linse bei z=- mm, so liegt das Objekt bei z= mm. Der Scheitel und die objektseitige Hauptebene der Objektiv-Linse liegen dann beide bei z=124.8 mm. Die bildseitige Hauptebene liegt bei z=131.6 mm (d m /n BK7 =13. mm vor der planen Rückseite der Linse, d.h. 2 mm-13. mm = 6.8 mm rechts vom Scheitel). Die Bildebene schließlich liegt bei z=321.6 mm. 33

3 Es zeigt sich, da die Abbildungsqualität des Kreuz-Gitters im Zentrum recht gut ist, zum Rand hin aber etwas abnimmt. Am Rand sind die einzelnen Quadrate nicht mehr so gut auflösbar und bei einem echten Dia mit deutlich mehr Pixeln wäre es unscharf. Dreht man die Plankonvexlinse so herum, da die plane Seite zum Objekt zeigt, verschlechtert sich die Abbildungsqualität noch weiter (auch wenn der Unterschied am Rand nicht dramatisch ist). Ohne den Kondensor kann das Dia gar nicht gleichmäßig ausgeleuchtet werden und die Abbildungsqualität wird aufgrund der schrägen Winkel deutlich schlechter. Stellt man die Lichtquelle weiter weg, so hat man zwar eine volle Ausleuchtung und weniger Abbildungsfehler, aber man verliert extrem viel Licht und das Bild ist trotzdem stark verzerrt. Bei kleinerer Lichtquelle wird das Bild deutlich schärfer, bei größerer unschärfer. Simulationsergebnie: Im Folgenden werden einige Simulationsergebnie gezeigt, wobei jeweils ein Abstrahlwinkel des Lambert-Strahlers bis 36 Grad genommen wurde und Strahlen. Es zeigt sich, da nur das System mit der Köhler schen Beleuchtung gute Resultate zeigt, da dort der ausgeleuchtete Bereich der Abbildungs-Linse relativ klein ist und für alle Punkte auf dem Dia in etwa gleichartig. Eine kleinere Lichtquelle gibt natürlich beere Ergebnie, da dann der benutzte Bereich der Abbildungs-Linse und ihre Aberrationen noch kleiner sind. Bei sehr kleiner Lichtquelle müten aber Beugungseffekte berücksichtigt werden, da dann die numerische Apertur der Abbildung sehr klein wäre. Kollimiert man das Licht mit der Kondensor-Linse, so treffen die Strahlen des Randbereichs des Dias auch auf Randbereiche der Abbildungs-Linse, die dort deutlich stärkere Aberrationen hat (sowohl Punktbildaberrationen als auch Verzeichnung). Ohne Kondensor ist die Ausleuchtung des Bildes sehr schlecht, da besonders Strahlen, die das Dia am Rand treffen, gar nicht mehr durch die Abbildungs-Linse gehen. Das Bild ist deshalb abgeschnitten, inhomogen, verzerrt und besonders am Rand unscharf. Entfernt man die Lichtquelle, so werden zwar nicht mehr so große Bereiche des Bildes abgeschnitten, dafür nimmt aber die Bestrahlungtärke deutlich ab, da nur noch ein kleiner Bereich des Abstrahlwinkels ausgenutzt wird. Um das volle Bildfeld zu erhalten, müte man aber so weit weg, da die Bestrahlungtärke im Bild sehr gering wäre. Außerdem würde man bei sehr großer Entfernung und genügender Leistung bestenfalls das gleiche Ergebnis wie bei Kollimation mit dem Kondensor und einer kleinen Lichtquelle erhalten, da beide eine Quasi- Planwellen-Beleuchtung ergeben. Fazit: Die Köhler sche Beleuchtung mit vergrößerter Abbildung der Lichtquelle in die Pupille der Abbildungs-Linse liefert mit Abstand das beste Ergebnis, sowohl bezüglich Lichtstärke, Homogenität des Bildes, Schärfe und Verzerrungsfreiheit. In einem realen Dia-Projektor ist natürlich die Abbildungs-Linse ein Mehr-Linsen-System, das die Aberrationen korrigiert, so da die Abbildung schärfer ist. In dieser Aufgabe sollte aber zumindest das Prinzip gezeigt werden. 34

4 Köhler sche Beleuchtung wie in Aufgabe, Lichtquelle: mm x 1 mm RAYTRACE Copyright 28 Mittelwert 11 RMS 21 P-V 1e+2 Max 1e+2 Min 1e e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :19:17-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Links: Randbereich oben links, rechts: zentraler Bereich

5 Köhler sche Beleuchtung wie in Aufgabe, Lichtquelle kleiner: 1 mm x 1 mm RAYTRACE Copyright 28 Mittelwert 11 RMS 26 P-V 1,3e+2 Max 1,3e+2 Min 1,2e+2 1e e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :24:39-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright Links: Randbereich oben links, rechts: zentraler Bereich 36

6 Köhler sche Beleuchtung wie in Aufgabe, Lichtquelle größer: 1 mm x 1 mm RAYTRACE Copyright 28 Mittelwert 11 RMS 11 P-V 61 Max 61 Min e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :29:2-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Links: Randbereich oben links, rechts: zentraler Bereich 37

7 Kollimation hinter Kondensor-Linse, Lichtquelle: mm x 1 mm RAYTRACE Copyright 28 Mittelwert 14 RMS 21 P-V 1,4e+2 Max 1,4e+2 Min 1,2e+2 1e e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :37:6-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Links: Randbereich oben links, rechts: zentraler Bereich 38

8 Ohne Kondensor-Linse, Abstand strahlende Fläche Dia: 48 mm RAYTRACE Copyright 28 Mittelwert 1,6 RMS 3,7 P-V 9 Max 9 Min e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :4:7-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Auchnitt zentraler Bereich 39

9 Ohne Kondensor-Linse, Abstand strahlende Fläche Dia: 2 mm RAYTRACE Copyright 28 Mittelwert 2,2 RMS 7,3 P-V 1,8e+2 Max 1,8e+2 Min 1,e+2 1e+2-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :44:28-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Auchnitt zentraler Bereich 4

10 Ohne Kondensor-Linse, Abstand strahlende Fläche Dia: 1 mm RAYTRACE Copyright 28 Mittelwert,93 RMS 1,9 P-V 21 Max 21 Min 2 1-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e :48:39-4e+2-3e+2-2e+2-1e+2 1e+22e+23e+24e+2 RAYTRACE Copyright 28 Auchnitt zentraler Bereich 41

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper 1. Versuchsziele Durch die Verwendung

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

2. Linsen und Linsensysteme

2. Linsen und Linsensysteme 2. Linsen und Linsensysteme 2.1. Sphärische Einzellinsen 2.1.1. Konvexlinsen Konvexlinsen sind Sammellinsen mit einer positiven Brennweite. Ein paralleles Lichtbündel konvergiert nach dem Durchgang durch

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse).

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse). Physikalisches Praktikum II Abbildung mit Linsen (LIN) Stichworte: Geometrische Optik, Snellius'sches Brechungsgesetz, Abbildung eines Punktes durch Lichtstrahlen, Brennpunkte, auptpunkte, auptebene, reelle

Mehr

P1-31,40,41: Geometrische Optik

P1-31,40,41: Geometrische Optik Physikalisches Anfängerpraktikum (P1) P1-31,40,41: Geometrische Optik Benedikt Zimmermann, Matthias Ernst (Gruppe Mo-4) Karlsruhe, 18.1.010 Praktikumsprotokoll mit Fehlerrechung Ziel des Versuchs ist die

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler.

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler. Projektor Aufgabe Ein Diaprojektor, dessen Objektiv eine Brennweite von 90mm hat, soll in unterschiedlichen Räumen eingesetzt werden. Im kleinsten Raum ist die Projektionsfläche nur 1m vom Standort des

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz.

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz. O1 Geometrische Optik Stoffgebiet: Abbildung durch Linsen, Abbildungsgleichung, Bildkonstruktion, Linsensysteme, optische Instrumente ( Beleuchtungs- und Abbildungsstrahlengang im Projektionsapparat )

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Sammel- und Streulinsen

Sammel- und Streulinsen Sammel- und Streulinsen Linsen können auch durchaus verschiedene Formen haben, je nachdem, was sie für eine Funktion erfüllen. Sammellinsen (a) sind konvex, Streulinsen sind konkav, ferner gibt es auch

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

3.7 Linsengesetze 339

3.7 Linsengesetze 339 3.7 Linsengesetze 339 3.7. Linsengesetze Ziel Ziel des Versuches ist ein besseres Verständnis der optischen Abbildung durch Linsen, insbesondere durch zusammengesetzte Linsensysteme. Wesentlich ist dabei

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

4.5 Strahlengang im Mikroskop (Versuch 75)

4.5 Strahlengang im Mikroskop (Versuch 75) 4.5 Strahlengang im Mikroskop (Versuch 75) 61 4.5 Strahlengang im Mikroskop (Versuch 75) (Fassung 03/2010) Kurze eschreibung der Komponenten eines Mikroskops Das Lichtmikroskop besteht im wesentlichen

Mehr

Versuch VM 6 (Veterinärmedizin) Mikroskop

Versuch VM 6 (Veterinärmedizin) Mikroskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 6 (Veterinärmedizin) Mikroskop Aufgaben 1. Es sind mit einem der beiden Objektive bei jeweils fünf verschiedenen Bildweiten

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit Vision 2008 Simone Weber Gliederung 1. Einleitung 2. Eigenschaften der telezentrischen Abbildung 3. Telezentriefehler 2ϕ 4. Quantifizierung

Mehr

Hauptseminar Autofokus

Hauptseminar Autofokus Hauptseminar Autofokus Hans Dichtl 30. Januar 2007 Wann ist ein Bild fokussiert? Wann ist ein Bild fokusiert? Welche mathematischen Modelle stehen uns zur Verfügung? Wie wird das elektronisch und mechanisch

Mehr

Probeklausur Sommersemester 2000

Probeklausur Sommersemester 2000 Probeklausur Sommersemester 2000 1. in Mensch, der 50 kg wiegt, schwimmt im Freibad. Wie viel Wasser verdrängt er? 500 l 7,5 m³ 75 l 150 l 50 l 2. urch ein lutgefäß der Länge 1 cm fließt bei einer ruckdifferenz

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis Versuch O1 MIKROSKOP Seite 1 von 6 Versuch: Mikroskop Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik Raum: Physik.204

Mehr

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip

V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip A) Stichworte zur Vorbereitung Geometrische Optik, Mikroskop, Fernrohr, Lupe, Vergrößerungsdefinition bei Mikroskop und Fernrohr, Auflösungsgrenze des

Mehr

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 04.12.2008 Eintrittspupille

Mehr

3. Physikschulaufgabe

3. Physikschulaufgabe Thema: Optik Lichtausbreitung, Licht und Schatten, Abbildung durch Linsen 1. Skizziere die drei möglichen Verlaufsformen von Lichtbündeln und benenne sie. 2. Gib zwei grundlegende Eigenschaften des Lichts

Mehr

Aufgabensammlung mit Lösungen zum Applet optische Bank

Aufgabensammlung mit Lösungen zum Applet optische Bank Aufgabensammlung mit Lösungen zum Applet optische Bank (LMZ, Bereich Medienbildung, OStR Gröber) http://webphysics.davidson.edu/applets/optics4/default.html I. Aufgaben für Mittelstufe 1. Abbilden mit

Mehr

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Optische Messtechnik Brennweitenmessung Gliederung Seite 1. Versuchsziel.... Versuchsaufbau...

Mehr

Optische Eigenschaften von Brillengläsern

Optische Eigenschaften von Brillengläsern Optische Eigenschaften von Brillengläsern Projektpraktikum WS 2005/06 Gruppe 3 Stefanie Gierl, Martin Hümmer, Constanze Jahn, Markus Kraft, André Noss, Jonas Weickert Tutor: Daniel Secker 1 Inhaltsverzeichnis:

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Übungsaufgaben. Physik I. Geometrische Optik. Institut für mathematisch - naturwissenschaftliche Grundlagen http://www.hs-heilbronn.

Übungsaufgaben. Physik I. Geometrische Optik. Institut für mathematisch - naturwissenschaftliche Grundlagen http://www.hs-heilbronn. mathematisch - naturwissenschaftliche rundlagen http://www.hs-heilbronn.de/ifg Übungsaufgaben hysik I Autor: rof. Dr.. Bucher Bearbeitet: Dipl. hys. A. Szasz Juli 0 Verschiedene insen (SS) egeben seien

Mehr

Optik -> Bilder bei Spiegeln und Linsen -> Bildentstehung bei einem optischen

Optik -> Bilder bei Spiegeln und Linsen -> Bildentstehung bei einem optischen weiterführende Aufgabe Optik -> Bilder bei Spiegeln und Linsen -> Bildentstehung bei einem optischen Instrument Fischauge Wenn ein Fisch ein außerhalb des Aquariums befindliches Lineal betrachtet, bietet

Mehr

Fokussierung und optische Abbildung in der Lasertechnik

Fokussierung und optische Abbildung in der Lasertechnik Dipl.-Ing. V. Neumann Laserinstitut der Hochschule Mittweida - www.laserinstitut.org Hochschule Mittweida Technikumplatz 17 09648 Mittweida Fokussierung und optische Abbildung in der Lasertechnik 1. Fokussierung

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert Mikrobiologisches Grundpraktikum (modul B.Bio 118 Einführung in die Benutzung des Lichtmikroskops Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind

Mehr

Die Afocal Design Kontaktlinsen fusion 1day presbyo & Open 30 Presbyo. Die echte Innovation ohne Kompromisse

Die Afocal Design Kontaktlinsen fusion 1day presbyo & Open 30 Presbyo. Die echte Innovation ohne Kompromisse Die Afocal Design Kontaktlinsen fusion 1day presbyo & Open 30 Presbyo Die echte Innovation ohne Kompromisse Afocal Design Hyperrefraktiver Bereich im optischen Zentrum Asymmetrisch runder und gehobener

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Spezielle optische Abbildungen

Spezielle optische Abbildungen 1 Technische Universität Ilmenau Fakultät für Maschinenbau Fachgebiet Technische Optik Komplexpraktikum Mechatronik Versuch 7 Spezielle optische Abbildungen Gliederung 1. Versuchsziel... 2 2. Versuchsaufgaben...

Mehr

Abbildung durch eine Lochblende

Abbildung durch eine Lochblende Abbildung durch eine Lochblende Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Benötigtes Material Natur und Technik/ Schwerpunkt Physik Projektor mit F, für jeden Schüler eine Lochblende und einen Transparentschirm

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

2.2 Optische Systeme und paraxiale Näherung

2.2 Optische Systeme und paraxiale Näherung . Optische Systeme und paraxiale Näherung Ein optisches System besteht aus einer Folge optischer Komponenten, wie Linsen, Spiegel, Prismen, Blenden usw. Seine Funktion lässt sich am besten durch Strahlrechnung

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen

Mehr

36. Linsen und optische Instrumente

36. Linsen und optische Instrumente 36. Linsen und optische Instrumente 36.. Brechung an Kugellächen Linsen besitzen aus ertigungstechnischen Gründen meist Kugellächen (Ausnahmen sind Spitzenobjektive, z. B. ür Projektionslithographie).

Mehr

Physik III Übung 13 - Lösungshinweise

Physik III Übung 13 - Lösungshinweise Physik III Übung 3 - Lösungshinweise Stefan Reutter WiSe 0 Moritz Kütt Stand: 4.0.03 Franz Fujara Konventionen (nach Tipler/Mosca) Spiegel Gegenstandsweite ist positiv, wenn sich der Gegenstand auf der

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Versuch GO2 Optische Instrumente

Versuch GO2 Optische Instrumente BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO2 Optische Instrumente I. Vorkenntnisse 2.07/10.06 Versuch GO 1, Funktionsprinzip des menschlichen Auges, Sehwinkel, Vergrößerung des Sehwinkels durch optische

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Das Mikroskop. Eine Einführung in die Durchlichtmikroskopie. J. V. Herrmann. Bayerische Landesanstalt für Weinbau und Gartenbau.

Das Mikroskop. Eine Einführung in die Durchlichtmikroskopie. J. V. Herrmann. Bayerische Landesanstalt für Weinbau und Gartenbau. Fachzentrum Analytik Das Mikroskop Eine Einführung in die Durchlichtmikroskopie J. V. Herrmann März 2006 Mikroskop - Funktionsschema Dia-Projektor Projektionswand Dia Mikroskop = Zweistufige Abbildung

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

LAP 2008 Augenoptiker BK schriftlich Blatt 1 Kandidat Nr.

LAP 2008 Augenoptiker BK schriftlich Blatt 1 Kandidat Nr. LAP 2008 Augenoptiker BK schriftlich Blatt 1 Kandidat Nr. Position 1.2: Optik 1. Eine Linse hat einen Abbildungsmassstab von -0.. Beurteilen Sie diesbezügliche Aussagen: Es handelt sich um eine Minuslinse.

Mehr

Linsengleichung und Akkommodation

Linsengleichung und Akkommodation Linsengleichung und Akkommodation Schülerversion Erasmus Bieri und Christian Helm Juni 2011 Inhaltsverzeichnis 1 Linsengleichung und Akkommodation 1 1.1 Repetition: Die Linsengleichung.....................

Mehr

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik Technische Universität Dresden Fachrichtung Phsik M. Lehmann (08/2000, bearbeitet 04/2005) Phsikalisches Praktikum Versuch: MI Mikroskop Inhaltsverzeichnis 1 Ziel des Versuchs... 2 2 Grundlagen... 2 2.1

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum ür Oberstuenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 7 Geometrische Optik (GO) 7.1 7.1 Einleitung........................................

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Augenmodell. 1 Einleitung. 1.1 Der Sehvorgang. 1.2 Grundlagen zur optischen Abbildung. Versuchsvorbereitung:

Augenmodell. 1 Einleitung. 1.1 Der Sehvorgang. 1.2 Grundlagen zur optischen Abbildung. Versuchsvorbereitung: 1 Augenmodell Versuchsvorbereitung: Kenntnisse über geometrische Optik, (dünne) Linsen, Konstruktion von Strahlengängen mit Konkav- und Konvexlinsen, Abbildungsgleichung und Abbildungsmaßstab, Brechung,

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

> Vortrag: GL Optik > Christian Williges (christian.williges@dlr.de) Grundlagen der Optik. Eine kurze Einführung

> Vortrag: GL Optik > Christian Williges (christian.williges@dlr.de) Grundlagen der Optik. Eine kurze Einführung DLR.de Folie 1 Grundlagen der Optik Eine kurze Einführung DLR.de Folie 2 Agenda 1. Fotografie Bedeutung der Blendenwerte Blende und Schärfentiefe Blende und Helligkeit 2. Strahlenoptik (Paraxiale Optik)

Mehr

Labor Technische Optik

Labor Technische Optik Labor Physik und Photonik Labor Technische Optik Melos 500 Prof. Dr. Alexander Hornberg, Dipl.-Phys. Hermann Bletzer Abb. 1. Autokollimationsfernrohr Melos 500 von Fa. Möller & Wedel Melos500_2010.doc

Mehr

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Staatsinstitut für Schulqualität und ildungsforschung Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Lehrplanbezug Ein Teil der Schüler hat möglicherweise bereits in der 3. Jahrgangsstufe der Grundschule

Mehr

1 Grundlagen: Abbildung mit Linsen

1 Grundlagen: Abbildung mit Linsen C B C @ KOP/ Koppelprobleme KOP Dieses Kapitel beschäftigt sich mit Fragestellungen bezüglich der Verkopplung von Wellenleitern sowie Stecker oder Spleiÿe. Grundlagen: bbildung mit Linsen Zunächst werden

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Industrielle Bildverarbeitung Übungen 1. Aufgabe Ein Objektiv mit der Brennweite 12.5mm kann auf Entfernungen zwischen 0.5 m und eingestellt werden. Wie gross ist dann jeweils die Bildweite? Dieses Objektiv

Mehr

O14 Optische Abbildungen mit Linsen

O14 Optische Abbildungen mit Linsen Physikalisches Anfängerpraktikum Universität Stuttgart SS 204 Protokoll zum Versuch O4 Optische Abbildungen mit Linsen Johannes Horn, Robin Lang 3. Mai 204 Verfasser: Robin Lang (BSc. Mathematik) Mitarbeiter:

Mehr

3.16. Diffraktive Optik

3.16. Diffraktive Optik 3.16 Diffraktive Optik 421 3.16. Diffraktive Optik SICHERHEITSHINWEIS: Während der Versuchsdauer darf das Lasermodul nur bestimmungsgemäß im Experiment verwendet werden. Vor Versuchsbeginn sind reflektierende

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Schulungsunterlagen. Optische Grundlagen der Bildverarbeitung

Schulungsunterlagen. Optische Grundlagen der Bildverarbeitung Optische Grundlagen der Bildverarbeitung Ú «¼»² ± µ «²¼ Ü ¹²±»ó»³» б ±² ó»² ± µ «²¼ Ѿ»µ ó» µ»²²«²¹ Þ«óô ¼»² º µ ±² ó «²¼ Í» «²¹»³» weitere Informationen, Datenblätter, Preise usw. finden Sie hier: www.ifm-electronic.com

Mehr

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V Trivialitäten Nicht mehr ganz so trivial Geheimwissen Welchen Stellenwert nimmt die Optik bei Bildverarbeitern oft ein? Trivialitäten: Wie groß ist der Sensor der Kamera? Deckt der Bildkreis des Objektivs

Mehr