19 Körperhomomorphismen

Größe: px
Ab Seite anzeigen:

Download "19 Körperhomomorphismen"

Transkript

1 19 Körperhomomorphismen Definition und Bemerkung (i) Seien K, L Körper. Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K, L). (ii) σ (wie oben) ist immer injektiv und Bild(σ) = σ(k) ist Unterkörper von L. (iii) Ein bijektiver Körperhomomorphismus heißt Körperisomorphismus. Zwei Körper K und L heißen isomorph, in Zeichen K = L, falls es einen Körperisomorphismus σ : K L gibt. (iv) Seien L/K, M/K Körpererweiterungen. σ Hom(L, M) nennt man Körperhomomorphismus über K falls σ K = id K. Die Menge der Körperhomomorphismen L M über K bezeichnen wir mit Hom K (L, M). Entsprechend definiert man Körperisomorphismus über K, und L und M isomorph über K, in Zeichen L = K M. (v) Seien L/K, L /K Körpererweiterungen, σ Hom(K, K ). Man nennt τ Hom(L, L ) eine Erweiterung von σ falls τ K = σ. Es gilt dann (a) [L : K] = [τ(l) : σ(k)] und falls σ(k) = K (also σ ein Isomorphismus) weiterhin [L : K] [L : K ]. (b) Falls σ(k) = K so gilt: [L : K ] endlich = [L : K] endlich, und in dieser Situation ist τ ein Isomorphismus genau dann wenn [L : K] = [L : K ]. (c) Falls K = K und σ = id K, d.h. τ Hom K (L, L ), dann ist τ K-linear. (vi) Für einen Körper K definieren wir seine Automorphismengruppe als Aut(K) = {σ Hom(K, K) σ bijektiv}. Für eine Körpererweiterung L/K definieren wir Gal(L/K) := Aut K (L) = {σ Hom K (L, L) σ bijektiv}, die Galoisgruppe von L über K. Aut(K) und Gal(L/K) sind in der Tat Gruppen unter der Verknüpfung von Abbildungen, und es gilt Gal(L/K) Aut(L). Bemerkung (i) Sei K ein Körper mit Primkörper P (also P = F P = Z/pZ oder P = Q). Dann gilt: σ Aut(K) = σ P = id P, also Aut(K) = Gal(K/P). Insbesondere Aut(F p ) = {id Fp }, Aut(Q) = {id Q }. (ii) Sei L/K eine Körpererweiterung, M ein Körper, α i L, i I. Seien σ, τ Hom(K(α i, i I), M). Dann gilt: σ = τ σ K = τ K und σ(α i ) = τ(α i ) i I. Falls M/K auch eine Erweiterung und σ, τ Hom K (K(α i, i I), M), dann gilt entsprechend: σ = τ σ(α i ) = τ(α i ) i I. 1

2 Beispiel. Berechnung von Aut(R): Sei σ Aut(R), a R. Dann gilt zunächst: a > 0 = α R mit α 2 = a = 0 σ(a) = σ(α 2 ) = σ(α) 2 und damit auch σ(a) > 0. Ferner gilt σ(a) = a falls a Q wegen Angenommen b R mit σ(b) b. Falls σ(b) > b, so existiert q Q mit σ(b) > q > b. Dann gilt aber q b > 0 und daher 0 < σ(q b) = σ(q) σ(b) = q σ(b), aber q σ(b) < 0, Widerspruch. Analog erhält man einen Widerspruch falls σ(b) < b. Damit muss gelten: σ(b) = b für alle b R, d.h. σ = id und somit Aut(R) = {id}. Aber man kann zeigen: Aut(C) =. Aut(C) ist sogar überabzählbar! Lemma 19.. Seien K, L, M Körper. Sei σ Hom(L, M). Definiere σ : L[X] M[X] : a 0 +a 1 X a n X n σ(a 0 )+σ(a 1 )X σ(a n )X n Dies ist ein Ringhomomorphismus. Wir bezeichnen oft σ(f) mit f. Es gilt: Ist α L Nullstelle von f L[X], so ist σ(α) M Nullstelle von f M[X]. Insbesondere gilt dann Folgendes. Sind L/K und M/K Körpererweiterungen, f K[X] und σ Hom K (L, M), so gilt f = f, und falls dann α L Nullstelle von f ist, so ist auch σ(α) M Nullstelle von f. Satz Sei L/K eine algebraische Körpererweiterung, σ Hom K (L, L). Dann ist σ bijektiv, also σ Gal(L/K). Insbesondere: L/K algebraisch = Hom K (L, L) = Gal(L/K). Satz Sei K ein Körper, f K[X], Grad(f) 1. Dann existiert eine endliche algebraische Erweiterung L/K mit einem α L mit f(α) = 0. Daraus folgt mittels transfiniter Induktion bzw. Zorn s Lemma (Reduktion auf den Fall einer endlich erzeugten Erweiterung) und dann mittels normaler Induktion (Reduktion auf den Fall einer einfachen Erweiterung): Korollar Sei K ein Körper, f i K[X], Grad(f i ) 1, i I (I eine beliebige Indexmenge). Dann existiert eine algebraische Erweiterung L/K sodass jedes f i in L eine Nullstelle hat. Definition und Satz Ein Körper L heißt algebraisch abgeschlossen falls jedes f L[X], Grad(f) 1, in L eine Nullstelle hat, d.h. α L mit f(α) = 0. (i) L ist algebraisch abgeschlossen genau dann wenn jedes f L[X], Grad(f) 1, über L in Linearfaktoren zerfällt. 2

3 (ii) Sei K ein Körper. Dann existiert eine algebraische Erweiterung L/K mit L algebraisch abgeschlossen. (iii) Falls L/K, L /K algebraische Erweiterungen sind mit L, L algebraisch abgeschlossen, so gilt L = K L. Aus (ii) und (iii) folgt: es gibt eine bis auf Isomorphie über K eindeutig bestimmte algebraische Erweiterung L/K mit L algebraisch abgeschlossen. Man nennt so ein L einen algebraischen Abschluss von K, in Zeichen K alg oder K. Beweis. (ii) (Skizze) Konstruiere einen Körperturm K = K 0 K 1 K 2... mit K 0 := K und die K i per Induktion wie folgt: falls K i schon konstruiert ist, konstruiere man K i+1 mittels 19.6 so, dass K i+1 /K i algebraisch und jedes f K i [X], Grad(f) 1, eine Nullstelle in K i+1 hat. Nun setze man L := i=0 K i und zeige: L ist ein Körper; L/K ist algebraisch; jedes f L[X] hat in L eine Nullstelle. (iii) folgt aus 19. und 19.9 unten. Satz 19.8 (Erweiterung von Körperisomorphismen). Seien L/K und L /K Körpererweiterungen und σ : K K ein Körperisomorphismus, σ : K[X] K [X] : f f wie in 19.. (i) f K[X] irreduzibel f K [X] irreduzibel. (ii) Seien α L, β L mit α algebraisch/k und f = Min K,α (X) K[X]. Angenommen f(β) = 0. Dann gilt f = Min K,β(X) und es exisitiert ein eindeutig bestimmter Körperhomomorphismus τ : K(α) K (β) mit τ K = σ und τ(α) = β, und dieses τ ist ein Isomorphismus. (iii) (Notationen wie in (ii).) Die Abbildung {τ Hom(K(α), L ) τ K = σ} {β L f(β) = 0} τ τ(α) ist eine Bijektion. Insbesondere gilt: {τ Hom(K(α), L ) τ K = σ} = Anzahl der verschiedenen Nullstellen von f in L

4 Korollar Seien K, K Körper, sei L/K algebraisch, M/K mit M algebraisch abgeschlossen, und sei σ Hom(K, K ). Dann existiert τ Hom(L, M) mit τ K = σ. Beispiel. (i) Fundamentalsatz der Algebra: C ist algebraisch abgeschlossen (d Alembert 1746 mit lückenhaftem Beweis, Gauß 1799, auch unter Verwendung einiger Sätze aus der Analysis, die Gauß ohne Beweis voraussetzte). C = R alg. (ii) C ist kein algebraischer Abschluss von Q da C/Q nicht algebraisch. Aber mittels 19.8 kann man ein einen algebraischen Abschluss von Q konstruieren, der in C liegt: Q Q alg C. Man kann zeigen: Q alg ist abzählbar unendlich, wohingegen C bekanntlich überabzählbar unendlich ist. Aus 19. und 19.8 folgt nun leicht: Satz Sei L/K eine Körpererweiterung, α L algebraisch über K, und sei f = Min K,α K[X]. Seien α = α 1, α 2,..., α n alle verschiedenen Nullstellen von f in L. (i) σ Hom K (K(α), L) = σ(α) {α 1, α 2,..., α n }. (ii) Falls σ, τ Hom K (K(α), L) so gilt: σ = τ σ(α) = σ(τ). (iii) Zu jedem α i existiert ein σ Hom K (K(α), L) mit σ(α) = α i. Insbesondere gilt nach (i) (iii): es gibt eine Abbildung Hom K (K(α), L) {α 1, α 2,..., α n } : σ σ(α) und diese ist bijektiv. Insbesondere gilt: Gal(K(α)/K) ist gleich der Anzahl der verschiedenen Nullstellen von Min K,α (X) in K(α). Beispiel. (i) Q( 2)/Q: Min Q ( 2) = X 2 2 Q[X], beide Nullstellen ± 2 sind in Q( 2). Also gilt Gal(Q( 2)/Q) = 2, also Gal(Q( 2)/Q) = {id, σ} = C 2 mit σ( 2) = 2. Allgemein gilt also: Sei x Q( 2). Dann existieren eindeutig bestimmte a, b Q mit x = a+b 2 (Q( 2) hat Q-Basis 1, 2), und es gilt σ(x) = σ(a+b 2) = σ(a) + σ(b)σ( 2) = a b 2. (ii) Q( 2)/Q: [Q( 2) : Q] = Grad Min Q ( 2) = Grad(X 2) =, und X 2 hat Nullstellen (in C) 2, j 2, j 2 2 mit j = e 2πi/ = 1 2 ( 1 + i ) und j 2 = e 4πi/ = 1 2 ( 1 i ). Nun gilt Q( 2) R aber j 2, j 2 2 R. Also hat X 2 nur eine Nullstelle in Q( 2), nämlich 2. Somit Gal(Q( 2)/Q) = 1, d.h. Gal(Q( 2)/Q) = {id}. 4

5 (iii) K = Q( 2, )/Q: Man rechnet leicht nach, dass Q( 2), somit [Q( 2)( ) : Q( 2)] = [K : Q( 2)] > 1, aber X 2 hat als Nullstelle, somit muss gelten X 2 = Min Q( 2), (X), damit [K : Q( 2)] = 2 und [K : Q] = [K : Q( 2)][Q( 2) : Q] = 4, und mit 18.4 hat man, dass 1, 2,, 2 = 6 eine Q-Basis von K ist. Sei ϕ Gal(Q( 2)/Q). Nach 19. und 19.8 läßt sich ϕ auf genau zwei Weisen fortsetzen zu einem Isomorphismus ψ : K K sodass ψ Q( 2 = ϕ und ψ( ) = bzw.,,die Nullstellen von X 2 = Min Q( 2), (X) in K. Man beachte auch dass K = Q( 2)( ) = Q( 2)( ). Z.B. kann id Q( 2) Gal(Q( 2)/Q) zu einem σ 0 fortgesetzt werden, sodass σ 0 ( ) =, somit wäre σ 0 = id K, oder zu einem σ 1 mit σ 1 ( ) =. Damit erhält man vier Automorphismen id, σ i, 1 i in Gal(K/Q), die auf 2 bzw. wie folgt operieren: ψ Gal(K/Q) id σ 1 σ 2 σ ψ( 2) ψ( ) Diese vier Automorphismen sind offenbar alle untereinander verschieden. Mehr kann es auch nicht geben, da für jedes ψ Gal(K/Q) sicher gelten muss, dass ψ( 2) {± 2} und ψ( ) {± }, denn die Nullstellen von X 2 2 bzw. X 2 müssen wieder auf Nullstellen dieser Polynome abgebildet werden, und da ψ durch die Bilder der Erzeugenden 2, ja eindeutig bestimmt ist. Somit also Gal(K/Q) = {id, σ 1, σ 2, σ }, und man rechnet leicht nach dass σ 2 i = id, also Gal(K/Q) = C 2 C 2. Von früher wissen wir auch: Q( 2, ) = Q(α) mit α = 2 + und f = Min Q,α (X) = X 4 10X + 1. Dann ist σ i (α) wieder eine Wurzel von f in Q( 2, ) = Q(α), und man erhält so die 4 Wurzeln ±( 2 ± ) und σ i ist damit auch eindeutig dadurch bestimmt, welche dieser Wurzeln gleich σ i (α) ist. (iv) K = F 2 (T ) (rationaler Funktionenkörper in der Variablen T über F 2 ). Man sieht leicht: X 2 T K[X] ist irreduzibel. Sei α K alg mit α 2 = T. Dann gilt in K(α): X 2 T = (X α) 2, also nur eine (doppelte) Nullstelle. Damit: Gal(K(α)/K) = 1. 5

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Algebra I. Gal(K/Q), Gal(K/Q), a σa.

Algebra I. Gal(K/Q), Gal(K/Q), a σa. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 12. Übungsblatt Aufgabe 1: (6 1 P) Sei ζ = ζ 7 = exp(2πi/7) und K := Q[ζ]. Wir nehmen an, dass K/Q eine Galois-Erweiterung ist und dass es einen

Mehr

Übung 10 Körpererweiterungen

Übung 10 Körpererweiterungen Übung 10 Körpererweiterungen Mögliche Literatur: S. Bosch, Algebra, Seiten 84-95, 110-112 und 114-121 (Quelle für sämtliche Aufgaben - und fast alle Tipps - dieses Übungsblattes). Algebraische Erweiterungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr

3 Algebraische Körpererweiterungen

3 Algebraische Körpererweiterungen 3 Algebraische Körpererweiterungen 3.1 Algebraische und transzendente Elemente Definition 3.1.1 Sei L ein Körper, K L Teilkörper. (a) Dann heißt L Körpererweiterung von K. Schreibweise: L/K Körpererweiterung.

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Klausur zur Algebra (B3)-Lösungen

Klausur zur Algebra (B3)-Lösungen Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3)-Lösungen Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte

Mehr

Musterlösung zur Probeklausur

Musterlösung zur Probeklausur Musterlösung zur Probeklausur Markus Severitt 26. Juni 2006 Aufgabe 1. Sei G eine Gruppe mit g 2 = e für alle g G. Zeigen Sie, dass G abelsch ist. Lösung. g 2 = e für alle g G heißt gerade, dass alle Elemente

Mehr

Sei nun char(k) = p > 0. Dann haben wir also einen injektiven Homomorphismus

Sei nun char(k) = p > 0. Dann haben wir also einen injektiven Homomorphismus 32 KAPITEL 2. ENDLICHE KÖRPER UND ANWENDUNGEN 2.2 Endliche Körper Existenz und Eindeutigkeit Ich erinnere, wie die Charakteristik eines Körpers definiert ist: Sei K ein Körper. Wir betrachten den Ringhomomorphismus

Mehr

Galois-Erweiterungen und Hauptsatz der Galois-Theorie

Galois-Erweiterungen und Hauptsatz der Galois-Theorie Galois-Erweiterungen und Hauptsatz der Galois-Theorie Stephanie Zube Andy Schärer 8. April 2009 Inhaltsverzeichnis 1 Erinnerungen 2 2 Galois-Erweiterungen 3 3 Der Hauptsatz der Galois-Theorie 5 A Literaturverzeichnis

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2015/16) 1 Abgabetermin: Donnerstag, 22. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

8.2 Ring- und Körperadjunktion

8.2 Ring- und Körperadjunktion 320 8.2 Ring- und Körperadjunktion 8.2.1 Definition (Ringadjunktion, Körperadjunktion) Sei jetzt L : K eine Körpererweiterung. Als Einsetzung von λ L oder auch als Auswertung an der Stelle λ bezeichnen

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Übungsblatt 10: Körpererweiterungen und Automorphismen

Übungsblatt 10: Körpererweiterungen und Automorphismen Übungsblatt 10: Körpererweiterungen und Automorphismen 1. GRUNDLAGEN 1.1. Zeigen Sie, dass die Menge der Zahlen {log(p) : p Primzahl } im Q-Vektorraum R linear unabhängig ist. Folgern Sie R : Q =. Lösungshinweise:

Mehr

PROSEMINAR LINEARE ALGEBRA SS10

PROSEMINAR LINEARE ALGEBRA SS10 PROSEMINAR LINEARE ALGEBRA SS10 Körper und Konstruktion mit Zirkel und Lineal Neslihan Yikici Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Juni 2010 Betreuung: Prof. Dr. Oleg Bogopolski

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

15 Auflösbarkeit durch Radikale

15 Auflösbarkeit durch Radikale Chr.Nelius: Algebra (SS 2006) 1 15 Auflösbarkeit durch Radikale f [T] sei ein normiertes Polynom vom Grade 1. Wir wollen die Frage untersuchen, ob sich die Nullstellen von f formelmäßig berechnen lassen.

Mehr

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z )

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) Aufgabe 57 a) Seien p Primzahl, p 2, k N und [a] p k ( Z/p k Z ). Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) genau zwei oder gar keine Lösung. Beweis: Sei [x] p k ( Z/p k Z ) eine Lösung

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

Hilbertpolynom von I, i.z. a HP I.

Hilbertpolynom von I, i.z. a HP I. 9.4.4 Korollar/Def. Sei (1) I k[x 1,..., X n ] ein Ideal. Dann ist die affine Hilbertfunktion a HF I (s) für s 0 ein Polynom in s mit Koeffizienten in Q; es heißt das affine Hilbertpolynom von I, i.z.

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Die Sätze von Tsen und Chevalley-Warning

Die Sätze von Tsen und Chevalley-Warning Ruprecht-Karls-Universität Heidelberg Fakultät für Mathematik und Informatik Mathematisches Institut Sommersemester 2007 Seminar: Quadratische Formen über den rationalen Zahlen Die Sätze von Tsen und Chevalley-Warning

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 9 Graduierte Körpererweiterungen Definition 9.1. Es sei K ein Körper und D eine kommutative Gruppe. 1 Eine K-Algebra A heißt D-graduiert,

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

Konstruktion und Struktur endlicher Körper

Konstruktion und Struktur endlicher Körper Université du Luxembourg Faculté des Sciences, de la Technologie et de la Communication Bachelorarbeit Konstruktion und Struktur endlicher Körper Hoeltgen Laurent Luxemburg den 28. Mai 2008 Betreuer: Prof.

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Übungen zu Algebra, WS 2015/16

Übungen zu Algebra, WS 2015/16 Übungen zu Algebra, WS 2015/16 Christoph Baxa 1) Es seien G 1,..., G n Gruppen. Beweisen Sie: Ist σ S n, so ist G σ(1) G σ(n) = G1 G n. 2) Beweisen Sie: Sind G 1,..., G n und H 1,..., H n Gruppen mit der

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Skript zur Vorlesung. Algebra. Wintersemester 2012/ 13. Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck

Skript zur Vorlesung. Algebra. Wintersemester 2012/ 13. Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Skript zur Vorlesung Algebra Wintersemester 2012/ 13 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität Ulm Inhaltsverzeichnis 1 Ringtheorie

Mehr

Seminar über Galoistheorie und Anwendungen SEPARABILITÄT

Seminar über Galoistheorie und Anwendungen SEPARABILITÄT Seminar über Galoistheorie und Anwendungen SEPARABILITÄT Christine Anthamatten und Alexandra Valle May 5, 2009 Contents 1 Einfache und mehrfache Nullstellen 2 2 Separabilität 7 3 Der Satz vom primitiven

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

9.3 Normale und separable Erweiterungen

9.3 Normale und separable Erweiterungen 9.3. NORMALE UND SEPARABLE ERWEITERUNGEN 345 9.3 Normale und separable Erweiterungen Wir betrachten jetzt noch algebraische Erweiterungen der folgenden Form: 9.3.1 Definition (normale Erweiterung) Algebraische

Mehr

Vertiefung der Algebra

Vertiefung der Algebra Vertiefung der Algebra Wintersemester 2011/2012 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 25. Einführung 2 26. Separable Körpererweiterungen 7 27. Galois-Erweiterungen 14 28. Die Diskriminante

Mehr

Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift

Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift auch auf dem Algebra-Skript von Prof. Dr. Helmut Schwichtenberg (Universität München). Hinweis: Es gilt jeweils die

Mehr

Gruppen, Ringe, Körper

Gruppen, Ringe, Körper Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Algebra I. keine Abgabe

Algebra I. keine Abgabe WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 13. Übungsblatt keine Abgabe Aufgabe 1: Sei G eine endliche abelsche Gruppe der Ordnung n. (a) Zeigen Sie: für jeden Teiler d von n existiert

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Algebra (Master), Vorlesungsskript

Algebra (Master), Vorlesungsskript Algebra (Master), Vorlesungsskript Irene I. Bouw Wintersemester 2013/2014 Inhaltsverzeichnis 1 Körpererweiterungen 3 1.1 Algebraische Körpererweiterungen................. 3 1.2 Faktorisieren von Polynomen....................

Mehr

Galois-Theorie Anfänge

Galois-Theorie Anfänge Galois-Theorie Anfänge Evariste Galois1811-1832 entdeckte als 20-Jähriger, dass mit dem Gleichungsauflösen durch Wurzelterme eine wiederholte Untergruppenbildung einer speziellen Permutationsgruppe der

Mehr

Ausarbeitungen zum Seminar Algebra. bei Dr. Christian Nelius im WS 2003/2004

Ausarbeitungen zum Seminar Algebra. bei Dr. Christian Nelius im WS 2003/2004 Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik Ausarbeitungen zum Seminar Algebra bei Dr. Christian Nelius im WS 2003/2004 Teilnehmer: Dennis Amelunxen, Karin Büker, Anna

Mehr

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Probeklausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

4. Morphismen. 30 Andreas Gathmann

4. Morphismen. 30 Andreas Gathmann 30 Andreas Gathmann 4. Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen. Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung

Mehr

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist.

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Analysis, Woche 5 Funktionen I 5. Definition Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Definition 5. Eine Funktion f : A B

Mehr

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart Auf den nächsten Seiten finden Sie die Übungsblätter zur Vorlesung. Dozent: Prof. Dr. Jörg Brüdern Übungen: Dipl. Math. Rainer Dietmann und Dipl.

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist.

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist. Prof. Dr. Annette Werner Algebraische Geometrie I (alias Algebra II) SS 05 Übungsaufgaben. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten

Mehr

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 9 Woche: Elliptische Kurven - Gruppenarithmetik 9 Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 Elliptische Kurven Ḋefinition Elliptische Kurve Eine elliptische Kurve E über dem Körper K ist eine

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v,

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v, Blatt 1 Aufgabe 1. Sei z = re iϕ C eine komplexe Zahl mit r, ϕ R, und n 1. Geben Sie alle ω C mit ω n = z in Polarkoordinaten an. Aufgabe 2. Sei X 3 + px + q C[X] ein kubisches Polynom. Dessen drei Nullstellen

Mehr

D-MATH Algebra II FS 2016 Prof. Richard Pink. Musterlösung 16. einfache und algebraische Erweiterungen

D-MATH Algebra II FS 2016 Prof. Richard Pink. Musterlösung 16. einfache und algebraische Erweiterungen D-MATH Algebra II FS 206 Prof. Richard Pink Musterlösung 6 einfache und algebraische Erweiterungen. Bestimme das Minimalpolynom folgender komplexer Zahlen über Q: (a) 2 + 5. (b) 3 3 3. (c) 4 5 + 4 5i.

Mehr

Vorlesungskript. Algebra

Vorlesungskript. Algebra Vorlesungskript Algebra SS 2018 Christian Sevenheck Fakultät für Mathematik TU Chemnitz vorläufige Fassung, 11. April 2018 Fehler und Bemerkungen bitte an : christian.sevenheck@mathematik.tu-chemnitz.de

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 21 Algebren Definition 21.1. Seien R und A kommutative Ringe und sei R A ein fixierter Ringhomomorphismus. Dann nennt man A eine

Mehr

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen Vortrag zum Proseminar zur Analysis, 24.10.2012 Adrian Hauffe-Waschbüsch In diesem Vortrag werden die reellen Zahlen aus rationalen Cauchy-Folgen konstruiert. Dies dient zur Vorbereitung der späteren Vorträge,

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 16.11.2016 Kapital 3. Mächtigkeit der Mengen und komplexe Zahlen Jetzt wollen wir uns einer neuen Frage zuwenden: Wie kann man die unendlichen Mengen N Z Q R der Größe nach vergleichen?

Mehr

Algebra und Zahlentheorie Stoffsammlung Dennis Müller 30. März i Z

Algebra und Zahlentheorie Stoffsammlung Dennis Müller 30. März i Z Algebra und Zahlentheorie Stoffsammlung Gruppen Zu jedem n N + existiert eine Gruppe mit n Elementen (z.b. Z/nZ) Jede abelsche Gruppe ist isomorph zu i Z/pr i i Z Z/abZ Z/aZ Z/bZ wenn a, b teilerfremd

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

Algebraische Kurven. Vorlesung 10. Noethersche Moduln

Algebraische Kurven. Vorlesung 10. Noethersche Moduln Prof. Dr. H. Brenner Osnabrück SS 202 Algebraische Kurven Vorlesung 0 Noethersche Moduln Wir wollen zeigen, das für einen noetherschen Ring R und einen endlich erzeugten R-Modul jeder R-Untermodul wieder

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Übungen zur Einführung in die Algebra

Übungen zur Einführung in die Algebra Blatt 1, 17.10.2013 Aufgabe 1.1. Bestimme alle Untergruppen und Normalteiler der symmetrischen Gruppe S 3. Aufgabe 1.2. Es seien E, I, J, K M(2 2; C) die folgenden Matrizen: ( ) ( ) ( ) ( ) 1 0 0 1 0 i

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 17 Isomorphie und elementare Äquivalenz im endlichen Fall Beispiel 17.1. Das Symbolalphabet S bestehe (neben Variablen)

Mehr

Algebraische Kurven - Vorlesung 5. Homogene Komponenten

Algebraische Kurven - Vorlesung 5. Homogene Komponenten Algebraische Kurven - Vorlesung 5 Homogene Komponenten Definition 1. Sei S ein kommutativer Ring und R = S[X 1,...,X n ] der Polynomring über R in n Variablen. Dann heißt zu einem Monom G = X ν = X ν 1

Mehr

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Klausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lokale und globale Körper

Lokale und globale Körper Seminar Einführung in die Theorie elliptischer Kurven Lokale und globale Körper Saskia Klaus 18.06.2015 1 Motivation Betrachten wir den Ring Z und eine Primzahl p Z. Wie können wir das Zerlegungsverhalten

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Das Gruppengesetz auf elliptischen Kurven: Assoziativität

Das Gruppengesetz auf elliptischen Kurven: Assoziativität Ausarbeitung des Seminarvortrags Das Gruppengesetz auf elliptischen Kurven: Assoziativität Seminar Kryptographie, TU Kaiserslautern Sommersemester 2011 Pablo Luka Version vom 14. 05. 2011 Inhaltsverzeichnis

Mehr

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3]

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] 13 3. Funktionen 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] Definition 1. A und B seien Mengen. a Eine Abbildung (oder Funktion f von A nach B (Schreibweise: f: A B ist eine Vorschrift, die jedem x A genau

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

Algebra II. Lukas Pottmeyer 4. Februar 2015

Algebra II. Lukas Pottmeyer 4. Februar 2015 Algebra II Lukas Pottmeyer 4. Februar 2015 2 Dieses Skript dient als Hilfestellung für die Nachbearbeitung meiner Vorlesung Algebra II an der TU Dortmund im WS14/15. Es orientiert sich an den Vorlesungen

Mehr

Übungsblatt 11: Galoistheorie

Übungsblatt 11: Galoistheorie Prof. M. Eisermann Algebra SoSe 010 Übungsblatt 11: Galoistheorie 1. GALOISKORRESPONDENZ S 1.1. (1 Punkte) In der Aufgabe 3.3 auf Blatt 10 wurde gezeigt, dass das Polynom X den Zerfällungskörper E = Q[i,

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal

Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal Für welche natürliche Zahlen n 3 kann man das regelmäÿige n-eck mit Zirkel und Lineal konstruieren? Wir haben in der Vorlesung gesehen, dass

Mehr