single ß-decay experiments: overview and KATRIN



Ähnliche Dokumente
1 G. Drexlin EKP VL KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

KATRIN: hunting neutrino masses

direct neutrino mass measurements

Systematic effects in Laser Raman measurements for KATRIN

Cleanroom Fog Generators Volcano VP 12 + VP 18

Dynamic Hybrid Simulation

Stahl-Zentrum. Koksqualität und Hochofenleistung - Theorie und Praxis. Düsseldorf, 05. Dezember Peter Schmöle

Prompt Gamma Activation Analysis close to Detection Limits

Pilot Project Biogas-powered Micro-gas-turbine

Fluorescence studies using low energy electron beam excitation

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

B/S/H/ Startfolie. B/S/H Bosch und Siemens Hausgeräte GmbH - KDT-T B/S/H Bosch und Siemens Hausgeräte GmbH KDT-T

BEGe detector response to α-radiation near its p + electrode

Gas discharges. For low temperature plasmas:electric fields are important (stationary (DC) or alternating current (AC)) E - -

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

Atline Inspection of Casting Production Process at Volkswagen using VG Inline

Shock pulse measurement principle

Datenblatt. Remote-I/O - u-remote UR20-4AO-UI or 4-wire connection; 16-bit resolution; 4 outputs

Measurement of dust resistivity and back corona in electrostatic precipitators

Climate Change and Air Quality

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

Possible Contributions to Subtask B Quality Procedure

Wakefield computation of PETRAIII taper section Laura Lünzer

Molecular dynamics simulation of confined multiphasic systems

Armin Aulinger, Volker Matthias, Johannes Bieser, Markus Quante GKSS Forschungszentrum Geesthacht

Ion beam sputtering of Ag: Properties of sputtered and scattered particles

Bestimmung der Neutrino-Masse: Heidelberg Moskau Experiment und KATRIN

Probabilistic LCF - investigation of a steam turbine rotor under transient thermal loads

Frankfurt Neutron Source - FRANZ

Qun Wang (Autor) Coupled Hydro-Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage


Newest Generation of the BS2 Corrosion/Warning and Measurement System

Prüfbescheinigung /Test Certificate

Unravelling the systematics in ion beam sputter deposition of SiO 2. M. Mateev, T. Lautenschläger, D. Spemann, C. Bundesmann

Presentation of a diagnostic tool for hybrid and module testing

Kinematical LEO Orbit Determination. From Pure Kinematical to Reduced. Titelmaster. Precise Orbit Determination (POD) Credit: European Space Agency

Comsol Conference Hannover Design of a High Field Gradient Electromagnet for Magnetic Drug Delivery to a Mouse Brain

Radiation protection areas: Practical aspects and technical implementation

ATEX-Check list. Compiled by: Date: Signature: Acceptable practice at the determination of flash point: Closed cup according to ISO 2719

Influence of dust layer thickness. on specific dust resistivity

Counterflow Heat Recovery Fan

Attenuator and Distribution System Zehnder ComfoWell 220

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN

Zehnder ComfoWell 220

Numerical Analysis of a Radiant Syngas Cooler

Anwendungs hinweise Application hints

a) Name and draw three typical input signals used in control technique.

Asynchronous Generators

Zehnder ComfoWell 320

Stand und Planung des Neutronen-Zähler Systems (NEUCOUNT) und des Neutronen-Aktivierungs Systems (NEUACT)

Chemical heat storage using Na-leach

Characterisation of a Hybrid Heat Shield for Hyperbolic Atmospheric Entries

2011 European HyperWorks Technology Conference

Prüfbescheinigung /Test Certificate

MENTOR GmbH LED Lighting & light guides

Ewald s Sphere/Problem 3.7

Gas Sampling, Measurement and Analysis on the bioliq -EFG

und Optimierung von Schiffsantrieben

Simulation of a Battery Electric Vehicle

Numerical Modelling of CO 2 Storage in Geological Formations with MUFTE-UG

rsoc plant Efficient design and operation behavior

Electric Propulsion-Testanlage in Göttingen. Messungen am RIT

INGENIEURWISSENSCHAFTEN

Lufft UMB Sensor Overview

TH Köln Institute of Agricultural Engineering and Renewable Energies. TU-Dresden Chair of Agricultural Systems and Technology

Controlled Switching suitability check for already installed HVAC circuit breakers

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

POLDIRAD Measurements

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis

Contaminant Mass Discharge Estimation in Groundwater Based on Multi-Level Well Data. Evaluation of Expected Errors. Markus Kübert, Michael Finkel

Conceptual multiphase modelling of an LNAPL contaminated site

A parameterised 3D-Structure-Model for the state of Bremen (Germany)

INCLUDES: Fully assembled 4 wheels for mobile use Power cable

Radioactivity detection in HPTLC

Potential of porphyrin fluorescence signals to serve as matrix-related Time-Temperature-Indicators in fresh meat production

Quadt Kunststoffapparatebau GmbH

KTI Project: LIDT and Degradation Testing for Industrial Applications

THz Physik: Grundlagen und Anwendungen

ERHARD is a company of. Datasheet ERHARD ECR check valve

Typenreihe GH Lifting Solenoids

Offshore: groter, sneller,

Planetary Screw Assembly

Surveying the longest and deepest

WE SHAPE INDUSTRY 4.0 BOSCH CONNECTED INDUSTRY DR.-ING. STEFAN AßMANN

Primärspannungsmessungen mit der. CSIRO Triaxialzelle

Induktive Ringsensoren inductive ring sensors

Evaluation of Aerodynamic Noise Propagation

Solar Air Conditioning -

Walter Buchmayr Ges.m.b.H.

Simulating the Idle: A New Load Case for Vehicle Thermal Management

ENCYCLOPEDIA OF PHYSICS

Summary Details for Performance, Duration and Acoustic Measurements for the. Aircon 10S Wind Turbine. UK MCS Certification Summary

EtherNet/IP Topology and Engineering MPx06/07/08VRS

+ + Darf es ein bisschen mehr sein? May it be a little more? Kompakt III. Der Klassiker The classic. + Ultra compact 87 x 54 x 26 mm

Bundesamt für Wehrtechnik und Beschaffung

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie

technische universität dortmund Fakultät Bio- & Chemieingenieurwesen Mechanische Verfahrenstechnik

Neutrino physics. K. Zuber, Techn. Univ. Dresden Schleching 2009

Kuhnke Technical Data. Contact Details

Transkript:

single ß-decay experiments: overview and KATRIN ß-decay & ν-mass p tritium experiments KATRIN a MAC MAC--E filter project p j status ν 1 G. Drexlin EKP VL01 25.10.2007

neutrino oscillations: 3-flavour mixing 3-flavour oscillations decouple into three separate mixing terms: 0 0 cosθ13 1 U = 0 cosθ 23 sin θ 23 0 iδ 0 sin sin i θ cos θ i θ e 23 23 13 δ: CP-phase 0 sin i θ13e iδ cosθ12 sin i θ12 0 1 0 sin θ12 cosθ12 0 0 cosθ13 0 0 1 1. 2.&&2. 3. Generation generation 1. & 3. generation 1. & 2. generation atmospheric ν s solar / reactor neutrinos solar neutrinos long baseline reactor/accelerators reactor experiments long baseline accelerators νµ - x G. Drexlin KIT-EKP ISAPP νµ - ντ _ νe x νµ - νe νe - x _ νe x

neutrino oscillations: 3-flavour mixing 3-flavour oscillations decouple into three separate mixing terms: U iδδ 1 0 0 cos θ 13 0 sinθ13e cos θ12 sin θ12 0 = 0 cosθ23 sinθ23 0 1 0 sinθ12 cosθ12 0 iδ 0 sinθ23 cosθ23 sinθ13e 0 cosθ13 0 0 1 δ: CP-Phase 1. 2. & 2. 3. Generation generation 1. & 3. generation 1. & 2. generation Δm 232 = 2.3 10-3 ev 2 Δm 132 = 2.3 10-3 ev 2 Δm 122 = 7.9 10-5 ev 2 θ 23 = (45 ± 4) (maximum) θ 13 < 15 (very small) θ 23 = (33.7±1.3) (large) Δm 2 23 Δm 2 13 Δm 2 12 10-4 10-3 10-3 tan 2 θ 23 sin 2 θ 13 tan 2 θ 12 G. Drexlin KIT-EKP ISAPP

neutrino masses in particle physics normal hierarchy with m 1 < m 2 < m 3 ν mass [ev] quasi-degenerated mass models ν 3 atmospheric solar ν 2 ν 1 solar atmospheric hierarchical mass models?? ν mass offset? absolute scale m 1? G. Drexlin KIT-EKP ISAPP

neutrino masses in particle physics normal hierarchy with m 1 < m 2 < m 3 quasi-degenerated scenario quasi-degenerated mass models hierarchical scenario hierarchical mass models G. Drexlin KIT-EKP ISAPP

neutrino masses in particle physics normal hierarchy with m 1 < m 2 < m 3 quasi-degenerated mass models flavour composition of mass eigenstates hierarchical mass models G. Drexlin KIT-EKP ISAPP

neutrino mass: status and perspectives kinematics of ß-decay absolute ν e -mass mass: :m ν model-independent status: m ν < 2.3 ev potential: m ν = 200 mev KATRIN (MARE-II) search for 0νßß eff ff. Majorana mass m ßß model-dependent (CP-phases) status: m ßß < 0.35 ev, evidence? potential: m ßß = 20-50 mev GERDA, EXO, CUORE neutrino masses experimental techniques: status & potential cosmology sum Σm i, HDM Ω ν model-dependent d d (multi-parameter t fits) status: Σm i < 1 ev [Hannestad et al., arxiv:0803.1585v2] potential: Σm i = 20-50 mev Planck, LSST, weak lensing

Majorana and Dirac neutrinos what is the intrinsic particle-antiparticle symmetry of neutrinos? ν L Dirac neutrino Lorentz 4 ν states lepton number ν D conservation ΔL = 0 neutrino antineutrino CPT CPT ν L _ ν R _ ν L ν R Majorana neutrino Lorentz 2 ν states t lepton number violation ΔL =2 ν M ν L ν R ν D and ν M only distinguishable if m ν 0 CPT

Majorana and Dirac neutrinos what is the intrinsic particle-antiparticle symmetry of neutrinos? ν L ν L _ ν R Lorentz _ ν L ν R CPT CPT Lorentz ν L ν R CPT

ß-decay: Fermi s theory & ν-mass a model-independent measurement of m(ν e ) based on kinematics & energy conservation 2 3 1 2 ) ( i i ei e m m U = = ν ) ( ), ( ) ( ) ( ) ( d 0 2 2 0 0 i i i m E E Z E F m E E E E m E p C + = Γ θ based on kinematics & energy conservation 1 i incoherent sum ) ( ), ( ) ( ) ( ) ( d 0 0 0 i i e m E E Z E F m E E E E m E p C E + θ (ν mass) 2 hi h i t? ( ) which isotope?

ß-decay: energy spectrum 3 2 2 ( ei mi a model-independent measurement of m(ν e ) m ν e ) = U based on kinematics & energy conservation i= 1 dγi = de C p ( E 2 2 + m ) ( E E ) ( E E ) m F ( E, Z ) θ ( E e incoherent sum E m 0 0 i 0 i ) ß-source requirements short half life t ½ high luminosity low endpoint energy E 0 superallowed/allowed transition simple atomic/molecular structure (ν mass) 2 ß-detection requirements large solid angle (~2π) low background rate high energy resolution (~ev) short dead time, no pile up 3 H: super-allowed E 0 18. 6 kev t 12 3 y 187 Re: unique 1 st E 0 2.47 kev calorimeter ß-source =detector spectrometer external ß-source t 187 3 1/2 12.3 y t 1/2 43.2 Gy ß-source: Re ß-source: H

techniques in ß-decay the two different techniques are complementary due to different systematics calorimeter spectrometer source metallic Re / dielectric AgReO 4 windowless gaseous / condensed T 2 activity low: <10 5 ß/s, ~ 1 Bq / mg Re high: ~10 11 ß/s, 4.7 Ci/s injection energy single crystal bolometers electrostatic spectrometer response entire ß-decay energy kinetic energy of ß-decay electrons interval entire spectrum very narrow interval close to E 0 method differential energy spectrum integrated energy spectrum set-up modular size, scaling factors integral design, size limits resolution ΔE expected ~ 5-10 ev (FWHM) ΔE expected ~ 0.93 ev (100%) MARE KATRIN

history of tritium ß-decay experiments experimental results for m ν 2 < 2.3 ev < 2.3 ev

Troitsk & Mainz experiments Troitsk experiment windowless gaseous tritium source analysis of data 1994-99, 99, 2001 Mainz experiment quench condensed tritium source analysis of data 1998-99, 2001

spectrometers comparison of techniques Tret yakov detector source Δp/p = 7 10-4 δω = 10-3 magnetic guiding field: momentum analysis U 0 MAC-E ΔE/E = 1 10-5 δω ~ 2 π source detector magnetic guiding field & conversion, cyclotron motion electric retarding field: energy analysis

MAC-E filter principle MAC Magnetic Adiabatic Guiding adiabatic guiding of electrons along magnetic field lines inhomogenous B-field: superconducting solenoids B max = 3 6 T B min < 1 mt solid angle dω ~ 2π r r r r r F = μ B + q E μ = ( ) E E / B = const. T 2 source s.c. solenoid adiabatic transformation E E s.c. solenoid detector

MAC-E filter principle E Filter Electro- static filter energy analysis by an electrostatic t ti retarding field variable E-field: inner electrodes U 0 =185 18.5 18.7 kv integral transmission for E>U 0 high pass filter Efi field ld Bfi B-field T 2 source s.c. solenoid HV electrodes s.c. solenoid detector conversion retarding adiabatic transformation E E

KATRIN B-field & electrostatic potential 1 tritium source spectrometer B max [T] B-field po otential [kv V] 10-1 10-2 -20-10 0 steep gradients B min -40-30 -20-10 0 +10 distance from analysing plane [m]

KATRIN B-field & gyroradius tritium source 1 spectrometer [T] B-field 10-1 10-2 gyr ro radius [m m] electron gyroradius: 10-2 r g =33µm 3.3 p [kev] / B [T] 10-3 10-4 -40-30 -20-10 0 +10 distance from analysing plane [m]

KATRIN experiment - overview tritium-bearing components electrostatic spectrometers & detector improve experim. precision i by factor 100 ( go to the technological l limits ) it fully adiabatic (mev-skala) particle transport over > 50 m 10 11 Bq tritium source 10-2 Bq total background

KATRIN closed tritium cycle & TLK KATRIN tritium throughput per year equivalent to fusion facility ITER KATRIN closed cycle operational in 2012 first D-T operation of ITER in 2026 TLK Tritium Laboratory Karlsruhe a unique research facility in Europe licensed for storage of 20 g tritium

KATRIN closed tritium cycle KATRIN tritium loop system 27 pumps, 109 valves, 62 sensors, 6 buffer vessels, 2 permeators CMS-R 5% 95% DPS1-R WGTS DPS1-F DPS2-F inner loop control system T 2 injection 95% 5% CPS batch mode, 60 days (<1 Ci) 1% outer loop T 2 preparation isotope separation 1% outer loop T 2 retention- system

KATRIN closed tritium cycle KATRIN tritium loop system 27 pumps, 109 valves, 62 sensors, 6 buffer vessels, 2 permeators set-up of inner loop system in progress

KATRIN Laser Raman Spectroscopy high-precision (~0.1%) in-situ measurement of 200 actual H-isotopologue composition in the WGTS T 2 D 150 2 intensit ty [arb. units] 100 50 0 550 575 600 625 650 675 wavelength [nm]

WGTS windowless gaseous source tritium source WGTS design value precision luminosity 1.7 10 11 Bq injection rate 5 10 19 mol/s ±0.1 1% column density ρd 5 10 17 mol/cm 2 ±0.1 % tritium purity > 95% ±0.1 % magnetic field 3.6 T ± 2%

WGTS windowless gaseous source tritium source 12 cryogenic circuits 6 cryogenic fluids - instrumentation: ~ 500 sensors for temperature (4 600 K), B-field, pressure, gas flow, liquid levels

KATRIN windowless gaseous source WGTS gasdynamics: on-going detailed modelling of molecular velocities T 2 T 2 T 2 T 2 T 2 T 2 P in = 3 10-3 mbar TMP MAG 2800

KATRIN tritium retention the tritium flow out of the WGTS has to be reduced by factor ~10 14 tritium bearing components tritium free WGTS DPS2-F CPS spectrometers bar] p [10-3 m 1 0.1 0.01 injection injection rate = 1.8 mbar l / s differential cryogenic pumping p p(t < 10-20 2 ) mbar R>10 7 R>10 7 10-7 mbar l/s 10-14 mbar l/s

differential pumping section DPS2-F active tritium pumping with 4 TMP s DPS2-F TMP #4 ß s TMP #1 T 2

July 14, 2009: DPS2-F cryostat has arrived at KIT campus north

differential pumping section DPS2-F 2010 DPS2-F experimental programme - verify H-isotopologue retention R = 10 5 - investigations of ion properties: - diagnostics with FT-ICR measurements - suppression with dipoles

cryogenic pumping section CPS CPS UHV pumping- duct DN100 77K 77K cold valve DN 150 RT objective: reduction of T 2 -flux by factor 10 7 : 10-7 mbar l/s 10-14 mbar l /s method: cryo-sorption on condensing Ar-frost T 2 -rate: <1 Ci T 2 in 60 days = 1 KATRIN run (regeneration with warm He-gas) argon frost pump T = 3 45K 4.5 presently being manufactured by ASG

cryogenic pumping section CPS CPS RT UHV pumping- duct DN100 77K cold valve DN 150 77K argon frost pump T = 3 45K 4.5

electrostatic spectrometers UHV p < 10-11 mbar pre-filter fixed retarding potential U 0 = - 18.3 kv ΔE ~ 100 ev - filter out all ß-decay electrons without m(ν)-info - reduce background from ionising collisions no info on m(ν) precision filter - scanning variable retarding potential U 0 = - 18.4-18.6 kv ΔE ~ 0.93 ev (100% transmission) tandem design: pre-filter & energy analysis

pre-spectrometer UHV UHV p < 10-11 mbar successful verification of UHV concept SAES getters

pre-spectrometer: electromagnetic tests optimisation of electromagnetic design - minimisation of Penning traps - background reduction techniques (dipole fields) - study of field emission diameter = 1.7m length = 3.4m Si-PIN e-gun

pre-spectrometer: electromagnetic tests 360mm U < 0V magnetic field 310mm optimisation of electromagnetic design GND - design of geometry of ground & Anti-Penning electrodes - detailed d study of characteristics ti of fpenning traps as function of electrostatic potential, B-field, pressure - 3 rd generation layout is being implemented

main spectrometer: world s largest UHV recipient Helmholtz- coils UHV : p < 10-11 mbar! Helmholtz coils vessel on HV dimensions: diameter: 10 m length: 23.3 m surface: 690 m 2 volume: 1240 m 3 38 G. Drexlin G. Drexlin KIT- IK & EKP ISAPP 07.10.2007 July 22, 2009

main spectrometer: world s largest UHV recipient LHC accelerator KATRIN Volume pressure spectrometer 1250 m 3 10-11 mbar LHC Volume pressure storage ring 154 m 3 10-11 mbar cryogenic insulation 640 m 3 10-6 mbar method turbomolecular pumps / nonevaporable getters method cryocondensation on beam screen/magnet bore (1.9K) cryocondensation on magnet cold mass KATRIN spectrometer VIRGO antennae LIGO Volume pressure method 2x4km arms 8000 m 3 ~10-8 mbar ion pumps & cold traps VIRGO Volume pressure method 2x3km arms 6800 m 3 <10-9 mbar titanium & ion pumps ps

main spectrometer: pre-acceptance tests August 2006 1 TMP (WMAG2800) p < 6 x 10-8 mbar initial integral He-leak test at MAN-DWE

main spectrometer: transport

main spectrometer: transport start: Oct 2006 Deggendorf MAN-DWE manufacture hall

main spectrometer: transport

main spectrometer: transport

the final 7km: passing Leopoldshafen November 25, 2006: after an 8800 km sea-going voayge the main Spectrometer was manoeuvred by an SPMT over 7km to the final destination at the KATRIN experimental halls (30.000 visitors) arrival at Leimersheim ferry & reloading onto SPMT with heavy-duty crane In pictures: photos of the year 2006 SPMT

the final 7m, initial out-baking & UHV July 2007: initial UHV tests of vessel after out-baking with 6 TMPs steam blasting outgassing rate [ T = 20 C ] 1.18 10-12 mbar l / cm 2 s p = 10-10 mbar H 2 0 H 2 November 29, 2006 temperature distribution vessel at T = 350 C

inner electrodes: motivation & tasks #1: fine forming of electrostatic retarding field - precision HV power supplies: intrinsic HV precision ~1 ppm - dipole mode: emptying of particles stored in Penning traps #2: background suppression inelastic reactions of cosmic muons low-energy secondary electrons from the 690 m 2 inner surface d=22cm =15cm d vessel wall ΔU 1 = 100 V background reduction: factor 10-100 100 wire plane #1 ΔU 2 = 200 V 2 wire plane #2 47 G. Drexlin EKP VL01 25.10.2007

inner electrodes: overall system layout shallow cone 3x20 modules cylindrical part 5x20 modules steep cone 1x10 module 1x4 module module manufacture at U Münster

inner electrodes: mounting system mounting system - access via 85 m 2 clean room at rear end - electropolished mounting system for precise mounting - laser tracker alignment with 100 µm over entire inner surface

July 2009: first wire modules installed successfully

main spectrometer UHV p < 10-11 mbar air coils (LFCS) E(e - ) = U 0-1 ev for better visualisation of cyclotron motion set m e = 0.01 m e

main spectrometer: Helmholtz coil system LFCS Low Field Coil System radial coils tasks: - constrain magnetic flux tube (2.4 G 3.4 G) - reduce field inhomogeneities (33% 13%) EMCS Earth Magnetic Field Coil System cosine coils tasks: - compensate earth magnetic field (500 mg) or B-field distortions 02/09-08/09: assembly Ø=12.6m

earth magnetic field position: latitude 49 05 45 N longitude 8 26 10 E h = 115 m earth magnetic field: International Geomagnetic Reference Field (IGRF 10) field parameter value for 7/2009 yearly change inclination 64 49 0 declination 1 11 7 absolute field strength 48 231.1 nt 34.3 nt vertical component 43 648.8 nt 32.1 nt horizontal component 20 518.8 nt 12.3 nt horizontal field north 20 514.55 nt 11.3 nt horizontal field east 422.5 nt 42.9 nt 1 G = 100 000 nt 1% of 3 G = 3000 nt

Helmholtz coil system status July y 2009 12 6 m 12.6

focal plane system pinch magnet provide maximum field B max = 6 T (bore 340mm) - guiding g B-field in rear spectrometer part - define θ max for ß-electrons in WGTS - define energy resolution spectrometer detector magnet strong field B det = 3 6 T (bore 440 mm) - optimised focusing of analysing plane inhomogeneities (B, U 0 ) focal plane detector t segmented Si-PIN diode array read-out electronics

focal plane detector monolithic segmented Si-PIN diode array: - counting of transmitted ß-decay electrons - determination of radial position r & azimuth angle φ of ß-electrons to correct for electrostatic & magnetic inhomogeneities in analysing plane

detector system present hardware status

background sources tritium source - ß-decay electrons from areas with different electrostatic potentials - ß-decays from T - /T + iones detector - X-rays, gammas & electrons from natural radioactivity or scattered ß-decay electrons (beam-halo) total bg -rate = 10 mhz R bg spectrometer - stored ß-electrons (Penning traps) - low-energy shake off electrons from T 2 -ß-decays in central spectrometer area - cosmic induced secondary electrons

systematic effects Δm 2 ν = 2 2σ syst general relation for tritium-ß-decay inelastic scattering of ß-decay electrons in the WGTS - dedicated measurements with electron gun, special unfolding techniques HV-stabilisation of spectrometer retarding potential - precision-hv-divider (calibrated by PTB) & digital voltmeter - monitor spectrometer (Mainz) & atomic/nuclear standard (Rb/Kr-source) fluctuations of the WGTS column densitiy ρd (required <10-3 ) - stabilisation of ρd: injection pressure, beam tube T=27K, Laser-Raman - measurements electron gun, rear monitor detector/system charging effects in the WGTS - neutralise remaining ions in WGTS (Φ <20mV) mv), injection of mev-e e - distribution of final states (molecular excitations in 3 H 3 He) - reliable quantumchemical calculations, very good agreement

measurement intervals & spectra optimised HV scanning procedure, parameter decorrelation by 3 regions Region I: E «E 0 determine E 0 from fit procedure (ΔE 0 ~ 3 mev) Region II: E ~ 18570 ev maximum sensitivity for m(ν) with S/B-ratio~2 Region III: E > E 0 determine background rate (aim for 10 mhz) I II III retarding potential [ev] retarding potential [ev]

KATRIN sensitivity ν-mass sensitivity for 3 full beam measuring years ity / disc covery potential [σ] Sensitiv reference setup 2004 statistical & systematic errors contribute equally: - statistical error σ stat = 0.018 ev 2 - systematic error σ syst < 0.017 ev 2 sensitivity (90% CL) m(ν) < 200 mev discovery potential ti m(ν) = 350 mev (5σ) ν-mass m ν [ev]

KATRIN impact on astroparticle physics cosmic architects: fix relic-ν role as hot dark matter microscopic c keys: fix generic e neutrino mass pattern tritium ß-decay dark energy dark matter baryons KATRIN stars gas ν oscillations KATRIN : a key experiment for astroparticle physics

KATRIN Collaboration uniting the world-wide expertise in tritium ß-decay experiments: ~140 Collaboration members (12 institutions from D, USA, GB, CZ, Russia) ~ 60% from KIT pool of expertise (IK, EKP, ITP/TLK, IPE) 2012: begin of T 2 measurements 2008