Geometrie der Polygone Zirkel und Lineal Markus Wurster 1

Ähnliche Dokumente
Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte.

Geometrie der Polygone Konstruktionen Markus Wurster 1

Euklid ( v. Chr.) Markus Wurster

Euklid von Alexandria

Konstruktionen mit Zirkel und Lineal

4.15 Buch I der Elemente

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Geometrie Modul 4b WS 2015/16 Mi HS 1

Achsen- und punktsymmetrische Figuren

GEOMETRIE (4a) Kurzskript

Mathematik hat Geschichte. Teil 4 Griechen. Zahlen bei den Griechen vChr. Zahlen bei den Griechen vChr.

Qualiaufgaben Konstruktionen

Aufgabe 7 G: Symmetrien und Koordinatensystem

Geometrische Grundkonstruktionen

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Begründen in der Geometrie

Winkel messen und zeichnen Markus Wurster

Didaktik der Geometrie

Didaktik der Elementargeometrie

Prof. Dr. Dörte Haftendorn Leuphana Universität 2

Konstruktionen am Dreieck

Einführung in die Algebra

Didaktik der Geometrie

Inhaltsverzeichnis. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Mathematik hat Geschichte. Teil 4 Griechen. Zahlen bei den Griechen vChr. Zahlen bei den Griechen vChr.

Zum Einstieg. Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Übungen. Löse folgende Aufgaben mit GeoGebra

Elemente der Algebra

4. Parallelität ohne Metrik

Die Quadratur des Kreises

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Drei Kreise im Dreieck

Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

Geometrie Satz des Pythagoras

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geometrie kinderleicht. Das komplette Material finden Sie hier:

4. Kongruenz ohne Parallelen.

Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20

π und die Quadratur des Kreises

Grundlagen der Geometrie

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade

Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen).

Geometrie-Dossier Kreis 2

Kapitel 3 Mathematik. Kapitel 3.6 Geometrie Satz des Pythagoras

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Das Delische Problem. von Peter Franzke in Berlin

Wie bearbeitet man einen Übungszettel?

Bezeichnungen am Dreieck

Dreieckskonstruktionen Anwendungsaufgaben Lösungen

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem

Ist die Abbildung der Menge aller SchülerInnen einer Klasse auf die Menge der Wohnhäuser des Ortes eindeutig?

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen Crashkurs 7. Jahrgangsstufe

Name und des Einsenders

Körper- und Galoistheorie

Geometrie Jahrgangsstufe 5

Geometrie Satz des Pythagoras

Klausur zur Vorlesung Elementargeometrie

3. Die pythagoräische Geometrie.

Geometrie. in 15 Minuten. Geometrie. Klasse

Flächeninhalt und Umfangslänge Wer findet den Zusammenhang?

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

Lösungen zu den Aufgaben 7. Klasse

DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT

8.5.1 Real Geometrie Viereck, Dreieck

2.5. Aufgaben zu Dreieckskonstruktionen

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Der Höhenschnittpunkt im Dreieck

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

100 % Mathematik - Lösungen

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

WF Mathematik: 1. Grundbegriffe der Geometrie

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

Winkeldreiteilung. Michael Schmitz

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Geometrie Modul 4b WS 2015/16 Mi HS 1

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

10.7 Zum Können im Lösen geometrischer Konstruktionsaufgaben

Gegenstände der Geometrie

Aufgaben Geometrie Lager

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Mit eckigen Rädern fahren

Transkript:

Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1

Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft ein äußerst praktisches Werkzeug das Geo Dreieck. Es verbindet Lineal, Längenmesser und Winkelmesser in einem Gerät. Man kann mit ihm millimetergenau Längen und jeden beliebigen Winkel präzise zeichnen. Der rechte Winkel ist leicht zu konstruieren und parallele Linien sind mit dem Geo Dreieck ebenso wenig ein Problem. Längenmesser (Lineal) Winkelmesser Erstaunlicherweise haben die Mathematiker in der griechischen Antike (etwa die 4 Jahrhunderte vor Christi Geburt) bei ihren Studien zur Geometrie ganz bewusst auf solche Messgeräte für Längen und Winkel verzichtet. Nur Zirkel und Lineal waren als Instrumente zum Konstruieren zugelassen. Und mit einem Lineal war nicht etwa unser heutiges Lineal gemeint, das eine Zentimeter und Millimeterskala hat, sondern lediglich eine gerade Ausschnitt aus Die Philosophenschule von Athen von Raffael (1483 1520) Geometrie der Polygone Zirkel und Lineal Markus Wurster 2

Leiste. Albrecht Dürer, der im Mittelalter viele geometrische Konstruktionen entwickelt hat, nannte diese gerade Leiste ein Richtscheidt ein Wort, das bei uns fast in Vergessenheit geraten ist. Was für uns vielleicht wie eine unnötige Erschwernis aussieht, war für diese Mathematiker gerade eine besonders reizvolle Herausforderung. In der Philosophie Platons wurden die Linie und der Kreis als die Ausschnitt aus dem Bild Melencolia von Albrecht Dürer (1471 1528) geometrischen Gebilde mit der größten Vollkommenheit angesehen. Mathematik war eher ein philosophischer Denksport als eine technische Methode um Probleme zu lösen. Die Bedeutung der Geometrie beruht nicht auf ihrem praktischen Nutzen, sondern darauf, dass sie ewige und unwandelbare Gegenstände untersucht und danach strebt, die Seele zur Wahrheit zu erheben. (Platon) Büste von Platon (427 347 v. Chr.) Geometrie der Polygone Zirkel und Lineal Markus Wurster 3

Außerdem wussten die Griechen, dass mit dem Messen immer Ungenauigkeiten verbunden waren. Doch es geht auch ohne Messen. Zum Beispiel kann man einen Winkel halbieren, indem man die Winkelhalbierende konstruiert. Man muss dafür gar nicht wissen, wie viel Grad der Winkel misst. Abul Wefa und der "rostige Zirkel" Noch strengere Regeln für geometrische Konstruktionen stellte der persische Astronom und Mathematiker Abul Wefa auf. Er lebte im 10. Jahrhundert in Bagdad (heute Irak). Abul Wefa lehnte sogar den verstellbaren Zirkel ab. Er forschte danach, wie man alle Konstruktionen auch mit einem festen Zirkel, der seine Öffnung nie ändert, durchführen kann. Diese Idee wurde für spätere Mathematiker immer mehr zu einer mathematischen Spielerei. Spaßhaft nannten sie diesen festen Zirkel den rostigen Zirkel (weil er wie eingerostet sich nicht verstellen lässt) oder beschrieben, wie sie eine geometrische Aufgabe mit Hilfe einer Gabel gelöst haben. So weit gehen wir auf den folgenden Seiten aber nicht. Wir werden die wichtigsten Grundkonstruktionen kennenlernen, die man in der Geometrie ständig braucht und wir verwenden dazu ganz klassisch einen Zirkel und ein Lineal. Probiere alle Grundkonstruktionen aus! Geometrie der Polygone Zirkel und Lineal Markus Wurster 4

Eine Strecke halbieren die Mittelsenkrechte Wir haben eine bestimmte Strecke a mit den Endpunkten A und B und wollen sie in der Mitte teilen. Stelle den Zirkel auf einen Radius ein, der deutlich größer als die halbe Strecke a ist. Schlage mit diesem Radius einen Kreis um A und um B. Die Kreisbögen schneiden sich in C und D. Verbinde die Schnittpunkte C und D. Diese Linie halbiert die Strecke a. Sie heißt Mittelsenkrechte. Mittelsenkrechte Man muss übrigens nicht immer volle Kreise ziehen. Es genügt meistens ein kleiner Bogen, wenn man abschätzen kann, wo man ihn zeichnen muss. Geometrie der Polygone Zirkel und Lineal Markus Wurster 5

Ein Lot fällen die Senkrechte Wir haben eine Gerade a und suchen dazu eine Linie, die vom Punkt S aus genau senkrecht zur Geraden a steht. Stelle den Zirkel auf einen beliebigen Radius ein. Steche im Punkt S ein und schlage einen Kreis um S. Es entstehen zwei Schnittpunkte A und B auf der Geraden a. Steche in A und B ein und ziehe um A und um B einen Kreis. Es entsteht ein Schnittpunkt C. Verbinde die Punkte S und C. Diese Linie steht senkrecht auf der Geraden a. Sie heißt deshalb Senkrechte. Geometrie der Polygone Zirkel und Lineal Markus Wurster 6

Einen Winkel halbieren die Winkelhalbierende Gegeben sei ein Winkel α. Wir wollen ihn in zwei gleich große Winkel teilen. Stelle den Zirkel auf einen beliebigen Radius ein. Steche am Scheitelpunkt S ein und schlage einen Kreis. Es ergeben sich die Schnittpunkte A und B auf den beiden Schenkeln. Steche nun in A und B ein und ziehe jeweils einen Kreis. Aus den Kreisbögen entsteht ein Schnittpunkt C. Verbinde diesen Schnittpunkt C mit dem Scheitelpunkt S. Diese Linie teilt den Winkel α genau in der Mitte in die gleich großen Winkel α1 und α2. Geometrie der Polygone Zirkel und Lineal Markus Wurster 7

Eine Parallele konstruieren Wir haben eine Gerade g und wollen eine zweite Gerade zeichnen, die parallel verläuft. Diese soll einen bestimmten Abstand zur ersten Gerade haben sie soll durch den Punkt P verlaufen. Schlage einen Bogen k1 um P, so dass sich ein Schnittpunkt A auf der Geraden g ergibt. g Steche mit demselben Radius in Punkt A ein und trage den Radius auf der Geraden g ab. Es ergibt sich ein Punkt B. Geometrie der Polygone Zirkel und Lineal Markus Wurster 8

Steche in Punkt B ein und schlage einen Bogen k3 wieder mit dem gleichen Radius. Die beiden Bögen k1 und k3 ergeben einen Schnittpunkt C. C Die gestrichelten Linien zeigen, dass wir eine Raute konstruiert haben, die vier gleich lange Seiten hat. Deshalb sind die gegenüberliegenden Seiten parallel. Ziehe eine Gerade durch P und C. Dies ist die Parallele g zur Geraden g. C Geometrie der Polygone Zirkel und Lineal Markus Wurster 9

Eine Parallele durch Verschieben Eine sehr praktische und nicht ganz so strenge Methode geht so: Ziehe eine erste Linie. Lege das Geodreieck mit einer kurzen Seite an die Linie. Lege an die zweite kurze Seite des Geodreiecks ein Lineal. Verschiebe das Geodreieck entlang dieses Lineals. So kannst du beliebig viele Parallelen ziehen. (Weil unsere Lineale normalerweise ein Zentimetermaß haben, kann man den Abstand der Linien direkt abmessen.) Geometrie der Polygone Zirkel und Lineal Markus Wurster 10

Eine Strecke regelmäßig teilen Zeichne zur Ausgangsstrecke a eine Hilfslinie b in einem beliebigen Winkel. Stelle den Zirkel auf einen beliebigen Radius ein. Trage diesen Radius auf deiner Hilfslinie ab, und zwar so oft, wie viele Teile die Strecke a erhalten soll (in unserem Beispiel 3). a b Verbinde den letzten Punkt D auf der Hilfslinie mit dem Endpunkt D der Strecke a. Wenn du zu dieser Verbindungslinie DD durch die anderen Punkte C und B eine Parallele ziehst, teilen die Schnittpunkte C und B die Linie a in genau drei gleiche Teile. Wie man die Parallelen zeichnen kann, haben wir auf den vorherigen Seiten gesehen. Geometrie der Polygone Zirkel und Lineal Markus Wurster 11

Unlösbare Probleme Mit diesem Rüstzeug können wir an die klassischen Konstruktionen der Polygone gehen. Wir können mit diesen Grundkonstruktionen mit Zirkel und Lineal sämtliche Konstruktionen von Polygonen in Teil 7 ausführen. Aber es gibt auch Grenzen dieser Methode. Die antiken Mathematiker stießen auf drei Konstruktionsprobleme, die offenbar nicht mit Zirkel und Lineal zu lösen sind. Die Quadratur des Kreises Kann man ein Quadrat konstruieren, das denselben Flächeninhalt wie ein gegebener Kreis hat? Die Dreiteilung des Winkels Kann man einen gegebenen Winkel in drei gleichgroße Winkel aufteilen? Die Verdoppelung des Würfels Kann man einen Würfel konstruieren, der das doppelte Volumen (Rauminhalt) eines gegebenen Würfels hat? Geometrie der Polygone Zirkel und Lineal Markus Wurster 12

Alle drei Aufgaben kann man nicht mit Zirkel und Lineal lösen. Man kann die Maße natürlich errechnen und so die Lösungen auch zeichnen, aber mit der griechischen Methode geht es nicht. Warum das so ist, war viele Jahrhunderte lang ein mathematisches Rätsel. Unzählige Mathematiker haben sich an diesen klassischen Problemen versucht. Der junge Franzose Évariste Galois konnte Anfang des 19. Jahrhunderts am besten erklären, warum die drei klassischen Probleme mit den Möglichkeiten der antiken Geo metrie unlösbar sind. Diese antiken Probleme wurden im Laufe der Zeit sprichwörtlich: Man sagt heute noch im übertragenen Sinne die Quadratur des Kreises, wenn man von einem Problem spricht, für das es grundsätzlich keine Lösung geben kann. Geometrie der Polygone Zirkel und Lineal Markus Wurster 13

Exkurs: Geometrische Grundbegriffe Wir haben bei den Grundkonstruktionen eine Reihe von Fachbegriffen verwendet. Viele davon sind ganz leicht zu verstehen, weil wir sie auch in unserer Alltagssprache verwenden. Andere Begriffe müssen zuerst geklärt werden, damit man weiß, was gemeint ist. Euklid schrieb etwa 325 v. Chr. ein Mathematikbuch mit dem Titel Elemente, das mit diesem Satz beginnt: Ein Punkt ist, was keine Teile hat. Fantasiebild von Euklid aus der Neuzeit Euklid wollte mit seinem Werk, das aus 13 Büchern besteht, alles sammeln, was bis dahin in der Mathematik herausgefunden wurde. Er beginnt mit einer langen Reihe von Definitionen, um die Begriffe ganz klar zu formulieren. Lies einige Sätze aus den Elementen. Wie wirkt diese mathematische Sprache auf dich? Kannst du sie nachvollziehen? Definitionen: 1. Ein Punkt ist, was keine Teile hat. 2. Eine Linie ist eine Länge ohne Breite. 3. Die Enden einer Linie sind Punkte. 4. Eine Fläche ist, was nur Länge und Breite hat. 5. Die Enden einer Fläche sind Linien. Geometrie der Polygone Zirkel und Lineal Markus Wurster 14

Eine Linie, die keine Breite hat, kann man sich vorstellen aber in unserer Wirklichkeit kann es so etwas nicht geben. Jede Linie, die wir zeichnen, hat eine gewisse Breite. Euklid weiß das natürlich. Als Mathematiker interessiert ihn aber nicht so sehr das, was wir sehen und herstellen können, sondern das, was wir uns ideal denken können. Diese Denkweise geht auf Platon zurück und wird uns im 7. Kapitel wieder begegnen. Euklid möchte zuerst die Grundlage definieren. Dann erst, so seine Überzeugung, kann man die Grundbegriffe auch anwenden und mit ihnen die mathematischen Zusammenhänge richtig beschreiben. So geht man in der exakten Wissenschaft vor: Man beschreibt die Voraussetzungen, die Grundlagen, und forscht dann, was daraus folgt. Das Originalbuch ging nach einigen Jahrhunderten verloren. In Ägypten wurde dieses Teil einer Abschrift aus dem 1. Jhd. n. Chr. gefunden. Die Elemente wurden nach der Erfindung des Buchdrucks in großer Zahl nachgedruckt und wurden zum berühmtesten Lehrbuch und zum meist verbreiteten Buch neben der Bibel über viele Jahrhunderte hinweg. Geometrie der Polygone Zirkel und Lineal Markus Wurster 15

Euklid war nicht der einzige, der die mathematischen Begriffe definierte. Mathematiker haben zu allen Zeiten versucht, das, was sie meinen, so klar und eindeutig wie nur möglich zu formulieren. Hier ein paar Beispiele, wie der Begriff PUNKT im Laufe der Zeit unterschiedlich definiert wurde: 4. Jhd. v. Chr. (PLATON): Ein Punkt ist der Anfang einer Linie. 4. Jhd. v. Chr. (ARISTOTELES): Ein Punkt ist eine unteilbare Einheit, die eine Position besitzt. 4. Jhd. v. Chr. (EUKLID): Ein Punkt ist, was keine Teile hat. 1. Jhd. n. Chr. (HERON): Ein Punkt ist, was keine Teile hat oder eine Begrenzung ohne Dimension oder die Grenze einer Linie. 6. Jhd. n. Chr. (SIMPLICIUS): Punkte sind Anfänge von Größen und das, woraus diese erwachsen. Weiterhin sind Punkte die einzigen Objekte, die über eine Position verfügen. 21. Jhd. n. Chr. (HEUTE): Wie würdest du formulieren? Geometrie der Polygone Zirkel und Lineal Markus Wurster 16

Legematerial Wir machen es zum Kennenlernen und Üben nicht ganz so kompliziert das Definitionsmaterial für die geometrischen Grundbegriffe: a A B Eine Linie, die einen Anfangspunkt und einen Endpunkt hat, heißt... Strecke Eine Strecke hat eine bestimmte Länge. Eine Strecke ist die kürzeste Verbindung zwischen zwei Punkten. Man bezeichnet sie auch so: AB oder AB Lege die Kärtchen mit den Definitionen aus. Mache dir ein eigenes Definitionsbuch. Geometrie der Polygone Zirkel und Lineal Markus Wurster 17

Anhang: Ausschnitte aus Euklids Elemente Definitionen: 1. Ein Punkt ist, was keine Teile hat. 2. Eine Linie ist eine Länge ohne Breite. 3. Die Enden einer Linie sind Punkte. 4. Eine gerade Linie (Strecke) ist eine Linie, die zu den Punkten auf ihr gleichmäßig liegt. 5. Eine Fläche ist, was nur Länge und Breite hat. 6. Die Enden einer Fläche sind Linien. 7. Eine ebene Fläche ist eine solche, die zu den geraden Linien auf ihr gleichmäßig liegt. 8. Ein ebener Winkel ist die Neigung zweier Linien in einer Ebene gegeneinander, die einander treffen, ohne einander gerade fortzusetzen. 9. Wenn eine gerade Linie, auf eine andere Linie gestellt, einander gleiche Nebenwinkel bildet, dann ist jeder beiden gleichen Winkel ein Rechter. 10. Ein Kreis ist eine ebene, von einer einzigen Linie umfasste Figur mit der Eigenschaft, dass alle von einem innerhalb der Figur gelegenen Punkte bis zur Linie laufenden Strecken einander gleich sind. 11. Geradlinige Figuren sind solche, die von Strecken umfasst werden, dreiseitige die von drei, vierseitige die von vier, vielseitige die von mehr als vier Strecken umfassten. 12. Von den dreiseitigen Figuren ist ein gleichseitiges Dreieck jede mit drei gleichen Seiten, ein gleichschenkliges jede mit nur zwei gleichen Seiten, ein schiefes jede mit drei ungleichen Seiten. 13. Weiter ist von den dreiseitigen Figuren ein rechtwinkliges Dreieck jede mit einem rechten Winkel. 14. Parallel sind gerade Linien, die in derselben Ebene liegen und dabei, wenn man sie nach beiden Seiten ins Unendliche verlängert, auf keiner einander treffen. Postulate: 1. Es soll gefordert werden, dass sich von jedem Punkte nach jedem Punkte eine gerade Linie ziehen lasse. 2. Ferner, dass sich eine begrenzte Gerade stetig in gerader Linie verlängern lasse. 3. Ferner, dass sich mit jedem Mittelpunkt und Halbmesser ein Kreis beschreiben lasse. 4. Ferner, dass alle rechten Winkel einander gleich seien. 5. Endlich, wenn eine Gerade zwei Geraden trifft und mit ihnen auf derselben Seite innere Winkel bildet, die zusammen kleiner sind als zwei Rechte, so sollen die beiden Geraden, ins Unendliche verlängert, schließlich auf der Seite zusammentreffen, auf der die Winkel liegen, die zusammen kleiner sind als zwei Rechte. Geometrie der Polygone Zirkel und Lineal Markus Wurster 18