4. Kongruenz ohne Parallelen.
|
|
|
- Kasimir Walter
- vor 9 Jahren
- Abrufe
Transkript
1 4. Kongruenz ohne Parallelen. Den Griechen war bald klar, dass es bei einer solchen fundamentalen Frage, wie der nach der Existenz eines Pentagons, nicht mehr um noch so clevere geometrische Tricks gehen kann. Solche Tricks können auch täuschen. Wie leicht solche Tricks tatsächlich zu einer Täuschung führen können, werden wir am Ender dieser Vorlesung sehen. Was jetzt nötig ist, ist eine wohl fundierte logisch einwandfreie Geometrie. In dieser Vorlesung beginnen wir mit der systematischen Aufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. Als erstes Lehrstück dieser Systematik werden wir in dieser Vorlesung se-
2 30. Geometrie (L2) hen, wie Euklid die Kongruenzsätze aus der Axiomatik der Euklidischen Geometrie ableitet. Es gibt hier ein paar kleine Eigenheiten wie z.b. der Versuch, wirklich alles definieren zu wollen. Es wird z.b. auch versucht zu definieren was ein Punkt und was eine Gerade ist. Heute steht man (nach Hilbert) auf dem Standpunkt, daß Punkt und Gerade in der Euklidischen Geometrie undefinierbare Grundbegriffe sind. Aber davon abgesehen ist die Herleitung der Kongruenzsätze heute immer noch gültig. Was uns hier besonders interessiert ist die Tatsache, daß Euklid die Kongruenzsätze auf einem sehr fundamentalen Niveau herleitet. Natürlich wird in der Euklidischen Geometrie nicht mehr gemessen, nachdem ja von den Pythagoräern festgestellt worden ist, daß nicht alle geraden Strecken meßbar sind. Aber genauso bemerkenswert ist vielleicht die Tatsache, daß Euklid zur Herleitung der Kongruenzsätze auch nicht die Existenz und Eindeutigkeit von Parallelen voraussetzt. Es gibt also in diesem Teil noch keine Parallelverschiebung. Wir werden erst in der nächsten Vorlesung sehen, wie Euklid die Existenz von Parallelen herleitet. Die Kongruenz stellt eine gewisse Äquivalenzrelation zwischen den geometrischen Objekten der Euklidischen Ebene dar. Eine andere, schwächere Äquivalenzrelation, an die man an dieser Stellle auch denken
3 4 Kongruenzsätze 31 könnte, ist die Flächengleichheit. Mit der beschäftigen wir uns aber erst in der übernächsten Vorlesung. Wir beginnen mit der Euklidischen Axiomatik auf der alle Argumente in der Euklidischen Geometrie letztlich beruhen. Für eine moderne, aber auch sehr viel abstraktere Fassung dieser Axiomatik siehe [Hilbert, Grundlage der Geometrie] Die axiomatische Grundlegung der Euklidischen Geometrie. Wir wollen darauf achten, ob Euklid bei der Herleitung der Kongruenzsätze das Parallelenaxiom oder gar die Existenz von Paralellelen benutzt. Ansonsten wollen wir natürlich sehen wie die Kongruenzsätze bewiesen, d.h. streng logisch aus den Axiomen der Euklidischen Geometrie hergeleitet werden. An dieser Stelle bemerken wir noch, daß die Euklidischen Axiome (die wir hier kennenlernen und für das Folgende zugrunde legen wollen) eine bestimmte, uns zwar anschaulich sehr vertraute, aber doch nicht einzig mögliche Geometrie, beschreiben. Es gibt im Gegenteil noch sehr viel andere sinnvolle Geometrien. Als besonders wichtige Beispiele werden wir später noch
4 32. Geometrie (L2) die sphärische und die hyperbolische Geometrie behandeln. Die Euklidische Geometrie ist unter diesen Geometrien durch die Gültigkeit des Parallelenaxioams ausgezeichnet. Das Parallelenaxiom lautet im Originaltext (deutsche Version): 5. Gefordert soll sein daß, wenn eine gerade Linie beim Schnitt mit zwei geraden Linien bewirkt, daß innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei Rechte werden, dann die zwei geraden Linien bei Verlängerung ins unendliche sich treffen auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte sind. Die anderen Axiome sind viel kürzer. Sie lauten: Gefordert soll sein: 1. daß man von jedem Punkte nach jedem Punkte die Strecke ziehen kann. 2. daß man eine begrenzte gerade Linie zusammenhängend verlängern kann.
5 4 Kongruenzsätze daß man mit jedem Mittelpunkt und Abstand den Kreis ziehen kann. 4. daß alle rechten Winkel einander gleich sind. Zu den obigen Axiomen gehören noch verschiedene Definitionen. Wie z.b. 5. Wenn eine gerade Linie, auf eine gerade Linie gestellt, einander gleiche Winkel bildet, dann ist jeder der beiden gleichen Winkel ein Rechter. 23. Parallel sind gerade Linien, die in derselben Ebene liegen und dabei, wenn man sie nach beiden Richtungen ins unendliche verlängert, auf keiner einander treffen. Hier ist die vollständige Liste aller Definition, Postulate und Axiome aus [Euklid].
6 34. Geometrie (L2) Die Aufstellung der Euklidischen Geometrie. Definitionen. 1. Ein Punkt ist, was keine Teile hat, 2. Eine Linie breitenlose Länge. 3. Die Enden einer Linie sind Punkte. 4. Eine gerade LInie (Strecke) ist eine solche, die zu den Punkten auf ihr gleichmässig liegt. 5. Eine Fläche ist, was nur Länge und Breite hat. 6. Die Enden einer Fläche sind Linien. 7. Eine ebene Fläche ist eine solche, die zu den geraden Linien auf ihr gleichmässig liegt. 8. Ein ebener Winkel ist die Neigung zweier Linien in einer Ebene gegeneinander, die einander treffen, ohne einander gerade fortzusetzen. 9. Wenn die den Winkel umfassenden Linien gerade sind, heißt der Winkel geradlinig. 10. Wenn eine gerade Linie, auf eine gerade LInie gestellt, einander gleiche Nebenwinkel bildet, dann is jeder der beiden Winkel ein Rechter. 11. Stumpf ist ein Winkel, wenn er größer als ein Rechter ist, 12. Spitz, wenn kleiner als ein Rechter.
7 4 Kongruenzsätze Eine Grenze ist das, worin etwas endigt. 14. Eine Figur ist, was von einer oder mehreren Grenzen umfasst wird. 15. Ein Kreis ist eine ebene, von einer einzigen Linie [die Umfang (Bogen) heißt] umfaßte Figur mit der Eigenschaft, daß alle von einem inerhalb der Figur gelegenen Punkte bis zur Linie [zum Umfang des Kreises] laufende Strecken einander gleich sind; 16. Und Mittelpunkt ds Kreises heiß dieser Punkt. 17. Ein Durchmesser des Kreises ist jede durch den Mittelpunkt gezogene, auf beiden Seiten vom Kreisumfang begrenzte Strecke; eine solche hat auch die Eigenschaft den Kreis zu halbieren. 18. Ein Halbkreis ist die vom Durchmesser und dem durch ihn abgeschnittenen Bogen umfaßte Figur. [und Mittelpunkt ist beim Halbkreis derselbe Punkte wie beim Kreise]. 19. Geradlinige Figuren sind solche, die von Strekken umfaßt werden, dreiseitige die von drei, vierseitige, die von vier, vielseitige, die von mehr als vier Strecken umfaßten. 20. Von den dreisetigen Figuren ist ein gleichseitiges Dreieck jede mit drei gleichen Seiten,
8 36. Geometrie (L2) ein gleichschenkliges jede mit nur zwei gleichen Seiten, ein schiefes jede mit drei ungleichen Seiten. 21. Weiter ist von den dreiseitigen Figuren ein rechtwinkliges Dreieck jede mit einem rechten Winkel, ein stumpfwinkliges jede mit einem stumpfen Winkel, ein spitzwinkliges jede mit drei spitzen Winkeln. 22. Von den vierseitigen Figuren ist ein Quadrat jede, die gleichseitig und rechtwinklig ist, ein längliches Rechteck jede, die zwar rechtwinklig aber nicht gleichseitig ist, ein Rhombus jede, die zwar gleichseitig aber nicht rechtwinklig ist, ein Rhomboid jede, in der die gegenüberliegenden Seiten sowohl als Winkel einander gleich sind und die dabei weder gleicseitig noch rechtwinklig ist; die übrigen vierseitigen Figuren sollen Trapeze heißen, 23. Parallel sind gerade Linien, die in derselben Ebene liegen und dabei, wenn man sie nach beiden Seiten ins unendliche verlängert, auf keiner einander treffen. Postulate.
9 Gefordert soll sein: 4 Kongruenzsätze Daß man von jedem Punkt nach jedem Punkt die Strecke ziehen kann, 2. Daß man eine begrenzte gerade Linie zusammenhängend gerade verlängern kann, 3. Daß man mit jedem Mittelpunkt und Abstand den Kreis zeichnen kann, 4. Dass alle rechten Winkel einander gleich sind, 5. Und daß man, wenn eine gerade Linie beim Schnitt mit zwei geraden Linien bewirkt, daß innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei Rechte werden, dann die zwei geraden Linien bei Verlängerung ins unendliche sich treffen auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte sind. Axiome. 1. Was demselben gleich ist, ist auch einander gleich. 2. Wenn Gleichem Gleiches hinzugefügt wird, sind die Ganzen gleich. 3. Wenn von Gleichem Gleiches weggenommen wird, sind die Reste gleich. 4. Wenn Ungleichem Gleiches hinzugefügt wird, sind die Ganzen ungleich.
10 38. Geometrie (L2) 5. Die Doppelten von demselben sind einander gleich. 6. Die Halben von demselben sind einander gleich. 7. Was einander deckt, ist einander gleich. 8. Das Ganze ist größer als der Teil. 9. Zwei Strecken umfassen keinen Flächenraum. Der Erste Kongruenzsatz (SWS). Aufgabe. [Euklid I 1] Man konstruiere ein gleichseitiges Dreieck mit Grundseite AB. C D A B E Lösung. Man ziehe (Post. 3) einen Kreis um A und einen Kreis um B, jeweils mit AB als Radius.
11 4 Kongruenzsätze 39 Sei C einer der Schnittpunkte der Kreise. Man ziehe (Post. 1) die Strecken CA und CB. Dann ist (Def. 15,Ax. 1) AC = AB = BC. Erster Kongruenzsatz. [Euklid I 4] Seien ABC und DEF zwei Dreiecke mit AB = DE, AC = DF und BAC = EDF. Dann ist BC = EF, und ABC = DEF, ACB = DF E. A D B C E F Beweis. Man lege ABC auf DEF und lege dabei
12 40. Geometrie (L2) den Punkt A auf D und die Strecke AB auf DE Dann muß auch der Punkt B den Punkt E decken, denn AB = DE. Dann (Ax. 9) Also deckt die Strecke AB die Strecke DE. liegt die Strecke AC auf der Strecke DF, denn BAC = EDF. Deshalb deckt der Punkt C den Punkt F, denn AC = DF. B deckt aber E. Folglich muß (Ax. 9) die Strecke BC die Strecke EF decken. Damit decken alle Seiten des einen Dreiecks die des anderen. Folglich muß das Dreieck ABC das Dreieck DEF
13 4 Kongruenzsätze 41 decken und ihm gleich sein. Insbesondere müssen alle Winkel von ABC die entsprechenden Winkel von DEF decken und ihnen gleich sein. Bemerkung. Man beachte hier den feinen Unterschied zwischen liegen und decken. Beide Begriffe sind hier wesentlich. Z.B. auf Strecken angewandt, hat man mit diesen Begriffen die Möglichkeit mehr auszudrücken als nur eine evtl. Längengleichheit. Die Begriffe selbst sind aber in der Euklidischen Axiomatik nicht definiert. Sie sind aus der Umgangssprache übernommen. Bemerkung. In den obigen Beweisen sind absichtlich alle Voraussetzungen herausgehoben, die benutzt werden. Man sieht so leicht, daß das Parallelnaxiom (Post. 5) nirgends benutzt wurde. Alle Konstruktionen dieses Abschnitts könnte man ebenso z.b. in der sphärischen Geometrie ausführen (siehe die 9. Vorlesung zur sphärischen Geometrie).
14 42. Geometrie (L2) Der Zweite Kongruenzsatz (SSS) Aufgabe. [Euklid I 2] Sei A ein Punkt und sei BC eine gegebene Strecke. Man konstruiere eine Strecke AL mit AL = BC. K H D C A B L E G F Bemerkung. Man kann BC nicht parallel verschieben, da es noch keine Parallelen gibt. Lösung der Aufgabe. Man ziehe die Strecke AB (Post. 1).
15 4 Kongruenzsätze 43 Man errichte das gleichseitige Dreieck DAB [Euklid I 1]. Man verlängere DA, DB gerade um die Strecken AE, BF (Post. 2). Man zeichne den Kreis CGH, mit B als Mittelpunkt und BC als Abstand. (Post. 3) Sei G der Schnittpunkt dieses Kreises mit der geraden Linie DF. Man zeichne den Kreis GKL, mit D als Mittelpunkt und DG als Abstand (Post. 3). Sei L der Schnittpunkt dieses Kreises mit der geraden Linie DE. Dann ist BG = BC und DL = DG, da B Mittelpunkt des Kreises CGH und D Mittelpunkt des Kreises GKL ist. Also ist (Ax. 3, Ax. 1) Dies war zu zeigen. AL = BG = BC
16 44. Geometrie (L2) Satz. [Euklid I 5] Sei ABC ein gleichschenkliges Dreieck (Def. 20) mit AB = AC. Dann ist ABC = ACB. A F B C G Beweis. D Es seien AB, AC um die geraden Linien BD, CE verlängert (Post. 2). Man wähle auf BD den Punkt F beliebig. Man konstruiere den Punkt G auf AE mit E AG = AF. (1) (dies ist der Schnittpunkt von AE und dem Kreis um A mit Radius AF). Schließlich ziehe man die Strecken FC, GB (Post. 1).
17 4 Kongruenzsätze 45 Dann ist FA = GA, CA = BA und FAC = GAB. Dann sind [Euklid I 4] die Dreiecke F AC und GAB kongruent. Insbesondere FC = GB, ACF = ABG und AFC = AGB (2) Weiter ist (Ax. 3) BF = CG, da AF = AG (wegen (1)) und AB = AC (nach Vor.). Somit FC = GB, BF = CG und BFC = AFC = AGB = CGB Also sind [Euklid I 4] die Dreiecke BF C und CGB kongruent. Insbesondere FBC = GCB und BCF = CBG. (3) und so wegen (2) und (3) ABC = ABG CBG = ACF BCF = ACB.
18 46. Geometrie (L2) Satz. [Euklid I 7] Es ist nicht möglich, über derselben Strecke AB und auf derselben Seite, zwei Paare von Strecken AC, BC und AD, BD zu zeichnen mit AC = AD und BC = BD. C D A B Beweis. Angenommen dies ist möglich. Bemerkung. Mit dieser Annahme hätte man zwei verschiedene Dreiecke ABC und ABD, über derselben Grundlinie AB, deren Seiten paarweise längengleich sind. Aber Achtung: Man darf jetzt
19 4 Kongruenzsätze 47 nicht einfach den Kongruenzsatz (SSS) verwenden, denn wir sind ja erst noch dabei, ihn zu beweisen! Man ziehe CD. Dann wäre [Euklid I 5] ACD = ADC und BCD = BDC (1) da AC = AD und BC = BD (nach Voraussetzung). Weiter ist BCD < ACD und ADC < BDC. Also wäre (Ax. 8) und (1) BCD < BDC. Dies ist ein Widerspruch zu (1).
20 48. Geometrie (L2) Zweiter Kongruenzsatz [Euklid I 8] Seien ABC und DEF zwei Dreiecke mit Dann ist auch AB = DE, AC = DF, BC = EF. BAC = EDF, ABC = DEF, BCA = EFD. A G D B C E F Beweis. Man lege das Dreieck ABC auf das Dreieck DEF und lege dabei den Punkt B auf den Punkt E sowie die Strecke BC auf die Strecke EF.
21 4 Kongruenzsätze 49 Dann muss der Punkt C den Punkt F decken, denn BC = EF. Dann gilt [Euklid, 7], dass alle Seiten von ABC Seiten von DEF decken. Somit ist BAC = EDF, ABC = DEF, BCA = EFD.
22 50. Geometrie (L2) Eine Täuschung der Anschauung. Hier ist ein kleiner Test. Er beruht auf dem 2. Kongruenzsatz und soll zeigen wie leicht man sich von der Anschauung täuschen lassen kann, wenn man nicht genau aufpasst. G D E F α β δ γ A B C Konstruiere die Figur so, daß: DAC = R = rechter Winkel.
23 ACF < DAB AD = CF 4 Kongruenzsätze 51 BG = Mittelsenkrechte zu AC EG = Mittelsenkrechte zu DF Behauptung. (DA, AB) = (BC, CF). Dies wäre ein Widerspruch zu einer der Voraussetzungen der Konstruktion. Und denoch: DG = F G da EG Mitelsenkrechte von DF. AG = CG da BG Mittelsenkrechte von AC. AD = CF nach Konstruktion. Also (AGD) = (CFG), denn alle drei Seiten sind gleich Demnach sind aber auch alle drei Winkel dieser Dreiecke gleich. Insbesondere α = γ. Aber β = δ da B Mittelsenkrechte von AC. Damit ist (AD, AB) = α + β = γ + δ = (AD, AB). Also ist die Behauptung bewiesen. Wo ist der Fehler?
2. Kongruenzsätze (SWS und SSS) ohne Parallelen.
2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück
Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte.
Das erste der dreizehn Bücher von Euklids Elementen beginnt nach der Ausgabe in Ostwald s Klassikern der exakten Wissenschaften (Nr. 235), Leipzig 1933, folgendermaßen: Definitionen. 1. Ein Punkt ist,
DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT
EUKLID DIE ELEMENTE BUCH I-XIII h^ Nach Heibergs Text aus dem Griechischen übersetzt und herausgegeben von CLEMENS THAER WISS1 -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT VI Inhaltsverzeichnis X. BUCH Definitionen
4.15 Buch I der Elemente
4.15 Buch I der Elemente Das erste Buch der Elemente beginnt mit 23 Definitionen, 5 Postulate und einige Axiomen (von denen man in späteren Ausgaben bis zu 9 findet). Die ersten fünf Definitionen lauten
4. Parallelität ohne Metrik
4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon
Euklid von Alexandria
Euklid von Alexandria lebte ca. 360 v. Chr. bis ca. 280 v. Chr. systematisierte in 13 Büchern ( Elemente ) das mathematische Wissen der Antike - bis ins 19. Jahrhundert nach Bibel das am meisten verbreitete
3. Die Existenz des Pentagons.
3. Die Existenz des Pentagons. In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. Dieser Beweis ist schon recht anspruchsvoll. So anspruchsvoll, dass
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Letzte Woche wurden uns die Axiome von Hilbert vorgestellt, genauer gesagt haben wir gesehen:
Hilbert Ebene Letzte Woche wurden uns die Axiome von Hilbert vorgestellt, genauer gesagt haben wir gesehen: - die Axiome der Verknüpfungen (Axioms of Incidence) - die Axiome der Anordnung (Axioms of Betweeness)
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit
3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï
3 Dreiecke 3.1 Grundlegende Sätze (zum Teil bewiesen in den Übungen) 3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï 2 1 bereinstimmen in zwei Seiten und dem dazwischenliegenden Winkel. 3.1.2
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
MAT746 Seminar über Euklidische Geometrie Philipp Becker
MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht
zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am
Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden
Die Elemente des Euklid. Euklides: Stoicheia
Die Elemente des Euklid Euklides: Stoicheia Bücher I bis IV: Buch I Buch II Buch III Buch IV Bücher V und VI: Buch V Buch VI Bücher VII bis X: Buch VII Buch VIII Buch IX Buch X, 1. Teil Buch X, 2. Teil
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 39 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck 2 / 39 Wir betrachten nur konvexe Vierecke:
Zur Deckung bringen präzisiert werden. Ich stelle zunächst Hilberts Version vor, wähle aber anschließend einen anderen, etwas anschaulicheren Weg.
30 Jetzt soll der Begriff der Kongruenz bzw. Euklids vage Vorstellung vom Zur Deckung bringen präzisiert werden. Ich stelle zunächst Hilberts Version vor, wähle aber anschließend einen anderen, etwas anschaulicheren
26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen
26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg
4.18 Buch IV der Elemente
4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen
Das Parallelenproblem
Proseminar zur Linearen Algebra und Elementargeometrie Das Parallelenproblem Wintersemester 2016/17 von: Yann-Martin Jeannès [email protected] Prof. Dr. L. Schwachhöfer Technische Universität Dortmund V.
Elementare Geometrie Vorlesung 10
Elementare Geometrie Vorlesung 10 Thomas Zink 24.5.2017 1.Kongruenz von Dreiecken Es sei E eine Ebene. Wir verstehen in dieser Vorlesung unter einem Dreieck eine Folge von drei Punkten ABC in E, die nicht
Lösungen zu den Aufgaben 7. Klasse
Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse
Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear.
16 3 Das Axiomensystem Motiviert von den Elementen des Euklid, wollen wir jetzt ein modernes Axiomensystem für die Ebene Geometrie aufstellen. Zum ersten Mal wurde das um 1900 von David Hilbert geleistet,
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen
Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente
Euklides: Stoicheia (Euklids Elemente)
Euklides: Stoicheia (Euklids Elemente) Buch IV. Erklärungen. 1. Die Ecken einer gradlinigen Figur, der eine andere gradlinige Figur einbeschrieben ist, liegen auf je einer Seite der Figur, der sie einbeschrieben
Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente
Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Gerade und Parallelen, 2 Proposition. Wenn eine Gerade f von zwei parallelen Geraden g und h geschnitten wird,
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $
$Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung
Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Vorprüfung Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe Wintersemester 12/13 12. Februar 2013 Aufgabe 8: Definieren Nr.
Aufgaben Geometrie Lager
Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.
Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das
Axiomatische Geometrie. Ruben Jakob Sommersemester 2016 Universität Tübingen
Axiomatische Geometrie Ruben Jakob Sommersemester 2016 Universität Tübingen Inhaltsverzeichnis I Einführung 1 II Hilberts Axiomensystem 1 1 Axiome der Inzidenz 1 2 Axiome des Zwischenseins 3 3 Axiome
Aufgabe 1: Definieren
Aufgabe 1: Definieren a) Definieren Sie den Begriff Mittelpunkt einer Strecke AB. Der Punkt M ist Mittelpunkt der Strecke AB, wenn er zu dieser gehört und AM = MB gilt b) Definieren Sie den Begriff konvexes
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Vierecke Kurzfragen. 2. Juli 2012
Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?
Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist
7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d
Sphärische Zwei - und Dreiecke
TECHNISCHE UNIVERSITÄT DORTMUND Sphärische Zwei - und Dreiecke Proseminar innerhalb des Lehramtsstudiums im Fach Mathematik Meryem Öcal Matrikelnummer 168833 Studiengang LABG 2009 Prüfer: Prof. Dr. Lorenz
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
Aufgabe G.1: Definitionen, Begriffsbildungen
Aufgabe G.1: Definitionen, Begriffsbildungen a) Der Begriff Dreieck sei definiert. Definieren Sie den Begriff Innenwinkel eines Dreiecks. (2 Punkte) b) Definieren Sie den Begriff Inneres eines Winkels
Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $
$Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich
Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :
GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
DREIECKSFORMEN 1. Station 1 (H1) Gib an, um welche Form von Dreieck es sich jeweils handelt! Teile dabei nach Winkel und nach Seiten ein!
Station 1 (H1) DREIECKSFORMEN 1 Gib an, um welche Form von Dreieck es sich jeweils handelt! Teile dabei nach Winkel und nach Seiten ein! Station 1 LÖSUNG a) Spitzwinkliges Dreieck und gleichschenkliges
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
3. Vorlesung. Die Existenz des Pentagons. (*)
3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,
Euklids Elemente Buch I und Parallelentheorie
Universität Duisburg Essen Seminar: Quellen zur Geschichte der Mathematik Wintersemester 2006/2007 Dozent: Professor Dr. Jahnke Referatsausarbeitung Euklids Elemente Buch I und Parallelentheorie Vorgelegt
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von
Klausur zur Vorlesung Elementargeometrie
Klausur zur Vorlesung Elementargeometrie 08.08.2012 Prof. Klaus Mohnke und Mitarbeiter Nachname, Vorname: Matrikelnummer: Bitte unterschreiben Sie hier bei der Abgabe: Zum Bearbeiten der Klausur haben
3. Die pythagoräische Geometrie.
II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen
34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen 1 OJM 34. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Grundwissen. 7. Jahrgangsstufe. Mathematik
Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf
Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks.
Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks. (Innenwinkel eines Dreiecks): Sei ABC ein Dreieck. Die Winkel < AB +, AC + ; < BA +, BC + und < CA +,
Zwillinge von Archimedes (1)
Zwillinge von Archimedes (1) Zwillinge von Archimedes (2) Zwillinge von Archimedes (3) DIDAKTIK DER GEOMETRIE Elementargeometrie 2 Prof. Heinz Klemenz Universität Zürich, Kantonsschule Rychenberg Winterthur
MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE
ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
19. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1979/1980 Aufgaben und Lösungen
19. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1979/1980 Aufgaben und Lösungen 1 OJM 19. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller
Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung
GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]
GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Eine Hilfe, wenn du mal nicht mehr weiterweisst...
Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Grundlagen der Geometrie
Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode
20. Landeswettbewerb Mathematik Bayern
0. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 1. Runde 017/018 Aufgabe 1 Kathi verteilt die Zahlen 1,, 3, 9 auf die neun Kreise der Figur. Dabei hat die Summe von drei Zahlen
3. Winkelsätze und der Kongruenzsatz (WWS).
3. Winkelsätze und der Kongruenzsatz (WWS). Nachdem wir die beiden ersten Kongruenzsätze bewiesen haben, kommen wir zum ritten Kongruenzsatz (WWS). r ist der am schwersten zu beweisende. Um ihn zu beweisen,
Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke
Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,
Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.
GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >
Diese Folien bilden kein Skriptum zur Vorlesung.
Geometrie für Lehramt an beruflichen Schulen MA9925 Vorlesung von Prof. Dr. Johann Hartl Fakultät für Mathematik Technische Universität München Wintersemester 2013/14 Diese Folien bilden kein Skriptum
Kongruenz, Vierecke und Prismen
Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren
2.5 Bewegungen und Kongruenz
73 2.5 Bewegungen und Kongruenz Schon öfter wurde das Axiomensystem von Hilbert erwähnt. Hier soll kurz auf dieses System eingegangen werden. Die Einteilung in Gruppen von Axiomen haben wir schon von Hilbert
Einfu hrung in die Geometrie
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilpru fung, Modul Einfu hrung in die Geometrie Abbildung 0: Winkelkreuz Abbildung 0: Spannen von gleichschenkligen Trapezen auf dem Winkelkreuz
Flächenverwandlung von Rechtecken
Durch die Hintereinanderausführung zweier Scherungen, zuerst an der Scherungsachse a 1, danach an der Scherungsachse a 2, wird ein Rechteck ~ABCD in ein neues Rechteck ~A''B''C''D'' übergeführt. Gib Näherungswerte
Dreieck, Viereck und Quadrate (Wir üben, entdeckte Sachverhalte zu beweisen)
Zeichne in dein Heft ein beliebiges Dreieck ABC und füge den eiten AC und BC ein Quadrat der entsprechenden eitenlänge an. Achte bei der Wahl deines Dreiecks darauf, dass auch noch die Quadrate auf das
GEOMETRIE (4a) Kurzskript
GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.
2.2 Axiomatische Mathematik
33 2.2 Axiomatische Mathematik Die deduktive Methode funktioniert folgendermaßen: Der Beweis einer Aussage (A1) wird auf eine offensichtlichere Aussage (A2) zurückgeführt. Dann wird nach einer noch unbedenklicheren
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen
1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20
Rund um den Kreis Dr. Elke Warmuth Sommersemester 2018 1 / 20 Grundbegriffe Geraden Kreis Winkel Kreis 2 / 20 Kreis Kreisfläche oder Kreislinie Definition Die Kreislinie um M mit dem Radius r ist die Menge
Aufgabe 1: Multiple Choice Test
PH Heidelberg, Fach Mathematik, Klausur zur Teilprüfung Modul, Einführung in die Geometrie, SS010, 30.07.010 Aufgabe 1: Multiple Choice Test Kennzeichnen Sie die Ihrer Meinung nach richtigen Antworten.
Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich
GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt
Alle Sätze, die aus den Axiomen I/1 bis IV/3 folgen, gehören zur absoluten Geometrie. (Parallelenaxiom) folgen, gehören zur euklidischen
5 Das Parallelenaxiom 5.1 Absolute Geometrie, euklidische Geometrie, hyperbolische Geometrie Alle Sätze, die aus den Axiomen I/1 bis IV/3 folgen, gehören zur absoluten Geometrie. Alle Sätze, die aus den
22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen
22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 1 OJM 22. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke
edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke
