Asynchronous Generators



Ähnliche Dokumente
Dynamic Hybrid Simulation

Geothermal power generation by GEOCAL

Shock pulse measurement principle

a) Name and draw three typical input signals used in control technique.

Certificate of conformity Generating unit, NS-protection

16.7 Hz - The Missing Link?

Stromzwischenkreisumrichter Current Source Inverter (CSI)

Walter Buchmayr Ges.m.b.H.

Stromzwischenkreisumrichter Current Source Inverter (CSI)

Was läuft global in der Motorwelt?

Motorenreihe Einphasen Wechselstrom

Fundamentals of Electrical Engineering 1 Grundlagen der Elektrotechnik 1

/ Technische Änderungen und drucktechnische Irrtümer vorbehalten.

rot red braun brown rot red RS-8 rot red braun brown R S V~

WEMAG AG. Dipl.-Ing. (FH) Tobias Struck. The WEMAG Battery For Primary Control Reserve A Review Of 8 Months Of Operation

Certificate of conformity Generating unit, NS-protection

Integration of Simulation and Testing in Power Train Engineering Based on the Example of the Dual Mass Flywheel

Stromzwischenkreisumrichter Current Source Inverter (CSI)

Installationsanleitung / installation manual - DIMMbox

K I A Table of contents for Common Rail System Seminar in 04/2002

Copyright by Max Weishaupt GmbH, D Schwendi

Kuhnke Technical Data. Contact Details

Stromzwischenkreisumrichter Current Source Inverter (CSI)

We hereby confirm that all electrical tests on this machine have been performed in accordance with the relevant standards.

AC-SERVOMOTOREN für batteriebetriebene Fahrzeuge

Delta 2.4 W-LAN EINBAUANLEITUNG MOUNTINGINSTRUCTIONS

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Motorenreihe Einphasen Wechselstrom

rsoc plant Efficient design and operation behavior

HVDC and FACTS. Flexible Alternative Current Transmission Systems. Modul in Studiengängen Elektrotechnik und Energiewirtschaft

Serviceinformation Nr. 05/10

PA-CONTROL CANopen Fehlerliste Ab Version 5.15 Ausgabe: 06/2008 Art.-Nr.: Technische Dokumentation

Operation Guide AFB 60. Zeiss - Str. 1 D Dauchingen

AM 25 Parameter / Basic data

Biogas technologies in Germany - Feedstocks and Technology -

Optimierung von Wirkungsgrad und elektromagnetisch erzeugten Geräuschen bei elektrischen Antrieben in Kraftfahrzeugen

Steuer-, Sicherheits- und Trenntransformator STE Control-, safety isolating- and isolating transformer STE Range

Overview thermostat/ temperature controller

Introduction FEM, 1D-Example

ZnO-Arresters for Overvoltage Protection in Pulsed Power Circuits

ABB i-bus EIB. EIB Power Supply Units

Datasheet. Page 1 of 7

Typenreihe GH Lifting Solenoids

Controlled Switching suitability check for already installed HVAC circuit breakers

Electrical tests on Bosch unit injectors

Delta 2.4 W-Lan EINBAUANLEITUNG MOUNTINGINSTRUCTIONS

Typenreihe GH Lifting Solenoids

Kuhnke Technical Data. Contact Details

Werkszeugnis Motor Typprüfung (2.2) (Prüfbescheinigung nach EN 10204)

Schalten einer kapazitiven Last mit einem Transistor

Simulation of a Battery Electric Vehicle

Machine Brochure. MÜLLER WEINGARTEN Blanking line.

technical documents for extraction and filter devices type series 1000

Harry gefangen in der Zeit Begleitmaterialien

auf differentiellen Leitungen

Titanium The heaviest light metal

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

MF-Transformator-Gleichrichtereinheit Reihe MF4 MF transformer DC Unit Series MF4

FEM Isoparametric Concept

Sporadischer Neustart von WPC-Geräten FINALE LÖSUNG

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

Hazards and measures against hazards by implementation of safe pneumatic circuits

LINDENBERG ANLAGEN GMBH Stromerzeugungs und Pumpenanlagen Schaltanlagenbau

Control shut-off butterfly valves DN 50 DN 400 PN

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

H o c h s c h u l e D e g g e n d o r f H o c h s c h u l e f ü r a n g e w a n d t e W i s s e n s c h a f t e n

System-Simulation Simulation Of Wind Turbines For Determination Of Additional Dynamic Loads

Deceleration Technology. Rotary Dampers mit hohem Drehmoment WRD-H 2515 WRD-H 3015 WRD-H 4025 WRD-H

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

Throttle Pedal System. Gaspedal-System

Deceleration Technology. Rotary Dampers with high-torque range WRD-H 7550 WRD-H 9565 WRD-H

Keysight Technologies Using InfiniiMax Probes with Test Equipment other than Infiniium Oscilloscopes

New ways of induction heating in the injection moulding process

The Integration of Renewable Energy Sources Into the Distribution Grid

Inhaltsverzeichnis...Seite. 1 Beschreibung Die Betriebsarten Technische Daten Bedienelemente... 2

Datenblatt. Remote-I/O - u-remote UR20-4AO-UI or 4-wire connection; 16-bit resolution; 4 outputs

Polysolenoid-Linearantrieb mit genutetem Stator

Rev. Proc Information

Entwicklung einer Drehfeldmaschine mit optimalem Wirkungsgrad für ein Hybridfahrzeug

D-BAUG Informatik I. Exercise session: week 1 HS 2018

Technical Thermodynamics

prorm Budget Planning promx GmbH Nordring Nuremberg

CABLE TESTER. Manual DN-14003

Latency Scenarios of Bridged Networks

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered

ORION three-phase 2-250kVA

Power supply Interference suppressed acc. to DIN EN /- 4, EN 55011, EN CI. B, power factor corrected Power factor BöSha LED driver

Catalog of Equivalent 3 Phase Stepper Motors

Wakefield computation of PETRAIII taper section Laura Lünzer

EUSAS TYPE. siehe Tabelle auf der Seite 31 / see at table on page 31. siehe Tabelle auf der Seite 31 / see at table on page 31

Mathias Schlüter 1, B. Stieltjes 2, H. K. Hahn 1, J. Rexilius 1, O. Konrad-Verse 1, H.-O. Peitgen 1. MeVis 2 DKFZ. Purpose

Die "Badstuben" im Fuggerhaus zu Augsburg

Finite Difference Method (FDM)

SPIRA Power Sections. Specifications Handbook

Betriebsarten-Umschalter Common mode / Differential mode switch

Technical interfaces of turbogenerator-sets

Hör auf zu ziehen! Erziehungsleine Training Leash

Weather forecast in Accra

Integration of Wind into Future Energy Systems

Transkript:

Asynchronous Generators Source: ABB 1/21

2. Asynchronous Generators 1. Induction generator with squirrel cage rotor 2. Induction generator with woed rotor Source: electricaleasy.com 2/21

2.1. Induction generator with squirrel cage rotor Cut through a stator of a small standard induction machine with squirrel cage rotor Source: Wikipedia.org 3/21

2.1. Induction machine with squirrel cage rotor, repetition: Stator of an asynchronous machine equals the one of a synchronous machine Squirrel cage rotor is very simple and robust: only iron sheets and short circuit winding (equals damper winding of a synchronous machine) Short circuit winding of a squirrel cage induction machine 4/21

2.1. Induction machine with squirrel cage rotor, repetition: The synchronous speed depends on the number of pair of poles (same as synchronous machines, see 1.4) Induction machine runs er load not with synchronous speed, but with slip. The induced rotor voltage V R is direct proportional to the slip. n S = f S p s = n S n R n S V R = s V R0 Stator Winding with 1 and 2 pair of poles 5/21

2.1. Induction machine with squirrel cage rotor, repetition: Exercise 2.1.1: Calculate the synchronous speed of a four pole machine at grid frequency of 50 and of 60 Hz? Beispiel 3.2, Blatt 6/21

2.1. Induction machine with squirrel cage rotor, repetition: Exercise 2.1.2: A four pole induction machine with a nominal power of 75 kw and a nominal speed of 1400 rpm is operated at a 50 Hz grid. Calculate rotor frequency and voltage, if the rotor voltage at standstill would be 120V? Beispiel 3,3 Blatt 7/21

2.1. Induction machine (both types), voltage equations: T-equivalent circuit of an induction machine (comparable to a transformer); stator quantities 1; rotor quantities 2; Voltage equations (still same frequency in rotor and stator): U 1 = I 1 R 1 + jx 1σ + I μ jx 1h U 2 = I 2 R 2 + jx 2σ + I μ jx 1h Induced voltage (in stator reference frame): U 1h = I μ jx 1h 8/21

2.1. Induction machine (both types), voltage equations: As speed is variable, rotor frequency is different to grid frequency and changes with slip: T-equivalent circuit of an induction machine Rotor voltage equation : U 2 = I 2 R 2 + jω 2 L 2σ + I μ jω 2 L 1h Rotor voltage equation, expressed in stator frequency quantities: U 2 = I 2 R 2 + sjx 2σ + I μ sjx 1h Induced voltage (in rotor reference frame): U 2h = I μ sjx 1h Results into (in stator reference frame): U 2h = s ü U 1h 9/21

2.1. Induction machine with squirrel cage rotor, voltage equations: As speed is variable, rotor frequency is different to grid frequency and changes with slip: T-equivalent circuit of a squirrel cage induction machine (comparable to a transformer with shorted secondary winding) Rotor equation: 10/21

2.1. Induction machine with squirrel cage rotor, power: Grid power: same as synchronous generator, see 1.3. Physical interpretation of R 2/s : Power delivered to the rotor, air-gap power Differentiation between rotor losses and shaft power: T-equivalent circuit of a squirrel cage induction machine with copper losses (R 1 + R 2) and mechanical Power (R mech ) 11/21

2.1. Induction machine with squirrel cage rotor, power: Differentiation between rotor losses and shaft power: Power delivered to the rotor, air-gap power Mechanical power (equals shaft power if no mechanical losses are assumed) Rotor losses (copper only, no friction) => P Cu,2 = s P δ P mech = (1 s) P δ 12/21

2.1. Induction machine, both types, losses: Mechanical losses for friction (bearings & air) and cooling (ventilation) Copper losses in rotor (R 2 ) and stator (R 1 ) Iron losses (magnetizing), mainly in stator due to low rotor frequency In motor mode: P shaft 13/21

2.1. Induction machine, both types, generator operation: In generator mode, the main power flow moves from shaft to grid: The prime mover turns the rotor over-synchronous with P shaft The bearing and friction losses need to be deducted to achieve P mech, The mechanical power P mech is diverted into rotor losses and air-gap power The air-gap power minus iron and stator losses gives the power delivered to the grid η = P grid P shaft = P shaft P friction P copper P iron P shaft Important: The (squirrel cage) induction machine needs to get excited through the stator Thus the stator needs to be connected to the grid to get reactive inductive power 14/21

2.1. Induction machine with squirrel cage rotor, excercise: Exercise 2.1.3: Induction generator in bio gas plant: 500 kw gas engine output power, grid voltage 400V, 50 Hz, Generator operated at grid current 746.2 A, cos φ = 0.9, speed = 1550 rpm, Iron losses 420 W, friction losses 1500 W, stator resistance 0,01 Ω, Calculate the losses of the generator and the power delivered to the grid. Efficiency factor? Beispiel 3.2, 3,3 Blatt 15/21

2.1. Induction machine with squirrel cage rotor, Complete torque speed characteristic: 16/21

2.1. Induction machine with squirrel cage rotor, Generator operation: Squirrel cage machines are always excited from the grid: they consume inductive reactive power Thus they are not applicable for island operation, and not preferred by grid operators (for big units, as the grid needs controllable reactive power) BUT Much less expensive than synchronous generator No need of DC excitation systems Automatically synchronizes to the grid: simpler control, no synchronization system needed Very often directly connected to capacitor banks to compensate inductive reactive power For power generation purpose: only used for small hydro, wind and combustion engine (Diesel, Gas) application (up to some MW). 17/21

2.2. Induction generator with woed rotor 18/21

2.2. Induction generator with woed rotor Stator of an asynchronous machine equals the one of a synchronous machine Woed rotor with 3-phase windings and slip rings End windings and slip ring of a woed rotor 15 KW 19/21

2.2. Induction generator with woed rotor 3-phase electrical diagram of an asynchronous generator with woed rotor, slip-rings and external rotor resistance 20/21

2.2. Induction generator with woed rotor, general observations: At standstill, this machine can be used like a transformer with variable phase shift between primary and secondary winding by changing rotor angle In conventional applications, this machine operates like an induction machine (see 2.1.), but with variable rotor resistance R 2, as external resistors can be connected to the rotor. Thus the starting behavior can be optimized. For power generation means, this machine is not used without converter (see 3.4.) 21/21