Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Größe: px
Ab Seite anzeigen:

Download "Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002"

Transkript

1 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel Tag der Prüfung: Bearbeitungszeit: 240 Minuten Nach Prüfungsordnung 2002 Vorgesehene Punkteverteilung: Fluiddynamik: Aufgabe 1 ( 6 Punkte) Aufgabe 2 ( 9 Punkte) Aufgabe 3 (11 Punkte) Aufgabe 4 ( 9 Punkte) Aufgabe 5 ( 5 Punkte) Σ 40 Punkte Zugelassene Hilfsmittel: Formelsammlung (wird gestellt), Taschenrechner : Aufgabe 6 ( 9 Punkte) Aufgabe 7 (10 Punkte) Aufgabe 8 (12 Punkte) Aufgabe 9 (12 Punkte) Aufgabe 10 ( 9 Punkte) Aufgabe 11 ( 8 Punkte) Σ 60 Punkte Zugelassene Hilfsmittel: Formelsammlung (wird gestellt), Taschenrechner Gesamt: 100 Punkte

2 Aufgabe 6 (9 Punkte) Für einen Abgasturbolader ist das Laufrad einer einstufigen Zentripetalturbine für folgende Daten auszulegen. Massenstrom: m& = 0,95 kg/s Druckverhältnis: p 0 /p 2 = 1,82 Eintrittsdruck: p 0 = 1,82 bar Eintrittstemperatur: T 0 = 710 K b 1 Fluid: Verbrennungsgas mit D1 R = 288 J/(kg K) κ =1,35 = konst Di2 Dm2 Da2 Die Stufe der Zentripetalturbine soll als Repetierstufe mit drallfreier Abströmung ausgeführt werden. Die Auslegung ist mit folgenden Kenngrößen vorzunehmen: statischer polytroper Stufenwirkungsgrad: η T = 0,82 statischer polytroper Leitradwirkungsgrad: η T = 0,84 kinematischer Reaktionsgrad: ρ h = 0,5 Durchflusskennziffer: ϕ 1 = ϕ 2 = 0,72 Nabenverhältnis: D m2 /D 1 = 0,46 Die Expansion wird als adiabat angenommen und die Zustandsänderungen in Leitrad und Laufrad durch polytrope Zustandsänderungen angenähert. 6.1 Berechnen Sie die Turboladerdrehzahl für die optimale spezifische Drehzahl σ ym = 0, Berechnen Sie den Laufraddurchmesser D 1. Verwenden Sie hierzu das beiliegende Cordier-Diagramm. 6.3 Berechnen Sie den Zustand des Fluids am Laufradeintritt (p 1, T 1 ) und am Laufradaustritt (p 2, T 2 ). 6.4 Berechnen Sie die Breite b 1 des Laufrades sowie den Innendurchmesser D i2 und den Außendurchmesser D a2 des Laufrades.

3

4 Aufgabe 7 ( 10 Punkte) Ein mehrstufiger radialer Turboverdichter verdichtet Sauerstoff auf ein höheres Druckniveau. Die Zustandsänderung vom Eintritt bis zum Austritt der Maschine kann näherungsweise als polytrop und adiabat angesehen werden. Das Medium Sauerstoff ist in dem betreffenden Druck- und Temperaturbereich als ideales Gas mit konstanten spezifischen Wärmekapazitäten zu betrachten. Folgende Daten sind bekannt: spezifische Wärmekapazität von O 2 : c p = 917 J/kgK spezifische Gaskonstante von O 2 : R = 259,8 J/kgK polytroper Wirkungsgrad η = 0,8 Eintrittstemperatur T E = 295 K statischer Druck am Eintritt p Ε = 1 bar Absolutgeschwindigkeiten: c r E = c r A Druckverhältnis: p A /p E = 6,5 7.1 Berechnen Sie den mittleren Polytropenexponenten der Zustandsänderung vom Eintritt zum Austritt der Maschine. 7.2 Wie groß sind die Temperatur und der Druck am Austritt der Maschine? 7.3 Berechnen Sie die spezifische Arbeit a EA, die spezifische Enthalpiedifferenz Δh EA, die spezifische Strömungsarbeit y EA und die spezifische Dissipation j EA der Maschine. 7.4 Stellen Sie die Zustandsänderung vom Eintritt zum Austritt der Maschine in einem T,s- Diagramm dar und ordnen Sie die oben berechneten Energieanteile den entsprechenden Flächen zu. 7.5 Berechnen Sie die Austrittstemperatur T A,S unter der Annahme einer isentropen Zustandsänderung und geben Sie den isentropen Wirkungsgrad an. η S

5 Aufgabe 8 ( 12 Punkte) Ein Radialgebläse zur Förderung von Kohlendioxid hat ein Laufrad mit radial endenden Schaufeln. Die Zuströmung zum Laufrad erfolgt drallfrei. Die Gebläsestufe gehorcht der Repetierbedingung. Weiterhin sind folgende Daten bekannt: gemessener Volumenstrom: V & = 10 m /s Dichte des Gases: ρ = 1,98 kg/m 3 Laufradaußendurchmesser: D 2 = 1 m Laufradinnendurchmesser: D 1 = 0,6 m Meridiangeschwindigkeit: c m1 = c m2 = c m3 = 30 m/s mechanischer Wirkungsgrad: η mech = 0,98 Drehzahl: n = 1470 min -1 Für die Zustandsänderung innerhalb der Maschine kann das Gas näherungsweise als inkompressibel und die Maschine als adiabat arbeitend angesehen werden. 8.1 Skizzieren Sie einen Meridianschnitt der Maschine und tragen Sie die Strömungsebenen 1, 2 und 3 ein. 8.2 Stellen Sie den Achsnormalschnitt des Laufrades als kreisförmiges, ebenes Gitter dar und tragen Sie qualitativ richtig die Schaufelform und die Drehrichtung der Maschine ein. 8.3 Zeichnen Sie die dimensionslosen Geschwindigkeitsdreiecke der Gebläsestufe. (Maßstab u 2 /u 2 = 1 =ˆ 10 cm) 8.4 Berechnen Sie den Reaktionsgrad ρ h und die Enthalpiekenngröße ψ h der Stufe. 8.5 Geben Sie unter der Annahme gleicher polytroper Wirkungsgrade für Laufrad und Leitrad an, wie viel Prozent der gesamten Druckerhöhung im Laufrad erzeugt werden.

6 Aufgabe 9 ( 12 Punkte) Von einer axialen Turbinenrepetierstufe sind folgende Daten im Mittelschnitt bekannt: Konstante Durchflusszahl: ϕ 0 = ϕ 1 = ϕ 2 = Zuströmgeschwindigkeit: c 0 = 125 m/s Drallfreie Abströmung: α 2 = 90 o Reaktionsgrad: ρ h = 0 Durchmesser der mittleren Stromlinie: D m0 = D m1 = D m2 = m Drehzahl: n = 144 s -1 Adiabate Arbeitsweise: q = Zeichnen Sie maßstäblich die dimensionslosen Geschwindigkeitsdreiecke der Stufe und tragen Sie die Größen ϕ, ψ h und ρ h ein (Maßstab: u/u = 5 cm). 9.2 Um welche Art von Turbinenstufe handelt es sich hier? 9.3 Stellen Sie den thermodynamischen Prozess der Turbinenstufe in einem qualitativ richtigen h,s-diagramm dar und tragen Sie die Enthalpiedifferenzen Δh, Δh, Δh, Δh t, Δh s und Δh s ein! 9.4 Skizzieren Sie einen Meridianschnitt der Stufe und stellen Sie den qualitativen Verlauf des statischen Druckes p vom Eintritt bis zum Austritt der Stufe in einem Diagramm dar. 9.5 Skizzieren Sie einen abgewickelten Gitterumfangsschnitt des Leitrades und des Laufrades mit jeweils mindestens zwei Schaufeln. 9.6 Bestimmen Sie die Enthalpiekennziffer ψ h und die spezifische Schaufelarbeit a der Stufe.

7 Aufgabe 10 ( 9 Punkte) In Bild 10.1 sind die Schaufelgitter von Lauf- und Leitrad einer drallfrei angeströmten Axialverdichterstufe und die Stufenkennlinie π( m ) für konstante Drehzahl skizziert. Der mit I gekennzeichnete Punkt sei der Betriebspunkt (Auslegungspunkt) bei optimaler Laufradanströmung. Die zugehörige Zuströmung am Lauf- und Leitradgitter ist in Bild 10.1 dargestellt Geben Sie in Bild 10.1 die Drehrichtung des Laufradgitters an; ergänzen Sie die Geschwindigkeitsvektoren am Ein- und Austritt des Laufrades zu Geschwindigkeitsdreiecken und bezeichnen Sie diese Ergänzen Sie die Geschwindigkeitsdreiecke aus 10.1 jeweils für einen Betriebspunkt an den Stabilitätsgrenzen mit höherem und niedrigerem Massenstrom im Vergleich zum Auslegungspunkt. Skizzieren Sie die zugehörigen Strömungsablösungen. Benennen Sie die Gitterzuströmung und die Ablösegebiete an Laufrad und Leitrad mit den üblichen Fachausdrücken. (Achten Sie auf eindeutige Zuordnung! Die Laufradabströmung erfolgt schaufelkongruent.) 10.3 Skizzieren Sie am Beispiel des Laufrades die Gittercharakteristiken Δß = f(α) und ω = f(α) in Bild 10.3 und markieren Sie darauf den Auslegungspunkt und die beiden Betriebspunkte aus Erläutern Sie den Begriff Sperrmachzahl für das Laufrad und kennzeichnen Sie den Betriebspunkt auf der Stufenkennlinie (Abb. 10.2) bei dem in etwa die Sperrmachzahl erreicht wird.

8 Name Matr. Nr. Zu Aufgabe 10 Bild 10.1 Bild 10.2 Bild 10.3

9 Aufgabe 11 ( 8 Punkte) Die dimensionslose Kennlinie ψ yt = f (ϕ 2 ) einer stufe ist in dem beigefügten Diagramm gegeben. Folgende weitere Daten sind bekannt: Adiabate Arbeitsweise: q = 0 Richtung der Anströmung zum Laufrad: α 1 = 90 o (drallfrei) Konstante Durchflusszahl: ϕ 0 = ϕ 1 = ϕ 2 = 0.45 Durchmesserverhältnis zwischen Laufradeintrittsund Laufradaustrittsdurchmesser: d 1 / d 2 = 0,6 Umfangsgeschwindigkeit am Laufradaustritt: u 2 = 250 m/s Gleiche Strömungsbedingungen vor und nach der Stufe (Repetierstufe) 11.1 Begründen Sie, ob es sich bei der Strömungsmaschine um eine Turbine oder um einen Verdichter handelt Tragen Sie den theoretischen Kennlinienverlauf, der unter der Voraussetzung einer unendlich großen Schaufelzahl vorhanden ist [ ψht = f (ϕ 2 )] in das gegebene Diagramm ein, wenn für ϕ 2 = 1,5 gilt: ψht = Welche Schaufelform hat das Laufrad (vorwärts gekrümmt, radial endend, rückwärts gekrümmt)? 11.4 Geben Sie zahlenmäßig den totalen polytropen Wirkungsgrad η pol,t,a im mit A bezeichneten Auslegungspunkt der Maschine an und zeichnen Sie davon ausgehend den qualitativen Wirkungsgradverlauf in das gegebene Diagramm η pol,t = f (ϕ 2 ) ein Berechnen Sie die spezifischen Verluste j im Auslegungspunkt der Maschine Zeichnen Sie die dimensionslosen Geschwindigkeitsdreiecke der stufe für den Auslegungspunkt (Maßstab: u 2 / u 2 = 10 cm).

10 Aufgabe 11: Dimensionslose Kennlinie Name: Matr.-Nr:

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Grundlagen der Strömungsmaschinen. Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich. Übungen zur Vorlesung

Grundlagen der Strömungsmaschinen. Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich. Übungen zur Vorlesung Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich Übungen zur Vorlesung Grundlagen der Strömungsmaschinen Version 1/00 D:\FH\strömg\scripte\Uestro1-0a.doc 27. März

Mehr

Auslegung einer Dampfturbine

Auslegung einer Dampfturbine Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Auslegung einer Dampfturbine Michael Stamer Matr.-Nr.: 1853547 1. Betreuer: Prof. Dr.-Ing Franz Vinnemeier 2. Betreuer:

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

ANATOMIE EINES TURBOLADERS

ANATOMIE EINES TURBOLADERS Praktikumsanleitung ANATOMIE EINES TURBOLADERS Wintersemester 2010 1 1 Einleitung Diese Anleitung beschreibt das Turboladerpraktikum für die Studenten des 5. Semesters, durchgeführt am Laboratory for Energy

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Dampfturbinen kleiner Leistung

Dampfturbinen kleiner Leistung Optimierte KWK-Systeme 21. Mai 2008, Güssing Dampfturbinen kleiner Leistung Institut für Thermodynamik und Energiewandlung Forschungsbereich für Strömungsmaschinen Technischen Universität Wien http://www.ite.tuwien.ac.at

Mehr

Grundlagen der Berechnung von hydraulischen Strömungsmaschinen

Grundlagen der Berechnung von hydraulischen Strömungsmaschinen Grundlagen der Berechnung von hydraulischen Strömungsmaschinen Dr. Gero Kreuzfeld CFturbo Software & Engineering GmbH Dresden, München gero.kreuzfeld@cfturbo.de Kurzlehrgang Turbomaschinen, Universität

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Berechnung der Strömung im Laufrad einer Kreiselpumpe

Berechnung der Strömung im Laufrad einer Kreiselpumpe Berechnung der Strömung im Laufrad einer Kreiselpumpe Dipl. Ing. Dr. Bernhard List, Dipl. Ing Dr. Eduard Doujak, Dipl. Ing. Michael Artmann Institut für Wasserkraftmaschinen und Pumpen E305 Tel.: 58801

Mehr

Praktikum Kleinventilator

Praktikum Kleinventilator Gesamtdruckerhöhung in HTW Dresden V-SM 3 Praktikum Kleinventilator Lehrgebiet Strömungsmaschinen 1. Kennlinien von Ventilatoren Ventilatoren haben unabhängig von ihrer Bauart einen bestimmten Volumenstrom

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Übungen. Vorlesung. Energietechnik

Übungen. Vorlesung. Energietechnik Fachhochschule Münster Fachbereich Maschinenbau Motoren- und Energietechnik-Labor Prof. Dr. R. Ullrich Übungen zur Vorlesung Energietechnik Version 1/99 - 2 - Übung 1 1.) Die wirtschaftlich gewinnbaren

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Energie- und Kältetechnik Klausur WS 2008/2009

Energie- und Kältetechnik Klausur WS 2008/2009 Aufgabenteil / 00 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Kreiselpumpen. Berechnung und Konstruktion. Adam T. Troskolaiiski und Stephan Lazarkiewicz. Geleitwort von Dr. Ing. h. c.

Kreiselpumpen. Berechnung und Konstruktion. Adam T. Troskolaiiski und Stephan Lazarkiewicz. Geleitwort von Dr. Ing. h. c. Kreiselpumpen Berechnung und Konstruktion Adam T. Troskolaiiski und Stephan Lazarkiewicz Professor an der Technischen Vormals Leiter des Konstruktions- Universität Wroclaw büros der Pumpenfabrik Warszawa

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2013 Praktikum Kraft- und Arbeitsmaschinen Versuch 1 Betriebsfeld und Energiebilanz eines

Mehr

Projekt Aufgabensammlung Thermodynamik

Projekt Aufgabensammlung Thermodynamik Projekt Aufgabensammlung Thermodynamik Nr. Quelle Lösungssicherheit Lösung durch abgetippt durch 1 Klausur 1 (1) OK Navid Matthes 2 Probekl. WS06 (1) / Kl.SS04 (1) 100% Prof. Seidel. (Nav.) Matthes (Nav)

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 10.11.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden. Es wird

Mehr

Praktikum Netzkennlinie für Lüfter einer Klimaanlage

Praktikum Netzkennlinie für Lüfter einer Klimaanlage HTW Dresden V-SM 5 Lehrgebiet Strömungsmaschinen Praktikum Netzkennlinie für Lüfter einer Klimaanlage 1 Ziel des Praktikums Untersuchung des Ventilators einer Klimaanlage im eingebauten Zustand Dazu sind

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Dipl.-Ing. Robert Basile und Prof. Dr.-Ing. Thomas Carolus Institut für Fluid- und Thermodynamik Universität Siegen D-57068 Siegen

Dipl.-Ing. Robert Basile und Prof. Dr.-Ing. Thomas Carolus Institut für Fluid- und Thermodynamik Universität Siegen D-57068 Siegen Einfluss von Zwischenschaufel auf die aerodynamischen Eigenschaften von Radialventilatoren - Vergleich verschiedener numerischer Stromfeldberechnungsverfahren Dipl.-Ing. Robert Basile und Prof. Dr.-Ing.

Mehr

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung Institut für Fahrzeugsystemtechnik Lehrstuhl für Fahrzeugtechnik Leiter: Prof. Dr. rer. nat. Frank Gauterin Rintheimer Querallee 2 76131 Karlsruhe Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I Übung

Mehr

Berechnung, Konstruktion und dreidimensionale Modellierung eines radialen Turbokompressors

Berechnung, Konstruktion und dreidimensionale Modellierung eines radialen Turbokompressors Berechnung, Konstruktion und dreidimensionale Modellierung eines radialen Turbokompressors 1 1 Einleitung Ziel dieser Arbeit ist das Konstruieren und Modellieren eines radialen Turbo-Kompressors. Hauptaufgabe

Mehr

Auslegung, Entwurf und Nachrechnung von Hochleistungs-Kreiselpumpen mittels CFturbo und Ansys CFX

Auslegung, Entwurf und Nachrechnung von Hochleistungs-Kreiselpumpen mittels CFturbo und Ansys CFX 8. CFD Seminar Power Generation Auslegung, Entwurf und Nachrechnung von Hochleistungs-Kreiselpumpen mittels CFturbo und Ansys CFX Dr.-Ing. Oliver Velde CFturbo Software & Engineering GmbH Inhalt Intro

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks:

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: Teilaufgaben: 1 Welche Energieformen werden den Bauteilen Dampferzeuger, Turbine, Generator und Verbraucher

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

4.1 Arbeitsverfahren der Strömungsmaschinen

4.1 Arbeitsverfahren der Strömungsmaschinen 189 Das Kennzeichen jeder Strömungs- oder Turbomaschine ist das umlaufende, mit einem Kranz von gekrümmten Schaufeln besetzte Rad und das stetige Umströmen dieser umlaufenden Schaufeln durch das Arbeitsmedium

Mehr

Auslegung, Entwurf, Nachrechnung und Optimierung einer Hochdruck-Turboverdichterstufe

Auslegung, Entwurf, Nachrechnung und Optimierung einer Hochdruck-Turboverdichterstufe Auslegung, Entwurf, Nachrechnung und Optimierung einer Hochdruck-Turboverdichterstufe Alexander Fischer, Marius Korfanty, Ralph-Peter Müller CFturbo Software & Engineering GmbH, München Johannes Strobel

Mehr

KLAUSUR HEIZTECHNIK II SS Name: Vorname: Gesamtpunktzahl: Aufgabe 25 Punkte

KLAUSUR HEIZTECHNIK II SS Name: Vorname: Gesamtpunktzahl: Aufgabe 25 Punkte Fachhochschule Gießen-Friedberg Prof. Dr.-Ing. Boris Kruppa KLAUSUR HEIZTECHNIK II SS 2010 Fachbereich MMEW Montag, 12. Juli 2010 Name: Vorname: Gesamtpunktzahl: 110 Matrikelnummer: Erreichte Punktzahl:

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

Berechnung von ORC-Prozessen mit Kältemitteln

Berechnung von ORC-Prozessen mit Kältemitteln Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Berechnung von ORC-Prozessen mit Kältemitteln Diplomarbeit Christoph Wiesner Matr.-Nr.: 1858108 1. Betreuer: Prof.

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch.

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel Bachelorprüfung Prüfungsfach: Geologie, Werkstoffe und Bauchemie Prüfungsteil:

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Aufgabe 1: Rotierende Leiterschleife Betrachtet wird die im folgenden Bild dargestellte, in einem homogenen Magnetfeld rotierende Leiterschleife. Es seien folgende

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

1. Aufgabe (15 Punkte)

1. Aufgabe (15 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Sommersemester 2009 24. September 2009 Teil II: Wärmetransportphänomene

Mehr

TECHNISCHE MATHEMATIK. Formelsammlung Auszug aus Tabellenbuch Kraftfahrzeugtechnik Verfasser: G. P. Boscaini

TECHNISCHE MATHEMATIK. Formelsammlung Auszug aus Tabellenbuch Kraftfahrzeugtechnik Verfasser: G. P. Boscaini GEWERBLICH - INDUSTRIELLE BERUFSFACHSCHULE BERN BERUFSGRUPPE CARROSSERIETECHNIK TECHNISCHE MATHEMATIK Formelsammlung Auszug aus Tabellenbuch Kraftfahrzeugtechnik Verfasser: G. P. Boscaini CARROSSIER SPENGLEREI

Mehr

Formelsammlung Energietechnik

Formelsammlung Energietechnik Formelsammlung Energietechnik Kontinuitätsgleichung: A c A c A c konst. v u D n Bernoulligleichung: Energieform: p p c g h c g h Druckform: p c g h p c g h Höhenform: p c p c h h g g g g Höhendifferenz

Mehr

PKW-Abgasturboladers

PKW-Abgasturboladers Modellierung des Radialverdichters eines PKW-Abgasturboladers Masterarbeit Matthias Ewert Lehrstuhl für Informatik 2 Theorie von hybriden Systemen Prof. Dr. Erika Ábrahám RWTH Aachen University FEV GmbH

Mehr

Klausur "Elektrotechnik" am 11.02.2000

Klausur Elektrotechnik am 11.02.2000 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Johann F. Gülich. Kreiselpumpen. Ein Handbuch für Entwicklung, Anlagenplanung und Betrieb. Mit 282 Abbildungen und 47 Tafeln / / / Springer

Johann F. Gülich. Kreiselpumpen. Ein Handbuch für Entwicklung, Anlagenplanung und Betrieb. Mit 282 Abbildungen und 47 Tafeln / / / Springer Johann F. Gülich Kreiselpumpen Ein Handbuch für Entwicklung, Anlagenplanung und Betrieb Mit 282 Abbildungen und 47 n / / / Springer Inhaltsverzeichnis Formelzeichen XVIII 1 Allgemeine strömungstechnische

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Untersuchungen zum Betriebsfeld eines Kolbenkompressors

Untersuchungen zum Betriebsfeld eines Kolbenkompressors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter rof. Dr.-Ing. B. Sessert März 03 raktikum Kraft- und Arbeitsmaschinen Versuch 4 Untersuchungen zum Betriebsfeld eines Kolbenkomressors

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Berechnungen bei dynamischer Belastung: Kritische Drehzahl n zul.

Berechnungen bei dynamischer Belastung: Kritische Drehzahl n zul. Nachfolgend sind die relevanten Berechnungsgrundlagen aufgeführt, die eine ausreichend sichere und in der Praxis bewährte Auslegung eines Kugelgewindetriebs erlauben. Detaillierte Angaben zur Auslegung

Mehr

eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften von Daniel Wolf Matrikelnummer 0327632

eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften von Daniel Wolf Matrikelnummer 0327632 Das CORDIER-Diagramm unter besonderer Berücksichtigung der axialen Turboarbeitsmaschine Diplomarbeit zur Erlangung des akademischen Grades eines Diplom-Ingenieurs unter der Anleitung von Ao.Univ.Prof.

Mehr

12. Gasrohrleitungen Aufgabe 12.1 [5]

12. Gasrohrleitungen Aufgabe 12.1 [5] 12-1 12. Gasrohrleitungen Aufgabe 12.1 [5] Beweise, daß ein Druckverlust p V ( quasi-inkompressible Strömung) exergetisch umso schwerer wiegt, je niedriger der Druckpegel im fraglichen Bereich des betrachteten,

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele Arbeitsblatt zur Ventilberechnung Berechnungsbeisiele Inhalt Seite Ventilberechnung bei Flüssigkeiten Ventilberechnung bei Wasserdamf 5 Ventilberechnung bei Gas und Damf 7 Ventilberechnung bei Luft 9 Durchfluss

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Pumpenkennlinie. Matthias Prielhofer

Pumpenkennlinie. Matthias Prielhofer Matthias Prielhfer 1. Zielsetzung Im Rahmen der Übung sllen auf einem dafür eingerichteten Pumpenprüfstand Parameter gemessen werden um eine erstellen zu können. Weiters sll vn einem Stellglied, in diesem

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm.

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm. Institut für hermodynamik hermodynamik II - Lösung 8 Aufgabe 13: In einem nach dem Clausius-Rankine-Prozess arbeitenden Damfkraftwerk wird flüssiges Wasser in der Kesselseiseume von 1 =,2 bar und t 1 =

Mehr

2 Entwurf radialer Ventilatoren

2 Entwurf radialer Ventilatoren Entwurf radialer Ventilatoren Im Vordergrund dieses Kapitels steht ein Entwurfsverfahren für die Schaufeln des Radialrades, insbesondere für einfach gekrümmte Schaufeln (Kreisbogen- oder logarithmische

Mehr

Hilfe. Wasserdampftafel und Prozesse Excel Makros. Version 1.19-10/2007. Josef BERTSCH Gesellschaft m.b.h & Co

Hilfe. Wasserdampftafel und Prozesse Excel Makros. Version 1.19-10/2007. Josef BERTSCH Gesellschaft m.b.h & Co Wasserdampftafel und Prozesse Excel Makros Hilfe Version 1.19-10/2007 Josef BERTSCH Gesellschaft m.b.h & Co Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Zentrale: A-6700 Bludenz, Herrengasse

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Bauarten und Leistungsdaten

Bauarten und Leistungsdaten Bauarten und Leistungsdaten 2 Zusammenfassung Kreiselpumpen dienen zum Fördern von Flüssigkeiten. Die Förderleistung der Pumpe bei einer gegebenen Rotordrehzahl wird durch den Volumenstrom, die Druckerhöhung

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Ventilatoreinheit mit optimiertem Nachleitrad-Design für kleine Nabenverhältnisse Dr. W. Angelis, Technische Leitung Lufttechnik ZIEHL-ABEGG SE

Ventilatoreinheit mit optimiertem Nachleitrad-Design für kleine Nabenverhältnisse Dr. W. Angelis, Technische Leitung Lufttechnik ZIEHL-ABEGG SE Fachverband Gebäude-Klima e. V. Nachleitrad-Design für kleine Nabenverhältnisse, Technische Leitung Lufttechnik ZIEHL-ABEGG SE Berlin, 14./15. April 2016 Nachleitrad-Design 1 Nachleitrad- Design für kleine

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Name: Vorname: Mat.-Nr.: Studiengang: Datum: Note: Betreuer: Dipl.-Ing. Matthias vom Stein / fml Versuch 1: Drehzahl und Beschleunigung

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I Klausur KT1 (alt KT) SS 011 Dr.-Ing. S. Umbach I 30.08.011 Name, Vorname: Unterschrift: Matrikel- Nr.: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner.

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015. Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015. Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Gasturbine mit geschlossenem Kreislauf (25 Punkte) Ein Joule-Prozess soll berechnet werden. Eine Gasturbine mit

Mehr

Das verwendete Bildmaterial wurde hauptsächlich der Internetseite: www.ksb.de/ entnommen.

Das verwendete Bildmaterial wurde hauptsächlich der Internetseite: www.ksb.de/ entnommen. 1 Aufgabe 3.01 Das verwendete Bildmaterial wurde hauptsächlich der Internetseite: www.ksb.de/ entnommen. Ihnen wird die Aufgabe übertragen, eine Pumpeanlage vollständig auszulegen, mit der sauberes Regenwasser

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik I Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Wasserkraft ohne Aufstau Konzepte und deren Grenzen

Wasserkraft ohne Aufstau Konzepte und deren Grenzen Wasserkraft ohne Aufstau Konzepte und deren Grenzen Albert Ruprecht Hydraulische Klassische Wasserkraft H Klassische Wasserkraft (mit Aufstau) nützt die potenzielle Energie (Fallhöhe) aus Nachteile: Aufstau,

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Untersuchung der Laufradströmung in einem Radialventilator mittels Particle Image Velocimetry (PIV)

Untersuchung der Laufradströmung in einem Radialventilator mittels Particle Image Velocimetry (PIV) Untersuchung der Laufradströmung in einem Radialventilator mittels Particle Image Velocimetry (PIV) Von der Fakultät Ingenieurwissenschaften der Universität Duisburg-Essen genehmigte Dissertation zur Erlangung

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Pflichtaufgaben Pflichtaufgabe 1 1 a) Berechnen Sie das Quadrat der Summe aus 8 und 4. b)

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

Kreiselpumpen. Charakteristik einer Kreiselpumpe. Q/H-Kennlinie

Kreiselpumpen. Charakteristik einer Kreiselpumpe. Q/H-Kennlinie Charakteristik einer Kreiselpumpe Kreiselpumpen sind Strömungsmaschinen zur Energieerhöhung in einem rotierenden Laufrad. Man spricht auch vom hydrodynamischen Förderprinzip. Bei diesem Prinzip wird das

Mehr

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte)

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Wirtschaftlichkeitsbetrachtung Als Jungingenieur arbeiten Sie in einer mittleren Firma an der Auslegung eines neuen Produktionsprozesses. Bei der Planung haben Sie

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr