Musterlösung zur Probeklausur

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zur Probeklausur"

Transkript

1 Musterlösung zur Probeklausur Markus Severitt 26. Juni 2006 Aufgabe 1. Sei G eine Gruppe mit g 2 = e für alle g G. Zeigen Sie, dass G abelsch ist. Lösung. g 2 = e für alle g G heißt gerade, dass alle Elemente selbstinvers sind, d.h. g = g 1 für alle g G. Seien also a, b G. Da G eine Gruppe, ist auch a b G und es folgt Also ist G abelsch. a b = (a b) 1 = b 1 a 1 = b a. Aufgabe 2. Formulieren Sie die Sylowsätze. Lösung. Es wird nach dem Tipp vorgegangen. Eine p-gruppe ist eine Gruppe G, s.d. G = p r eine p-potenz ist. Sei G eine endliche Gruppe mit p G und G = p r k mit ggt(p, k) = 1. Eine Untergruppe S G mit S = p r heißt p-sylowgruppe. Der erste Sylowsatz sichert die Existenz von p-sylowgruppen, allgemein sogar die Existenz von Untergruppen der Ordnung U = p s für s r. Der zweite Sylowsatz sagt: Je zwei p-sylowgruppen sind zueinander konjugiert, d.h. es gibt genau eine p-sylowgruppen, wenn jede p-sylowgruppe Normalteiler ist. Die Rückrichtung gibt genau der zweite Sylowsatz und die Hinrichtung folgt aus der Beobachtung: S p-sylowgruppe gsg 1 ist p- Sylowgruppe (Warum ist das so?). Weiterhin stellt der zweite Sylowsatz sicher: Zu jeder p-untergruppe U gibt es eine p-sylowgruppe S mit U S. Aber i.a. sitzt U nicht in allen p-sylowgruppen drin. Z.B. wenn man für U selbst eine p-sylowgruppe nimmt und es mehr als eine gibt. Der dritte Sylowsatz sagt allgemein etwas über die Anzahl s p der p- Sylowgruppen aus: s p G s p 1 mod p 1

2 2 Aufgabe 3. Sei G eine Gruppe und seien S, T Normalteiler von G mit S T = {e}. Zeigen Sie st = ts für s S, t T. Lösung. Zunächst gilt st = ts g := s 1 t 1 st = e da G eine Gruppe ist und somit alle Elemente invertierbar sind. Wegen S T = {e} reicht es zu zeigen, dass g S T. Aber wegen T Normalteiler sehen wir g = (s 1 t 1 s) t T }{{} T und wegen S Normalteiler g = s 1 (t 1 st) S }{{} S da ja auch s 1 S und t 1 T wegen S und T Untergruppen. Aufgabe 4. Sei n eine Primzahl. In der symmetrischen Gruppe S n sind je zwei Elemente der Ordnung n konjugiert. Begründen Sie dies. Lösung. Da je zwei Zykel gleicher Länge konjugiert sind, reicht es zu zeigen: Jedes Element der Ordnung n ist ein n-zykel. Sei also σ S n mit ord(σ) = n. Für jedes Element aus der S n existiert eine Zerlegung in elementfremde Zykel, also auch für σ: σ = σ 1... σ r wobei σ i Zykel der Länge l i, also ord(σ i ) = l i. Da die σ i elementfremd sind, kommutieren sie, d.h. ord(σ) = kgv(ord(σ i ) i = 1,..., r) = kgv(l i i = 1,..., r) = n nach Voraussetzung, d.h. l i n und damit o.b.d.a. l i = n, da n prim ist und man die 1-Zykel ignorieren kann. Weiterhin muss aufgrund der Elementfremdheit gelten: r r n = l i n i=1 Also ist r = 1 und σ damit ein Zykel der Länge n.

3 3 Aufgabe 5. Zeigen Sie: Eine Gruppe der Ordnung 6 ist zyklisch oder isomorph zu S 3. Lösung. Zunächst wissen wir, dass S 3 = D2 3, wobei D 2 3 die Diedergruppe ist. D.h. es reicht zu zeigen: G mit G = 6 = 2 3 ist zyklisch (d.h. es gibt ein erzeugendes Element) oder G = D 2 3. Nach dem Satz von Cauchy existiert ein Element a G mit a = 2 und ein Element b G mit b = 3. Also ist b eine 3-Sylowgruppe. Es soll nun ord(ab) untersucht werden. Nach dem dritten Sylowsatz (siehe Aufgabe 2) folgt s 3 2 und s 3 1 mod 3. Also ist s 3 = 1 und b damit einzige 3- Sylowgruppe. Da ggt(2, 3) = 1, gilt a b = {e}. D.h. ab b, da sonst a b, aber a e, da ord(a) = 2. Damit ist ord(ab) = 3 ausgeschlossen, da sonst (wegen b damit einzige 3-Sylowgruppe) ab = b folgen würde. Also gibt es nur zwei Fälle: ord(ab) = 6 und damit erzeugt ab die Gruppe G. ord(ab) = 2 und die Voraussetzungen für den Erkennungssatz über die Diedergruppen (siehe Ausarbeitung über die Diedergruppe) sind erfüllt und damit G = D 2 3. Aufgabe 6. a) Geben Sie zwei nichttriviale Homomorphismen an, die nicht konjugiert sind. φ, ψ : S 4 S 6 b) Zeigen Sie, dass die unter a) angegebenen Homomorphismen tatsächlich nicht konjugiert sind. Lemma 1. Seien G, H Gruppen und φ, ψ : G H konjugierte Homomorphismen. Dann gilt Ker(φ) = Ker(ψ) Beweis. Da φ und ψ konjugiert sind, existiert h H mit für alle g G. Also folgt φ(g) = hψ(σ)h 1 g Ker(φ) e = φ(g) = hψ(g)h 1 e = ψ(g) g Ker(ψ)

4 4 Lösung von Aufgabe 6. dann S 4 σ a) Sei τ S 6 eine fixierte Transposition. Setze φ S { 6 τ, sign(σ) = 1 id, sign(σ) = 1 Da τ 2 = id und sgn ein Gruppenhomomorphismus ist, ist auch φ ein Gruppenhomomorphismus mit Ker(φ) = A 4. Weiterhin operiert die S 4 auf P 2 ({1, 2, 3, 4}) via: (σ, {a, b}) σ.{a, b} := {σ(a), σ(b)} Da ( 4 2) = 6 induziert das einen Homomorphismus ψ S 6 σ ({a, b} σ.{a, b}) S 4 b) Um einzusehen, das φ und ψ nicht konjugiert sind, reicht es nach dem Lemma, dass die Kerne verschieden sind. Behauptung: Ker(ψ) = {id}. Daraus folgt die Nicht-Adjungiertheit, da klarerweise A 4 {id}. Sei also σ S 4 mit ψ(σ) = id. Sei n {1, 2, 3, 4}. Zeige, dass σ(n) = n. Wähle l m {1, 2, 3, 4} beide zu n verschieden. Dann ist nach Voraussetzung {n, l} = {σ(n), σ(l)} und {n, m} = {σ(n), σ(m)}. Es muss also gelten: σ(n) = n oder σ(n) = l. Aber letzteres kann nicht sein, da ja auch σ(n) = n oder σ(n) = m sein muss und l m. Also folgt σ = id. Aufgabe 7. Sei R ein kommutativer Ring mit 1 und I R ein Ideal. a) Treffen sie in folgender Aussage die richtigen Zuordnungen: I ist genau dann (Primideal)/(maximales Ideal), wenn der Restklassenring r/i (ein Körper)/(nullteilerfrei) ist. b) Beweisen Sie mindestens eine der vier Implikationen von a). Lösung. a) Es gilt I Primideal genau dann, wenn R/I nullteilerfrei ist und I maximales Ideal genau dann, wenn R/I Körper ist. b) Es gilt a I a = 0 R/I. Also folgt I Primideal ((ab I) (a I) (b I)) ((ab = 0 R/I) (a = 0 R/I) (b = 0 R/I)) R/I nullteilerfrei

5 5 Aufgabe 8. a) Sei K ein Körper und R = K[X]. Ist jedes Primideal in R ein maximales Ideal? b) Geben Sie die Primideale von C[t] an. Was sind deren Restklassenringe? Lösung. a) R ist ein nullteilerfreier Hauptidealring. Damit gilt für p 0: p irreduzibel p prim (p) (0) Primideal (p) maximales Ideal D.h. in R = K[X] sind alle Primideale (0) maximale Ideale. Aber das Primideal (0) nicht, was man auch einfach an R/(0) = K[X] kein Körper sehen kann. b) Die Primideale von C[t]: I = (0): Dann ist I Primideal und C[t]/I = C[t]. I (0): Wie in a) bemerkt, wird I dann von einem irreduziblen Element p erzeugt (I hat wegen C[t] Hauptidealring einen Erzeuger). Aber alle irreduziblen Elemente von C[t] haben die Form t + a mit a C. Also hat I die Form I = (t + a) und da ja a C. C[t]/I = C[t]/(t + a) = C[ a] = C Aufgabe 9. Sei K ein Körper und sei f(x) K[x] ein nichtkonstantes Polynom. Zeigen Sie: Es gibt einen endlichen Erweiterungskörper l von K, in dem f(x) eine Nullstelle hat. Lösung. Sei q(x) irreduzibler Faktor von f(x), d.h. f(x) = q(x) r(x). Setze L := K[t]/(q(t)) Dann ist L ein Körper, da (q(t)) maximales Ideal ist (siehe Aufgabe 8). K L via K K[t] K[t]/(q(t)) = L. Weiterhin ist L/K endlich, da mit n = grad(q(t)) 1, t,..., t n 1 eine K-Basis von L ist (Warum ist das so?). Behauptung: f(x) hat t mod q(t) L als Nullstelle. Dieses ist klar, da da ja q(t) = 0 L. f(t) = q(t) r(t) = 0 L a) Formulieren Sie das Irreduzibilitäts-Kriterium von Ei- Aufgabe 10. senstein.

6 6 b) Zeigen Sie, dass das Polynom über Q irreduzibel ist. x 7 8x Lösung. a) Sei R nullteilerfreier Hauptidealring und π R Primelement sowie f(x) = a 0 + a 1 x a n 1 x n 1 + a n x n R[x] d.h. a i R. Es gelte 1. π a i für i = 0,..., n 1 2. π a n 3. π 2 a 0 (Ein solches Polynom heißt Eisenstein-Polynom bzgl. π.) Dann gilt mit K = Quot(R): f(x) ist in K[x] irreduzibel. b) Nehme R = Z und damit Q = Quot(Z) sowie π = 2 Z Primelement. Dann ist x 7 8x 5 +2 Eisensteinpolynom bzgl. 2 und damit irreduzibel über Q. Aufgabe 11. Zeigen Sie Q( 3, 5) = Q( 3 + 5) und bestimmen Sie das Minimalpolynom von über Q. Lösung. Erinnerung: Q( 3, 5) ist der kleinste Unterkörper von R, der Q, 3 und 5 enthält. Weiterhin ist Q( 3 + 5) der kleinste Unterkörper von R, der Q und enthält. Da klarerweise Q( 3, 5), folgt Q( 3, 5) Q( 3 + 5). Da 3 5 = Q( 3 + 5) folgt 1 3 = 2 ( 3 5) ( 3 + 5) Q( 3 + 5) sowie 1 5 = 2 ( 3 5) ( 3 + 5) Q( 3 + 5) Also folgt Q( 3, 5) Q( 3 + 5) und damit Gleichheit. Nun gilt mit m 3+ 5 =: µ das Minimalpolynom von R/Q und n = grad(µ), dass n = [Q( 3 + 5) : Q] = [Q( 3, 5) : Q] = [Q( 3)( 5) : Q( 5)] [Q( 5) : Q] = 2 2 = 4

7 7 da x 2 5 das Minimalpolynom von 5 R/Q und x 2 3 das Minimapolynom von 3 R/Q( 5) ist. Natürlich kann man n = 4 auch konkret sehen, da 1, 3, 5, 3 5 eine Q-Basis von Q( 3, 5) = Q( 3 + 5) ist. Damit muss der Grad des Minimalpolynoms 4 sein. Da x 4 16x als Nullstelle hat, muss es das Minimalpolynom sein. Wie kommt man darauf? Da es den Grad 4 haben, muss rechnet man ( 3 + 5) 4 aus und schaut, was man davon abziehen muss, damit 0 herauskommt. Das Abziehen muss sukzessive mit Vielfachen von ( 3+ 5) 3,( 3+ 5) 2, 3+ 5 und 1 machen. Sei das hier mal vorgeführt: Zum einen ist ( 3 + 5) 2 = (1. Binomische Formel). Weiterhin ist dann ( 3 + 5) 4 = ( ) 2 = (wieder 1. Binomische Formel). Zunächst soll der 3 5-Anteil in ( 3 + 5) 4 gekillt werden. Da dieser Ausdruck auch in ( 3 + 5) 2 auftaucht, nimmt man geschickter Weise 16 ( 3 + 5) 2, was nämlich ( 3 + 5) 4 16 ( 3 + 5) 2 = 4 ergibt, also ist Nullstelle von x 4 16x Aufgabe 12. a) Sei K ein Körper. Zeigen Sie, dass es genau einen K- linearen Isomorphismus σ : K(t) K(t) des rationalen Funktionenkörpers K(t) gibt mit σ(t) = t + 1 b) Sei nun K = F p (der Körper mit p Elementen, p eine Primzahl). Dann gilt σ p = id. Geben Sie ein nichtkonstantes Element f(t) K(t) an mit σ(f(t)) = f(t) Wenn Sie noch Zeit haben: Bestimmen Sie den Fixkörper von σ. L = {h K(t) σ(h) = h}

8 8 Lösung. a) Zunächst ist hier σ K-linear das gleiche wie σ ist auf K die Identität. Also muss σ : t t + 1 ist Einsetzungshomomorphismus auf K[t] (dem Polynomring) sein. Mit der Forderung σ( 1 f ) = 1 σ(f) für f K[t] {0} als Körperhomomorphismus muss σ die Form haben σ : g f σ(g) g(t + 1) = σ(f) f(t + 1) Da σ auf K[t] Ringhomomorphismus ist, folgt, dass σ auf K(t) Körperhomomorphismus ist. Weiterhin gibt φ : t t 1 aus den gleichen Gründen einen K-linearen Körperhomomorphismus, der Umkehrabbildung zu σ ist. Damit ist σ Körperisomorphismus. b) Da F p = K K(t) Unterkörper ist char(k(t)) = p. Daraus folgt sofort σ p (t) = t + p = t also σ p = id, d.h. die Ordnung von σ in Aut K (K(t) ist p, da ord(σ) p sowie σ id und p prim. Weiterhin ist mit dem Frobeniushomomorphismus (t + 1) p = t p + 1 p = t p + 1 Damit ist das Polynom t p t = f(t) mit ein nichtkonstantes Polynom mit σ(f(t)) = f(t + 1) = (t + 1) p (t + 1) = t p + 1 t 1 = t p t = f(t) und liegt damit im Fixkörper L, d.h. K(t p t) L. Behauptung: L = K(t p t) Man hat eine Kette von Körpererweiterungen K(t)/L/K(t p t)/k. Das Polynom x p x (t p t) K(t p t)[x] hat t als Nullstelle, d.h. der Grad des Minimalpolynoms von t über K(t p t) ist p. Und damit: K(t) : K(t p t)] p Da L gerade der Fixkörper von σ ist, ist σ L-linear. Da außerdem ord(σ) = p, hat man also p paarweise verschiedene L-lineare Köpermonomorphismen (injektiv, da ja 0) auf K(t). Diese sind K(t)-linear unabhängig nach dem Satz von Dedekind über die lineare Unabhängigkeit der Charaktere (siehe z.b. [Mey76, Satz Korollar]). Weiterhin gilt dim K(t) Hom L (K(t), K(t)) = [K(t) : L]

9 LITERATUR 9 (Lineare Algebra). Also folgt insgesamt p [K(t) : L] Da aber auch [K(t) : L] = [K(t) : L] [L : K(t p t)] folgt p = [K(t) : L] und 1 = [L : K(t p t)], also L = K(t p t) Literatur [Mey76] Kurt Meyberg. Algebra, Teil 2. Carl Hanser Verlag, München Wien, 1976.

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Algebra. Professor Walter Gubler

Algebra. Professor Walter Gubler Algebra Professor Walter Gubler 29. April 2010 2 Inhaltsverzeichnis I Algebra I 11 I Gruppentheorie 13 I.1 Gruppen................................... 13 I.1.1 Denition einer Gruppe.......................

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

2.2 Nebenklassen, Normalteiler und Faktorgruppen

2.2 Nebenklassen, Normalteiler und Faktorgruppen Algebra I c Rudolf Scharlau, 2002 2012 61 2.2 Nebenklassen, Normalteiler und Faktorgruppen Bei der Konstruktion der Restklassengruppe Z/mZ hatten wir auf der Gruppe Z mit Hilfe einer Untergruppe mz eine

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Ringe, Algebren und Körper

Ringe, Algebren und Körper KAPITEL 3 Ringe, Algebren und Körper Wir kommen nun zu Strukturen mit zwei verträglichen Operationen, wobei wir etwas Hintergrund aus der linearen Algebra voraussetzen werden. Wir werden oft auf die Analogie

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5 Kommutative Algebra Prof. Dr. Uwe Jannsen Sommersemester 2014 Inhaltsverzeichnis 0 Erinnerung: Ringe und Polynomringe 1 1 Noethersche Ringe 5 2 Moduln über Ringen und exakte Sequenzen 7 3 Lokalisierungen

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln Kapitel 3 Ringe Gruppen- und Ringstrukturen sind uns schon in den verschiedensten Zusammenhängen begegnet. In diesem Kapitel wollen wir einige wichtige Klassen von Ringen im Hinblick auf Anwendungen in

Mehr

01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger

01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger 01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger 1 Kryptograe im Allgemeinen Was ist Kryptographie? Kryptograe ist der sichere Nachrichtentransfer über

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Diplomarbeit. Ein Algorithmus zum Lösen einer Polynomgleichung durch Radikale

Diplomarbeit. Ein Algorithmus zum Lösen einer Polynomgleichung durch Radikale Diplomarbeit Ein Algorithmus zum Lösen einer Polynomgleichung durch Radikale Andreas Distler Betreuerin Professor Dr. Bettina Eick Institut Computational Mathematics Technische Universität Braunschweig

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Algebra I Wintersemester 2006/07

Algebra I Wintersemester 2006/07 Algebra I Wintersemester 2006/07 Prof. Dr. Annette Huber-Klawitter Fassung vom 31. Januar 2007 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math. Institut 0341-97

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kapitel II Ringe. 1 Grundbegriffe. 1.1 Definition eines Rings

Kapitel II Ringe. 1 Grundbegriffe. 1.1 Definition eines Rings Kapitel II Ringe Eine zentrale Aufgabe der Algebra ist es, Aussagen über die Nullstellen von Polynomen zu machen. Für den Umgang mit Polynomen ist es nützlich, die abstrakten Hintergründe der Addition

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Algebra und Zahlentheorie Wintersemester 2013/14

Algebra und Zahlentheorie Wintersemester 2013/14 Algebra und Zahlentheorie Wintersemester 2013/14 Prof. Dr. Annette Huber-Klawitter Fassung vom 8. Februar 2014 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math.

Mehr

II. Ringe und Moduln für etwas Fortgeschrittene

II. Ringe und Moduln für etwas Fortgeschrittene II. Ringe und Moduln für etwas Fortgeschrittene II.1 Algebren 2.1.1 Definition/Bemerkung (Die Kategorie der R -Algebren) a) Es sei R ein Ring. Eine R -Algebra ist ein R -Modul A, der gleichzeitig ein Ring

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Endliche Körper und Codierung

Endliche Körper und Codierung Endliche Körper und Codierung Manfred Madritsch Institut für Mathematik A Technische Universität Graz Version: SS 2010 Achtung: Bitte Anregungen und Fehler per Email an die Adresse madritsch@tugraz.at

Mehr

1 Motiviation 2 1.1 Die Thompson Untergruppe... 2

1 Motiviation 2 1.1 Die Thompson Untergruppe... 2 Inhaltsverzeichnis 1 Motiviation 2 1.1 Die Thompson Untergruppe................... 2 2 Lineare Algebra 6 2.1 Der duale Vektorraum V.................... 7 2.2 Erweiterungen des Grundkörpers................

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

7 Der so genannte chinesische Restsatz

7 Der so genannte chinesische Restsatz 7 Der so genannte chinesische Restsatz Der Chinese Sun Tsu stellte, so wird berichtet, in seinem Buch Suan-Ching ua die folgende Aufgabe: Wir haben eine gewisse Anzahl von Dingen, wissen aber nicht genau

Mehr

Primzahltests für Mersenne-Primzahlen

Primzahltests für Mersenne-Primzahlen Primzahltests für Mersenne-Primzahlen Ausarbeitung zum Vortrag im Seminar zur Computeralgebra im WS 2010/2011 bei Frau Prof. Dr. G. Nebe, RWTH Aachen Michael H. Mertens Matrikelnummer: 289246 Inhaltsverzeichnis

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 3 Bälle und Topologie

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen

Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen Nicole Hülsmann Oktober 2003 2 Inhaltsverzeichnis Einleitung 2 Notationen 5 1 FGC-Ringe 6 1.1 Grundlagen............................ 6 1.2

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Literatur zu geometrischen Konstruktionen

Literatur zu geometrischen Konstruktionen Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.

Mehr

1 Gruppen: Definition und erste Eigenschaften

1 Gruppen: Definition und erste Eigenschaften 1 Gruppen: Definition und erste Eigenschaften Von allen algebraischen Strukturen, die man in der linearen Algebra kennenlernt, haben Gruppen die einfachste Definition. In der Tat sind viele andere algebraische

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Bitstrom-Verschlüsselung

Bitstrom-Verschlüsselung Bitstrom-Verschlüsselung Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 2 D-55099 Mainz 27. November 2000, letzte Revision 8. März 2009 Die Bitstrom-Verschlüsselung

Mehr

Geometrie der Schemata (Algebraische Geometrie II)

Geometrie der Schemata (Algebraische Geometrie II) inoffizielles Skript Geometrie der Schemata (Algebraische Geometrie II) Gehalten von Prof. Dr. F. Herrlich im Sommersemester 2012 getippt von Aleksandar Sandic 18. April 2014 Aleksandar.Sandic@student.kit.edu

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht

Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht Erik Einhaus Schriftliche Hausarbeit im Fach Mathematik Referent: Prof. Dr. Michael Hortmann Korreferent:

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage Springer-Lehrbuch Hans Kurzweil Endliche Körper Verstehen, Rechnen, Anwenden Zweite, überarbeitete Auflage 123 Prof. Dr. Hans Kurzweil Mathematisches Institut Friedrich-Alexander-Universität Bismarckstraße

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Praktische Mathematik - Symbolisches Rechnen. Vorlesung im Sommersemester 2012 TU-Kaiserslautern

Praktische Mathematik - Symbolisches Rechnen. Vorlesung im Sommersemester 2012 TU-Kaiserslautern Praktische Mathematik - Symbolisches Rechnen Vorlesung im Sommersemester 2012 TU-Kaiserslautern gehalten von C. Fieker Version vom 12. Juli 2012 Inhaltsverzeichnis Kapitel 0. Einführung 1 Kapitel 1. Arithmetik

Mehr

Skript. Diskrete Mathematik. Prof. Dr. C.P. Schnorr

Skript. Diskrete Mathematik. Prof. Dr. C.P. Schnorr Skript Diskrete Mathematik Prof. Dr. C.P. Schnorr http://www.mi.informatik.uni-frankfurt.de Johann-Wolfgang-Goethe Universität Fachbereich Informatik und Mathematik Frankfurt am Main 2. März 2015 Einleitung

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Vorlesung Endlichdimensionale Algebren. Dirk Kussin

Vorlesung Endlichdimensionale Algebren. Dirk Kussin Vorlesung Endlichdimensionale Algebren (Sommersemester 2013) Dirk Kussin Fakultät für Mathematik, TU Chemnitz E-mail address: dirk.kussin@mathematik.tu-chemnitz.de Inhaltsverzeichnis Kapitel 1. Grundlagen

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Theorie und Visualisierung algebraischer Kurven und Flächen

Theorie und Visualisierung algebraischer Kurven und Flächen Theorie und Visualisierung algebraischer Kurven und Flächen (Fortbildung für Mathematiklehrer) Stephan Klaus Oliver Labs Thomas Markwig Mathematisches Forschungsinstitut Oberwolfach Vortragsausarbeitung

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Diophantische Analysis (Säule II)

Diophantische Analysis (Säule II) Diophantische Analysis (Säule II) LVA 405.460 C. Fuchs Inhaltsübersicht 24.06.2014 Inhaltsübersicht Diophantische Analysis bezeichnet das Studium von Diophantischen Gleichungen, das sind polynomielle Gleichungen

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Ort und Zeit: Dienstag, 14-16 Uhr, SR 127 Inhalt: Wir wollen uns in diesem

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Arithmetik II 1. Stephan Rosebrock WS 07/08. 1Entstanden mit der tatkräftigen Unterstützung von Stephan Huÿmann und Reinhold

Arithmetik II 1. Stephan Rosebrock WS 07/08. 1Entstanden mit der tatkräftigen Unterstützung von Stephan Huÿmann und Reinhold Arithmetik II 1 Stephan Rosebrock WS 07/08 1Entstanden mit der tatkräftigen Unterstützung von Stephan Huÿmann und Reinhold Mauve Inhaltsverzeichnis 1 Gruppen 2 1.1 Geometrie und Zahlen........................

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Wie viele Primzahlen gibt es?

Wie viele Primzahlen gibt es? 1 Wie viele Primzahlen gibt es? Die Frage, wie viele Primzahlen es gibt, wird durch den fundamentalen Satz beantwortet: Es gibt unendlich viele Primzahlen. Ich werde mehrere Beweise für diesen Satz vorstellen,

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt.

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt. 3 Primzahltests Eine Frage ist zur Durchführbarkeit des RSA-Verfahrens noch zu klären: Gibt es überhaupt Möglichkeiten, die für die Schlüsselerzeugung nötigen Primzahlen zu finden? Die Antwort wird lauten:

Mehr

FAST-EINFACHE GRUPPEN MIT LANGEN BAHNEN IN ABSOLUT IRREDUZIBLER OPERATION

FAST-EINFACHE GRUPPEN MIT LANGEN BAHNEN IN ABSOLUT IRREDUZIBLER OPERATION FAST-EINFACHE GRUPPEN MIT LANGEN BAHNEN IN ABSOLUT IRREDUZIBLER OPERATION GUNTER MALLE Gewidmet Bernd Fischer aus Anlass seines 70. Geburtstages Zusammenfassung. Wir bestimmen alle absolut irreduziblen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr