Urban Mining Why and How?

Ähnliche Dokumente
Knappheit von Rohstoffen und Urban Mining

RECOVERY OF METALS AND MINERALS FROM ASH

Waste Management in the EU

VDI-Expertenforum: Richtlinie VDI 3925 Blatt 1 Werkzeuge zur Bewertung von Abfallbehandlungsverfahren 03. Dezember 2013 Jugendherberge, Düsseldorf

Recyclinggerechtes und ressourceneffizientes Bauen

Bosch Thermotechnik. Thermotechnology

Low Carbon energy intensive industries

SCHLAUE LÖSUNGEN FÜR IHRE ANWENDUNGEN SMART SOLUTIONS FOR YOUR APPLICATIONS

Climate change and availability of water resources for Lima

Perspektiven mit Stahl Perspectives with Steel. Efficient hot metal and steel production in Europe

Integrating storages in energy regions and local communities a range of storage capacities

How can the connectivity of the greenway network in Southwest Montreal be improved? Scenarios for enhancing the wellbeing of biodiversity and humans

Stahl-Zentrum. Koksqualität und Hochofenleistung - Theorie und Praxis. Düsseldorf, 05. Dezember Peter Schmöle

Nährstoffrückgewinnung aus biologischen Abfallströmen zur Düngemittelproduktion. Ralf Hermann, Proman Management GmbH

Circular Economy im Bau- und Möbelsektor Warum, Was und Wie?

Prof. Guillaume Habert

Sinks and its relevance for modern waste management systems

Internationale Energiewirtschaftstagung TU Wien 2015

Pilot Project Biogas-powered Micro-gas-turbine

Effects of Combusting Plastics in WTE Plants on Dioxin Formation and Ash Quality

INTERREG IIIa Project R&D - Ready for Research and Development Project results and ongoing activities

Bosch Rexroth - The Drive & Control Company

GIS-based Mapping Tool for Urban Energy Demand

Dynamic Hybrid Simulation

2011 European HyperWorks Technology Conference

Mastertitelformat bearbeiten

Technische Universität Kaiserslautern Lehrstuhl für Virtuelle Produktentwicklung

Sustainability Balanced Scorecard as a Framework for Eco-Efficiency Analysis

Institute of Engineering Metals. Mining the Technosphere Potentials and Challenges, Drivers and Barriers

WASA Paul H. Brunner Technische Universität Wien Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft

Aluminium-air batteries: new materials and perspectives

Innovative Energy Systems

-weishaupt- November 12, Wolf Point Ballroom 350 W. Mart Center Drive, Chicago, IL. Christoph Petri. Technical Sales, Chicago-Area

Energieeffizienz und Erneuerbare Energien Programme der EZ -- ein Zwischenstand

Substitution von Rohstoffen durch Abfälle

The German professional Education System for the Timber Industry. The University of Applied Sciences between vocational School and University

OpEx at Nycomed Austria Linz

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors

Analyse der Energieausweise des Bundeslandes Salzburg der Jahre

Challenges for the future between extern and intern evaluation

Lessons learned from co-operation The project Virtual interaction with Web 2.0 in companies


Possible Contributions to Subtask B Quality Procedure

UDR System. Efficient Fermentation Technology with Fixed Bed Digester

prorm Budget Planning promx GmbH Nordring Nuremberg

Darstellung und Anwendung der Assessmentergebnisse

Counterflow Heat Recovery Fan

Design-based research in music education

Company profile Environmental Technology Network Danube Region (ETNDR) German version below. Dr.Eng. Martin Wett. Hörvelsinger Weg 23.

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

HIR Method & Tools for Fit Gap analysis

Mitglied der Leibniz-Gemeinschaft

STAHL Setting the course for tomorrow. Energy efficiency in steelmaking The blast furnace Fit for the future?

TMF projects on IT infrastructure for clinical research

ANLAGENANALYSE PLANT ANALYSIS

Content Workshop. Material-Efficiency in Swiss Industry based on systematic Ecodesign

Gas Sampling, Measurement and Analysis on the bioliq -EFG

Energieeffizienz und der Marktwert von Immobilien

Prof. Dr. Bryan T. Adey

JPlus Platform Independent Learning with Environmental Information in School

Leading the innovation in the traditional field of Constructions. C. Chiti, Technical Director Knauf Italy

Gebäude als urbane Mine Fallstudie Wien

Tools in a Clinical Information System Supporting Clinical Trials at a Swiss University Hospital (Clin Trials, published online 12 August 2014)

SAP Simple Service Request. Add-on for SAP Solution Manager by SAP Consulting SAP Deutschland SE & Co. KG

Connecting the dots on Germany s Energiewende and its impact on European energy policy

Hydrothermal carbonisation - efficient use of wet biomass. Thomas M. Kläusli Chief Marketing Officer AVA-CO2 Switzerland Ltd.

City West between Modern Age and History: How Does the Balancing Act. between Traditional Retail Structures and International

Housing Policies for a Growing City

Workflows, Ansprüche und Grenzen der GNSS- Datenerfassung im Feld

Wirtschaftlichkeit. VeloCity Vienna. Speakers: Bernhard Fink, MVV, Markus Schildhauer, ADFC. ADFC-MVV folding bike

Financing of public-sector cultural offers

Wohnen in Wien. Dipl.-Ing. Omar Al-Rawi Abgeordneter zum Wiener Gemeinderat und Landtag

Timber is a renovable and sustainable material for Space- and Shellstructures Brasilia September 2014 IASS-Conference

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

UNESCO Model Region for Sustainable Development. Eine Initiative der Länder Niederösterreich und Wien

Customer-specific software for autonomous driving and driver assistance (ADAS)

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

European Qualification Strategies in Information and Communications Technology (ICT)

ife aufbereitungstechnik gmbh

Energy analyses - DWA Neighbourhood Programme Dr. Stefanie Budewig. DWA German Association for Water, Wastewater and Waste

Quality Management is Ongoing Social Innovation Hans-Werner Franz

Online Learning in Management

Welcome. UBA Horst Pohle Welcome and Introduction to Act Clean

Welcome. Informatik : Games Engineering. Overview. Fakultät für Informatik Technische Universität München. Gudrun Klinker, Andreas Dippon.

Transkript:

2 nd Freiberg Resource Technology Symposium, April 17 2013 Urban Mining Why and How? Helmut Vienna University of Technology Institute for Water Quality, Resource and Waste Management 1

Focus of Urban Mining Urban Mining 2 Primary production Semi products 3 Production of goods Products Use AR 4 Waste 5 Waste management Ores New scrap Old scrap II Old scrap I Slag Tailings Landfilled wastes 1 Landfills 6 Lithosphere & dumps PR AR Landfill Mining PR Primary resources AR Anthropogenic resources (secondary resources) 2

Primary and secondary deposits: example of copper Ore 2 Copper production 11.000 Cathode copper 3 4 Waste Production Use 11.000 11.500 3.800 of goods 300.000 +7.700 New scrap 540 Slag Tailings Products Old scrap II 680 150 1.200 1.400 Old scrap I Landfilled wastes 1.700 5 Waste management 580.000-11.000 Landfill & dumps 85.000 +3.100 1 6 Lithosphere Flows: 1.000 t/a Stocks: 1.000 t System boundary World 1994 Source: Graedel et al. 2002 (adapted) 3

Copper budget of Austria Systemgrenze "Kupferhaushalt Österreich" importierte Abfälle, Aschen, Rückstände 1 exportierte Rohprodukte Flüsse [kg Cu/(E.a)] Lager [kg Cu/E] importierte Rohprodukte Produktionsabfälle RP1 0,13 Recyclingmaterial 7,8 10 exportierte Produkte 13 19 importierte Rohstoffe 4,9 Rohprodukte 2,3 Produktionsabfälle GP 3,0 Konsumabfälle 5,1 Rohstoffproduktion Güterproduktion Abfallwirtschaft exportierte Abfälle 0,6 Erze 0 Produkte 5,5 Produktionsabfälle RP2 Reststoffe 0 1 Lithosphäre + Bergbau Konsum Halden* + Deponien importierte Produkte 5,3 L E 160-270 +6 60 +1 exportierte Erze 0 * Lager Halden nicht bestimmt Source: Döberl et al. 2005 4

Urban stocks: size and relevance ca. 400 t/cap Source: Wittmer, 2007 Separate collection of Plastic packaging: 18 kg/cap.yr Waste metal: 15 kg/cap.yr Waste wood: 23 kg/cap.yr Source: BAWP 2011 Comparison between urban stocks and reserves Copper: 300 Mio. t 580 Mio. t Iron: 14 800 Mio. t 77000 Mio. t Zinc: 205 Mio. t 200 Mio. t Source:, 2004; Rauch 2009, USGS 2011 5

Urban Mining reduces import dependency 6

Urban Mining reduces shortage in landfill space 20 Mass [t/cap.yr] 15 10 5 Input of solid materials into use phase Mean residence time Output of solid materials from use phase (wastes) 0 1980 2000 2020 2040 2060 2080 Year 7

The Austria raw materials cadaster Austria raw materials cadaster Geogenic raw materials Anthropogenic raw materials 8

Urban mining: tasks to tackle Exploration of anthropogenic stocks Urbane stock (mass) New construction Reconstruction Stock exploration 1940 1960 1980 2000 2020 2040 2060 2080 2100 9

Stock exploration1 5.862 6.197 905 154 200 34 199 16 65 37 43 16 28 67 7 Asphaltbelagschichten im Gebäude Beschüttung Betonschichten Dachhaut (Schwarzdeckerarbeiten) Dackdeckung Estriche Fangkopfmauerwerk Fenster und Türen Fliesen (Boden) Mauersteine (Schlackenbeton) Natursteinmauer Putze und Putzträger Wandbeläge in Innenräumen Mauerwerk Ziegel Mauerwerk Stahlbeton 7.000 6.000 5.000 4.000 3.000 2.000 1.000 - Source: Clement et al. 2010 10 mg Pb/kg

Stock exploration2 141 107 34 29 16 19 17 12 0 - - 1 1 6 - Asphaltbelagschichten im Gebäude Beschüttung Betonschichten Dachhaut (Schwarzdeckerarbeiten) Dackdeckung Estriche Fangkopfmauerwerk Fenster und Türen Fliesen (Boden) Mauersteine (Schlackenbeton) Natursteinmauer Putze und Putzträger Wandbeläge in Innenräumen Mauerwerk Ziegel Mauerwerk Stahlbeton 160 140 120 100 80 60 40 20 - Source: Clement et al. 2010 11 kg Pb

Stock exporation3: current research @ TU Vienna Three approaches, applied to single demolition objects: 1. Analysis of existing information/data mining (technical drawings, data from remote sensing, building standards,.) 2. Inspection of the object (inventory, taking samples, ) 3. Indirect analysis through selective deconstruction and sampling of recycling facility Evaluation and merging of approaches Finding out how far results can be used for the development of a resource cadaster (in Vienna) 1 2 3 12

First results 100.000 Material composition of a dwelling building complex (Reinforced concrete structure, 4 buildings with 2-9 floors, enclosed space: 57 000 m 3 ) 22000 PVC 10.000 flooring mass [t] 1.000 100 800 410 210 110 90 35 30 cable insulation linings, panelling 10 14 13 7 3 1 1 1 Source: Kleemann et al. 2013 13

New construction: material building pass Project EKON: 1. General procedure for the creation of material building pass 80.000 70.000 60.000 Masse [kg] Massiv Holzmassiv 50.000 40.000 30.000 20.000 10.000 5.000 4.000 3.000 2.000 1.000 2. In practice not feasible: Solution might be Building Information Modeling 0 Kunststoffe Dämmstoffe Stahl Gipskarton Estrich, Putz, Spachtelung Glas keramische Werkstoffe Holz Kupfer Aluminium Quelle: Autodesk 14

Final goal: resource cadaster Potential availability of secondary material (scrap) 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 15

Material life cycle for copper Semi-product Waste Production of copper Production of goods Use Waste Mgmt. Ore Product Recycling product 16

Statistical Entropy Analysis 1,0 Earth's crust 0.8 Relative statistical entropy 0.6 0.4 0.2 Production of copper Production of goods Use Circular economy Waste Mgmt. 0,0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Pure copper Life cycle of copper Source: & Graedel, 2002 17

Technologically highly developed Waste Mgmt. Production und construction: months Fotos: A. Weinert Disposal: days weeks? 18

Entropy reduction: residual waste and Cu1 Effort (e.g. costs, energy) Incineration Landfill 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 19

Potential of incineration bottom-ash Mitterbauer et al. 2009 Source: Skutan & 2007 20

Entropy reduction: residual waste and Cu2 Effort (e.g. costs, energy) Landfill Incineration Incineration + mech. treatment of slag. 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 21

Recovery of copper from residual waste <0.1 System boundary Incineration + melting of bottom ash Off-gas I Residual waste 100 Incineration Off-gas II 1.9 93 Melting of bottom ash Silicat melt 8.9 82 Waste water Fly ash Filter cake <0.1 8.9 <0.1 Bottom ash Metal melt Copper flows in [%] Source: Zeltner and Lichtensteiger, 2002 22

Entropy reduction: residual waste and Cu3 Effort (e.g. costs, energy) Landfill Incineration Inc.+ melting Incineration + mech. treatment of slag. 0 20 40 60 80 100 Entropy reduction through treatment [%] Source:, 2002 23

The potential of the Waste Management sector 1 Earth s crust 0.8 Relative statistical entropy 0.6 0.4 0.2 Production of copper Production of goods Consumption Disposal Landfill Status quo Incineration Incineration + mech. treatment Circular economy Incineration + therm. treatment 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Pure copper Life cycle of copper Source:, 2003 24

Example for Design for Recycling: Frontage Aufbau Leichtbaufassade innen Dicke [m] 90+% recyclable Gipskartonplatten (GKP) 2 Lagen 0,025 Mineralwolle 0,040 Alu C Profile für GKP zw. Mineralwolle GKP 2 Lagen 0,025 Da mpfs perre 0,000 Mineralwolle 0,125 Alu C Profile für GKP zw. Mineralwolle Stahlunterkonstruktion für Fassadenplatten zw. Mineralwolle Zementbauplatte 0,025 Hinterlüftung 0,030 Fassadenplatten: 1. Aluminumverbundplatten 0,015 2. Zementfaserplatten außen Wandstärke 0,285 25

Simple energetic evaluation Primary energy demand [TJ/FU] 14 12 10 LWCF 0% LWCF 98% LWCF opt. 98% Concrete 0% 8 6 4 2 0 1. Construction 2 3 4 Cycles 26

Conclusions Urban stocks are significant. Characterization of urban stocks is required. Fully established Circular Economy requires sophisticated recycling. Thank you for your attention! 27