2 nd Freiberg Resource Technology Symposium, April 17 2013 Urban Mining Why and How? Helmut Vienna University of Technology Institute for Water Quality, Resource and Waste Management 1
Focus of Urban Mining Urban Mining 2 Primary production Semi products 3 Production of goods Products Use AR 4 Waste 5 Waste management Ores New scrap Old scrap II Old scrap I Slag Tailings Landfilled wastes 1 Landfills 6 Lithosphere & dumps PR AR Landfill Mining PR Primary resources AR Anthropogenic resources (secondary resources) 2
Primary and secondary deposits: example of copper Ore 2 Copper production 11.000 Cathode copper 3 4 Waste Production Use 11.000 11.500 3.800 of goods 300.000 +7.700 New scrap 540 Slag Tailings Products Old scrap II 680 150 1.200 1.400 Old scrap I Landfilled wastes 1.700 5 Waste management 580.000-11.000 Landfill & dumps 85.000 +3.100 1 6 Lithosphere Flows: 1.000 t/a Stocks: 1.000 t System boundary World 1994 Source: Graedel et al. 2002 (adapted) 3
Copper budget of Austria Systemgrenze "Kupferhaushalt Österreich" importierte Abfälle, Aschen, Rückstände 1 exportierte Rohprodukte Flüsse [kg Cu/(E.a)] Lager [kg Cu/E] importierte Rohprodukte Produktionsabfälle RP1 0,13 Recyclingmaterial 7,8 10 exportierte Produkte 13 19 importierte Rohstoffe 4,9 Rohprodukte 2,3 Produktionsabfälle GP 3,0 Konsumabfälle 5,1 Rohstoffproduktion Güterproduktion Abfallwirtschaft exportierte Abfälle 0,6 Erze 0 Produkte 5,5 Produktionsabfälle RP2 Reststoffe 0 1 Lithosphäre + Bergbau Konsum Halden* + Deponien importierte Produkte 5,3 L E 160-270 +6 60 +1 exportierte Erze 0 * Lager Halden nicht bestimmt Source: Döberl et al. 2005 4
Urban stocks: size and relevance ca. 400 t/cap Source: Wittmer, 2007 Separate collection of Plastic packaging: 18 kg/cap.yr Waste metal: 15 kg/cap.yr Waste wood: 23 kg/cap.yr Source: BAWP 2011 Comparison between urban stocks and reserves Copper: 300 Mio. t 580 Mio. t Iron: 14 800 Mio. t 77000 Mio. t Zinc: 205 Mio. t 200 Mio. t Source:, 2004; Rauch 2009, USGS 2011 5
Urban Mining reduces import dependency 6
Urban Mining reduces shortage in landfill space 20 Mass [t/cap.yr] 15 10 5 Input of solid materials into use phase Mean residence time Output of solid materials from use phase (wastes) 0 1980 2000 2020 2040 2060 2080 Year 7
The Austria raw materials cadaster Austria raw materials cadaster Geogenic raw materials Anthropogenic raw materials 8
Urban mining: tasks to tackle Exploration of anthropogenic stocks Urbane stock (mass) New construction Reconstruction Stock exploration 1940 1960 1980 2000 2020 2040 2060 2080 2100 9
Stock exploration1 5.862 6.197 905 154 200 34 199 16 65 37 43 16 28 67 7 Asphaltbelagschichten im Gebäude Beschüttung Betonschichten Dachhaut (Schwarzdeckerarbeiten) Dackdeckung Estriche Fangkopfmauerwerk Fenster und Türen Fliesen (Boden) Mauersteine (Schlackenbeton) Natursteinmauer Putze und Putzträger Wandbeläge in Innenräumen Mauerwerk Ziegel Mauerwerk Stahlbeton 7.000 6.000 5.000 4.000 3.000 2.000 1.000 - Source: Clement et al. 2010 10 mg Pb/kg
Stock exploration2 141 107 34 29 16 19 17 12 0 - - 1 1 6 - Asphaltbelagschichten im Gebäude Beschüttung Betonschichten Dachhaut (Schwarzdeckerarbeiten) Dackdeckung Estriche Fangkopfmauerwerk Fenster und Türen Fliesen (Boden) Mauersteine (Schlackenbeton) Natursteinmauer Putze und Putzträger Wandbeläge in Innenräumen Mauerwerk Ziegel Mauerwerk Stahlbeton 160 140 120 100 80 60 40 20 - Source: Clement et al. 2010 11 kg Pb
Stock exporation3: current research @ TU Vienna Three approaches, applied to single demolition objects: 1. Analysis of existing information/data mining (technical drawings, data from remote sensing, building standards,.) 2. Inspection of the object (inventory, taking samples, ) 3. Indirect analysis through selective deconstruction and sampling of recycling facility Evaluation and merging of approaches Finding out how far results can be used for the development of a resource cadaster (in Vienna) 1 2 3 12
First results 100.000 Material composition of a dwelling building complex (Reinforced concrete structure, 4 buildings with 2-9 floors, enclosed space: 57 000 m 3 ) 22000 PVC 10.000 flooring mass [t] 1.000 100 800 410 210 110 90 35 30 cable insulation linings, panelling 10 14 13 7 3 1 1 1 Source: Kleemann et al. 2013 13
New construction: material building pass Project EKON: 1. General procedure for the creation of material building pass 80.000 70.000 60.000 Masse [kg] Massiv Holzmassiv 50.000 40.000 30.000 20.000 10.000 5.000 4.000 3.000 2.000 1.000 2. In practice not feasible: Solution might be Building Information Modeling 0 Kunststoffe Dämmstoffe Stahl Gipskarton Estrich, Putz, Spachtelung Glas keramische Werkstoffe Holz Kupfer Aluminium Quelle: Autodesk 14
Final goal: resource cadaster Potential availability of secondary material (scrap) 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 15
Material life cycle for copper Semi-product Waste Production of copper Production of goods Use Waste Mgmt. Ore Product Recycling product 16
Statistical Entropy Analysis 1,0 Earth's crust 0.8 Relative statistical entropy 0.6 0.4 0.2 Production of copper Production of goods Use Circular economy Waste Mgmt. 0,0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Pure copper Life cycle of copper Source: & Graedel, 2002 17
Technologically highly developed Waste Mgmt. Production und construction: months Fotos: A. Weinert Disposal: days weeks? 18
Entropy reduction: residual waste and Cu1 Effort (e.g. costs, energy) Incineration Landfill 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 19
Potential of incineration bottom-ash Mitterbauer et al. 2009 Source: Skutan & 2007 20
Entropy reduction: residual waste and Cu2 Effort (e.g. costs, energy) Landfill Incineration Incineration + mech. treatment of slag. 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 21
Recovery of copper from residual waste <0.1 System boundary Incineration + melting of bottom ash Off-gas I Residual waste 100 Incineration Off-gas II 1.9 93 Melting of bottom ash Silicat melt 8.9 82 Waste water Fly ash Filter cake <0.1 8.9 <0.1 Bottom ash Metal melt Copper flows in [%] Source: Zeltner and Lichtensteiger, 2002 22
Entropy reduction: residual waste and Cu3 Effort (e.g. costs, energy) Landfill Incineration Inc.+ melting Incineration + mech. treatment of slag. 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 23
The potential of the Waste Management sector 1 Earth s crust 0.8 Relative statistical entropy 0.6 0.4 0.2 Production of copper Production of goods Consumption Disposal Landfill Status quo Incineration Incineration + mech. treatment Circular economy Incineration + therm. treatment 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Pure copper Life cycle of copper Source:, 2003 24
Example for Design for Recycling: Frontage Aufbau Leichtbaufassade innen Dicke [m] 90+% recyclable Gipskartonplatten (GKP) 2 Lagen 0,025 Mineralwolle 0,040 Alu C Profile für GKP zw. Mineralwolle GKP 2 Lagen 0,025 Da mpfs perre 0,000 Mineralwolle 0,125 Alu C Profile für GKP zw. Mineralwolle Stahlunterkonstruktion für Fassadenplatten zw. Mineralwolle Zementbauplatte 0,025 Hinterlüftung 0,030 Fassadenplatten: 1. Aluminumverbundplatten 0,015 2. Zementfaserplatten außen Wandstärke 0,285 25
Simple energetic evaluation Primary energy demand [TJ/FU] 14 12 10 LWCF 0% LWCF 98% LWCF opt. 98% Concrete 0% 8 6 4 2 0 1. Construction 2 3 4 Cycles 26
Conclusions Urban stocks are significant. Characterization of urban stocks is required. Fully established Circular Economy requires sophisticated recycling. Thank you for your attention! 27