Hydroinformatik II: Grundlagen Numerik V5

Ähnliche Dokumente
Finite Difference Method (FDM)

Introduction FEM, 1D-Example

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Introduction FEM, 1D-Example

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Hydroinformatik II: Gerinnehydraulik

Übungsblatt 6. Analysis 1, HS14

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

A Classification of Partial Boolean Clones

FEM Isoparametric Concept

Tube Analyzer LogViewer 2.3

a) Name and draw three typical input signals used in control technique.

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Unit 4. The Extension Principle. Fuzzy Logic I 123

Verfahren für große dünnbesetzte Matrixgleichungen

Copyright by Hildegard Heilmann IAG Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

FEM Isoparametric Concept

Ewald s Sphere/Problem 3.7

Einführung in die Finite Element Methode Projekt 2

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Allgemeine Mechanik Musterlösung 11.

Interpolation Functions for the Finite Elements

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Unit 6. Fuzzy Inference. Fuzzy Logic I 159

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs

Statistics, Data Analysis, and Simulation SS 2015

Analysis III Serie 13 Musterlösung

6. Übungsblatt Aufgaben mit Lösungen

Geometrie und Bedeutung: Kap 5

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

Word-CRM-Upload-Button. User manual

Aufgabe 1 (12 Punkte)

Wie man heute die Liebe fürs Leben findet

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Mitglied der Leibniz-Gemeinschaft

Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen

2. Basic concepts of computations in engineering sciences

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

PELTIER-HOCHLEISTUNGSMODULE

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer

Lehrstuhl für Computer Graphik und Visualisierung Institut für Informatik Technische Universität München 2

Einführung in die Computerlinguistik

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung. . p.1/21. home/lehre/vl-mhs-1-e/cover_sheet.

Automatentheorie und formale Sprachen reguläre Ausdrücke

Unterspezifikation in der Semantik Hole Semantics

Exercise (Part V) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

Dienstleistungsmanagement Übung 5

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points)

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

Integer Convex Minimization in Low Dimensions

Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition)

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85

Wakefield computation of PETRAIII taper section Laura Lünzer

Logik für Informatiker Logic for computer scientists

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

Willkommen zur Vorlesung Komplexitätstheorie

HIR Method & Tools for Fit Gap analysis

Die einfachste Diät der Welt: Das Plus-Minus- Prinzip (GU Reihe Einzeltitel)

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fundamentals of Electrical Engineering 1 Grundlagen der Elektrotechnik 1

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.:

Informatik für Mathematiker und Physiker Woche 6. David Sommer

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

aus Doktorarbeiten Anna Lena Birkmeyer Oktober 2016

Funktion der Mindestreserve im Bezug auf die Schlüsselzinssätze der EZB (German Edition)

Franke & Bornberg award AachenMünchener private annuity insurance schemes top grades

1. General information Login Home Current applications... 3

Level 2 German, 2015

Data Structures and Algorithm Design

Wissenschaftliches Denken und Arbeiten

Level 1 German, 2014

DAS ERSTE MAL UND IMMER WIEDER. ERWEITERTE SONDERAUSGABE BY LISA MOOS

prorm Budget Planning promx GmbH Nordring Nuremberg

Attention: Give your answers to tasks 1 and 2 directly below the questions in the exam question sheet.

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

eurex rundschreiben 094/10

Exercise (Part I) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

DYNAMISCHE GEOMETRIE

Übungen zur Analysis 2

Algebra. Übungsblatt 2 (Lösungen)

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

Wie wir in Mathematik für alle die Welt der Mathematik sehen Folie 1 Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

BATCH-WISE CHEMICAL PLANTS

Supplementary material for Who never tells a lie? The following material is provided below, in the following order:

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

DIBELS TM. German Translations of Administration Directions

Research Collection. Digital estimation of continuous-time signals using factor graphs. Doctoral Thesis. ETH Library. Author(s): Bolliger, Lukas

Spagate in der Spirale und ihre Anerkennung als Schwierigkeitsteile Difficulty recognition of splits in spiral

Newest Generation of the BS2 Corrosion/Warning and Measurement System

The Intelligent-Driver Model with Stochasticity:

!! Um!in!ADITION!ein!HTML51Werbemittel!anzulegen,!erstellen!Sie!zunächst!ein!neues! Werbemittel!des!Typs!RichMedia.!!!!!!

Hazards and measures against hazards by implementation of safe pneumatic circuits

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Transkript:

Hydroinformatik II: Grundlagen Numerik V5 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Leipzig, 13. Mai 2016 1/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Vorlesungsplan Hydroinformatik II SoSe 2016 # Datum Thema 01 08.04.2016 Einführung 02 15.04.2016 Grundlagen: Kontinuumsmechanik 03 22.04.2016 Grundlagen: Hydromechanik 04 29.04.2016 Grundlagen: Partielle Differentialgleichungen / TEX 05 06.05.2016 HW: Qt Installation (2016) 06 13.05.2016 Qt Übung: Funktionsrechner; Grundlagen Numerik 07 20.05.2016 Pfingsten 08 27.05.2016 Numerik: (exp) Finite Differenzen Methode 09 03.06.2016 HW / Vertretung: (DR USA) 10 10.06.2016 Numerik: (imp) Finite Differenzen Methode 11 17.06.2016 Gerinnehydraulik: Theorie - Grundlagen 12 24.06.2016 Gerinnehydraulik: Programmierung, Übung 1 13 01.07.2016 Gerinnehydraulik: Programmierung, Übung 2 14 08.07.2016 Gerinnehydraulik: Programmierung, Übung 3 15 15.07.2016 Kurs-Zusammenfassung, Ausblick und Beleg 2/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Konzept 3/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Inhalte Konzept Näherungsverfahren Lösungsverfahren Definitionen Fehler Kriterien Lösen von Gleichungssystemen 4/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Näherungsverfahren 5/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösungsverfahren 6/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Definitionen 7/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Konvergenz Definition: A solution of the algebraic equations which approximate a given PDE is said to be convergent if the approximate solution approaches the exact solution of the PDE for each value of the independent variable as the grid spacing tends to zero. Thus we require lim t, x 0 un j u(t n, x j ) = 0 (1) Or in other words, the approximate solution converges to the exact one as the grid sizes becomes infinitely small. The difference between exact and approximate solution is the solution error, denoted by ε n j = u n j u(t n, x j ) (2) 8/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Konsistenz Definition: The system of algebraic equations (SAE) generated by the discretization process is said to be consistent with the original partial differential equation (PDE) if, in the limit that the grid spacing tends to zero, the SAE is equivalent to the PDE at each grid point. Thus we require lim L(u j n ) L(u[t n, x j ]) = 0 (3) t, x 0 9/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Stabilität u t + v u x α 2 u x 2 = 0 (4) Courant-Zahl Cr = v t x 1 (5) Peclet-Zahl Pe = v x α 2 (6) Neumann-Zahl Ne = α t x 2 1 (7) 2 0 < Cr 2 < Ne < 1 (8) 10/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Gleichungssysteme A(x)x = b(x) (9) 11/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Gleichungslöser The following list reveals an overview on existing methods for solving linear algebraic equation systems. Direct methods Gaussian elimination Block elimination (to reduce memory requirements for large problems) Cholesky decomposition Frontal solver Iterative methods Linear steady methods (Jacobian, Gauss-Seidel, Richardson and block iteration methods) Gradient methods (CG) (also denoted as Krylov subspace methods) 12/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen linearer Gleichungen Application of direct methods to determine the solution of equation x = A 1 b (10) requires an efficient techniques to invert the system matrix. As a first example we consider the Gaussian elimination technique. If matrix A is not singular (i.e. det A 0), can be composed in following way. P A = L U (11) with a permutation matrix P and the lower L as well as the upper matrices U in triangle forms. 1 0 u 11 u 1n L =....., U =..... (12) l n1 1 0 u nn 13/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen linearer Gleichungen - Direkte Verfahren If P = I the matrix A has a so-called LU-decomposition: A = L U. The task reduces then to calculate the lower and upper matrices and invert them. Once L and U are determined, the inversion of A is trivial due to the triangle structure of L and U. Assuming that beside non-singularity and existing LU-decomposition, A is symmetrical additionally, we have U = D L T with D = diag(d i ). Now we can conduct the following transformations. A = L U = L D L T = L }{{ D } D L T L }{{} L T (13) The splitting of D requires that A is positive definite thus that d i > 0. The expression T A = L L (14) is denoted as Cholesky decomposition. Therefore, the lower triangle matrices of both the Cholesky and the Gaussian method are connected via L = L T D (15) 14/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen linearer Gleichungen - Direkte Verfahren Gauss-Verfahren (Eliminierungsverfahren) 15/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen linearer Gleichungen - Iterative Verfahren High resolution FEM leads to large equation systems with sparse system matrices. For this type of problems iterative equation solver are much more efficient than direct solvers. Concerning the application of iterative solver we have to distinguish between symmetrical and non-symmetrical system matrices with different solution methods. The efficiency of iterative algorithms, i.e. the reduction of iteration numbers, can be improved by the use of pre-conditioning techniques). Symmetric Matrices CG Lanczos Gauss-Seidel, Jacobian, Richards SOR and block-iteration Non-symmetric Matrices BiCG CGStab GMRES CGNR The last two rows of solver for symmetric problems belong to the linear steady iteration methods. The algorithms for solving non-symmetrical systems are also denoted as Krylov subspace methods. 16/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen linearer Gleichungen - Iterative Verfahren Gauss-Seidel Verfahren (Hydrosystemanalyse) 17/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen In this section we present a description of selected iterative methods that are commonly applied to solve non-linear problems. Picard method (fixpoint iteration) Newton methods Cord slope method Dynamic relaxation method All methods call for an initial guess of the solution to start but each algorithm uses a different scheme to produce a new (and hopefully closer) estimate to the exact solution. The general idea is to construct a sequence of linear sub-problems which can be solved with ordinary linear solver 18/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen The general algorithm of the Picard method can be described as follows. We consider a non-linear equation written in the form A(x) x b(x) = 0 (16) We start the iteration by assuming an initial guess x 0 and we use this to evaluate the system matrix A(x 0 ) as well as the right-hand-side vector b(x 0 ). Thus this equation becomes linear and it can be solved for the next set of x values. A(x k 1 ) x k b(x k 1 ) = 0 x k = A 1 (x k 1 ) b(x k 1 ) (17) 19/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen Repeating this procedure we obtain a sequence of successive solutions for x k. During each iteration loop the system matrix and the right-hand-side vector must be updated with the previous solution. The iteration is performed until satisfactory convergence is achieved. A typical criterion is e.g. ε x k x k 1 x k (18) where ε is a user-defined tolerance criterion. For the simple case of a non-linear equation x = b(x) (i.e. A = I), the iteration procedure is graphically illustrated in Fig. 1. To achieve convergence of the scheme it has to be guaranteed that the iteration error 20/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen e k = x k x < C x k 1 x p = e k 1 (19) or, alternatively, the distance between successive solutions will reduce x k+1 x k < x k x k 1 p (20) where p denotes the convergence order of the iteration scheme. It can be shown that the iteration error of the Picard method decreases linearly with the error at the previous iteration step. Therefore, the Picard method is a first-order convergence scheme. 21/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen y y=x y = b(x) x 2 x 4 x 6 x 5 x 3 x 1 x Abbildung: Graphical illustration of the Picard iteration method 22/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen - Newton-Verfahren In order to improve the convergence order of non-linear iteration methods, i.e. derive higher-order schemes, the Newton-Raphson method can be employed. To describe this approach, we consider once again the non-linear equation R(x) = A(x) x b(x) = 0 (21) Assuming that the residuum R(x) is a continuous function, we can develop a Taylor series expansion about any known approximate solution x k. [ ] R R k+1 = R k + x k+1 + 0( x 2 k+1 x ) (22) k 23/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen - Newton-Verfahren Second- and higher-order terms are truncated in the following. The term R/ x represents tangential slopes of R with respect to the solution vector and it is denoted as the Jacobian matrix J. As a first approximation we can assume R k+1 = 0. Then the solution increment can be immediately calculated from the remaining terms in equation (22). x k+1 = J 1 k R k where we have to cope with the inverse of the Jacobian. The iterative approximation of the solution vector can be computed now from the increment. (23) x k+1 = x k + x k+1 (24) 24/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen - Newton-Verfahren Abbildung: Graphical illustration of the Newton-Raphson iteration method 25/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen - Newton-Verfahren Once an initial guess is provided, successive solutions of x k+1 can be determined using equations (23) and (24) (Fig. 2). The Jacobian has to re-evaluated and inversed at every iteration step, which is a very time-consuming procedure in fact. At the expense of slower convergence, the initial Jacobian J 0 may be kept and used in the subsequent iterations. Alternatively, the Jacobian can be updated in certain iteration intervals. This procedure is denoted as modified or initial slope Newton method (Fig. 3). The convergence velocity of the Newton-Raphson method is second-order. It is characterized by the expression. x k+1 x C x k x 2 (25) 26/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016

Lösen nichtlinearer Gleichungen - Newton-Verfahren Abbildung: Graphical illustration of the modified Newton-Raphson iteration method 27/27 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2016