Ein Betriebspunkt kommt selten allein. effiziente Kennfeldanalyse mit optislang am Beispiel eines Turboverdichters

Ähnliche Dokumente
Probabilistic LCF - investigation of a steam turbine rotor under transient thermal loads

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

HIR Method & Tools for Fit Gap analysis

Software development with continuous integration

Internationale Energiewirtschaftstagung TU Wien 2015

Dynamic Hybrid Simulation

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Possible Contributions to Subtask B Quality Procedure

Integration of a CO 2 separation process in a coal fired power plant

Model-based Development of Hybrid-specific ECU Software for a Hybrid Vehicle with Compressed- Natural-Gas Engine

Integrated result data management in the development process of vehicle systems based on the ASAM ODS standard

Customer-specific software for autonomous driving and driver assistance (ADAS)

JPlus Platform Independent Learning with Environmental Information in School

Workflows, Ansprüche und Grenzen der GNSS- Datenerfassung im Feld

GIS-based Mapping Tool for Urban Energy Demand

A central repository for gridded data in the MeteoSwiss Data Warehouse

Simulation of Longitudinal Beam Dynamics

ISO Reference Model

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

European Qualification Strategies in Information and Communications Technology (ICT)

Darstellung und Anwendung der Assessmentergebnisse

Quality Management is Ongoing Social Innovation Hans-Werner Franz

Prediction of Binary Fick Diffusion Coefficients using COSMO-RS

Pilot Project Biogas-powered Micro-gas-turbine

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

SupplyOn Business Lunch einvoicing

Ahamed Bilal Asaf Ali (Autor) Design Rules for Permanent Magnet Synchronous Machine with Tooth Coil Winding Arrangement

A dissertation submitted to ETH ZURICH. for the degree of Doctor of Sciences. presented by ALEXANDER SCHILLING Dipl. Masch.-Ing.

FEM Isoparametric Concept

Hybrid model approach for designing fish ways - example fish lift system at Baldeney/Ruhr and fish way at Geesthacht /Elbe

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Eingebettete Taktübertragung auf Speicherbussen

Junction of a Blended Wing Body Aircraft

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors

Algorithms for graph visualization

POST MARKET CLINICAL FOLLOW UP

Challenges and solutions for field device integration in design and maintenance tools

Efficient Design Space Exploration for Embedded Systems

From HiL to Test Vehicle:

The Future Internet in Germany and Europe

LiLi. physik multimedial. Links to e-learning content for physics, a database of distributed sources

KNIME HPC INTEGRATION VIA UNICORE

CALCULATING KPI QUANTITY-INDEPENDENT ROUTE TIME

ISO Reference Model

Mitglied der Leibniz-Gemeinschaft

on Software Development Design

Introduction FEM, 1D-Example

Simulation of a Battery Electric Vehicle

Old People and Culture of Care.

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

GAUSS towards a common certification process for GNSS applications using the European Satellite System Galileo

Primärspannungsmessungen mit der. CSIRO Triaxialzelle

EMC Simulation on the Way to Top

GridMate The Grid Matlab Extension

Challenges for the future between extern and intern evaluation

Titelmasterformat Object Generator durch Klicken bearbeiten

Potentials for Economic Improvement of Die Casting Cells

Modeling of Flow Processes in Porous Media for Predicting the Water Content Distribution in Earth Dams using the Simulation Program PCSiWaPro

Introducing PAThWay. Structured and methodical performance engineering. Isaías A. Comprés Ureña Ventsislav Petkov Michael Firbach Michael Gerndt

TMF projects on IT infrastructure for clinical research

Product Lifecycle Manager

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis

Level of service estimation at traffic signals based on innovative traffic data services and collection techniques

Webbasierte Exploration von großen 3D-Stadtmodellen mit dem 3DCityDB Webclient

Abschlussklausur des Kurses Portfoliomanagement

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

Corporate Digital Learning, How to Get It Right. Learning Café

MENTOR GmbH LED Lighting & light guides

MULTI PHYSICS SIMULATION IN MANUFACTURING

Wakefield computation of PETRAIII taper section Laura Lünzer

Symbio system requirements. Version 5.1

Applying Pléiades in the ASAP project HighSens

Modellbasierte Regelung. des Ladedrucks und der Abgasrückführung. beim aufgeladenen PKW-Common-Rail-Dieselmotor

Hybrid Propulsion System and Aircraft-level Performance Simulation

EXPERT SURVEY OF THE NEWS MEDIA

From a Qualification Project to the Foundation of a Logistics Network Thuringia. Logistik Netzwerk Thüringen e.v.

IPEK. Institut für Produktentwicklung. Institut für Produktentwicklung Universität Karlsruhe (TH) Prof. A. Albers

Climate change and availability of water resources for Lima

Introduction to the diploma and master seminar in FSS Prof. Dr. Armin Heinzl. Sven Scheibmayr

DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG. Michael Palotas 7. April GRIDFUSION

Session D4: Hybrid Model Approach for Designing Fish Ways - Example Fish Lift System at Baldeney/Ruhr and Fish Way at Geesthacht /Elbe

WP2. Communication and Dissemination. Wirtschafts- und Wissenschaftsförderung im Freistaat Thüringen

How to develop and improve the functioning of the audit committee The Auditor s View

Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas. Mr. Niemczik, Mr. Koppatz (SuDiLe GbR)

Business-centric Storage How appliances make complete backup solutions simple to build and to sell

Prozesse als strategischer Treiber einer SOA - Ein Bericht aus der Praxis

Coupling GIS and hydraulics using the example of the Dornbirnerach

The Solar Revolution New Ways for Climate Protection with Solar Electricity

The scientific approach of scale-up of a fluid bed

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids

The Future of Software Testing

Distributed testing. Demo Video

IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence?

ELBA2 ILIAS TOOLS AS SINGLE APPLICATIONS

PhysNet and its Mirrors

p^db=`oj===pìééçêíáåñçêã~íáçå=

Determining Vibro-Acoustic Effects in Multidomain Systems using a Custom Simscape Gear Library

eurex rundschreiben 094/10

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Transkript:

Ein Betriebspunkt kommt selten allein effiziente Kennfeldanalyse mit optislang am Beispiel eines Turboverdichters Fachkonferenz zur Numerischen Simulation Winterthur 2016

Content 1 Introduction of ANSYS optislang 2 Aim of the project 3 Method of analyzing performance maps 4 Results of sensitivity analysis 5 Conclusion and outlook 2

Dynardo Founded: 2001 More than 60 employees, offices at Weimar and Vienna Leading technology companies Daimler, Bosch, E.ON, Nokia, Siemens, BMW are supported Software Development Dynardo is engineering specialist for CAE-based sensitivity analysis, optimization, robustness evaluation and robust design optimization CAE-Consulting Mechanical engineering Civil engineering & Geomechanics Automotive industry Consumer goods industry Power generation 3

optislang is a general purpose tool for variation analysis using CAE-based design sets (and/or data sets) for the purpose of sensitivity analysis design/data exploration calibration of virtual models to tests optimization of product performance quantification of product robustness and product reliability Robust Design Optimization (RDO) and Design for Six Sigma (DFSS) serves arbitrary CAX tools with support of process integration process automation workflow generation 4

SPDM Input 1 Input 2 Workflow-Management with Process Integration and for Automatization Output 1 Output 2 Input n Excel Add-In ANSYS optislang other Solver Output m Postprocessing 5

Design Understanding Investigate parameter sensitivities, reduce complexity and generate best possible meta models Design Improvement Optimize design performance CAE-Data Robust Design Measurement Data Model Calibration Identify important model parameters for the best fit between simulation and measurement Design Quality Ensure design robustness and reliability 6

Design Understanding Investigate parameter sensitivities, reduce complexity and generate best possible meta models Design Improvement Optimize design performance CAE-Data Robust Design Measurement Data Model Calibration Identify important model parameters for the best fit between simulation and measurement Design Quality Ensure design robustness and reliability 7

Model Calibration Model update to increase your simulation quality! use non scalar values inside ANSYS Workbench identify where parameters have influence within the curve match experimental data with simulation 8

Design Understanding Investigate parameter sensitivities, reduce complexity and generate best possible meta models Design Improvement Optimize design performance CAE-Data Robust Design Measurement Data Model Calibration Identify important model parameters for the best fit between simulation and measurement Design Quality Ensure design robustness and reliability 9

Sensitivity Analysis Understand the most important input variables! Automatic workflow with a minimum of solver runs to: identify the important parameters for each response understand and reduce the optimization task check solver and extraction noise 10

Design Understanding Investigate parameter sensitivities, reduce complexity and generate best possible meta models Design Improvement Optimize design performance CAE-Data Robust Design Measurement Data Model Calibration Identify important model parameters for the best fit between simulation and measurement Design Quality Ensure design robustness and reliability 11

Optimization Optimize your product design! Optimization using MOP Start User friendly procedure with algorithm to: work with the reduced subset of only important parameters pre-optimization on meta model (no solver run) decision tree for optimization algorithms 12

Design Understanding Investigate parameter sensitivities, reduce complexity and generate best possible meta models Design Improvement Optimize design performance CAE-Data Robust Design Measurement Data Model Calibration Identify important model parameters for the best fit between simulation and measurement Design Quality Ensure design robustness and reliability 13

Robustness Evaluation Ensure your product quality! Output parameter variation Powerful procedure to check design quality: Latin Hypercube Sampling representing scattering variables optimally check variation interval limits and critical responses Identify the most important scattering variables and check the solver noise 14

Content 1 Introduction of ANSYS optislang 2 Aim of the project 3 Method of analyzing performance maps 4 Results of sensitivity analysis 5 Conclusion and outlook 15

2 Aim of project two main scientific issues are addressed: Implementation of an automated and standardized but also adaptive (in terms of the system s response) process for numerical analysis considering all relevant operating points (performance maps) Investigation of usage of one-dimensional liquid flow theory for preevaluating design variants in a sensitivity study in order to reduce the numerical effort 16

2 Aim of project Introduction Structure and function of an exhaust gas turbocharger 17

2 Aim of project Introduction Performance indicators for characterizing turbochargers: Pressure ratio Isentropic efficiency polytropic efficiency 18 [4]

2 Aim of project Introduction Sensitivity analysis scans the design space and evaluates the variance of the inputs- (e.g. Geometry) output parameters (e.g. pressure ratio) 1) Design of Experiments within the design space of the sensitivity analysis One Design represents one performance map 19

2 Aim of project Introduction Sensitivity analysis scans the design space and evaluates the variance of the inputs- (e.g. Geometry) output parameters (e.g. pressure ratio) 2) Usage of regression methods (global and local approach) 3) Evaluate sensitivity of input parameters One operating point of one design 20

Content 1 Introduction of ANSYS optislang 2 Aim of the project 3 Method of analyzing performance maps 4 Results of sensitivity analysis 5 Conclusion and outlook 21

3 Method of analyzing performance maps Overview Design 19, 63, 95 and K: D19: output parameters E lower than K, calculated with 1D flow theory D95: sufficient output parameter E, potentially interesting designs, 3D CFD analysis of performance map D63: best design within design space 22

3 Method of analyzing performance maps Overview Workflow: Driven by optislang Geometry and the 1D flow computation (CFturbo) Meshing (TurboGrid) 3D CFD of performance map (CFX) 23

3 Method of analyzing performance maps Geometry (CFturbo) geometry parameters are determined to generate a 3D geometry (left) 1D flow computation of output parameters E (right) 24

3 Method of analyzing performance maps Meshing (TurboGrid ) 3D Geometry (left) Meshing of periodic segment with TurboGrid (right) 25

3 Method of analyzing performance maps 3D CFD (CFX) Calculation of Choke Points through laws of similarity Afterwards iterative reduction of the mass flow until highest poly. efficiency 26 [7]

3 Method of analyzing performance maps results evaluation Calculation of correlations response surfaces (MOP) and the sensitivity of input parameters E.g. the objective function (ZF): 27

Content 1 Introduction of ANSYS optislang 2 Aim of the project 3 Method of analyzing performance maps 4 Results of sensitivity analysis 5 Conclusion and outlook 28

4 Results of sensitivity analysis Global analysis global sensitivity study of performance maps 89% successful design points 1% no geometry generation 9% failed meshing 1% problems with ANSYS CFX Solver Generation of response surfaces Approximation accuracy is outweighing good Dissatisfying quality for polytropic efficiency Good qualitative agreement of 1D and 3D computation results Metamodell 86 93 64 92 84 50 88 29

4 Results of sensitivity analysis Local analysis Local analysis (185 Designs), e.g. Design 19 Automated export of meridian view (left), performance maps of pressure ratio and polytropic efficiency (right) 30

4 Results of sensitivity analysis Local analysis Reference design (42 OP) n=150.000 1/min n=140.000 1/min n=130.000 1/min n=120.000 1/min n=110.000 1/min n=100.000 1/min n=90.000 1/min 31

4 Results of sensitivity analysis Local analysis Design 19 (79 OP) n=150.000 1/min n=140.000 1/min n=130.000 1/min n=120.000 1/min n=110.000 1/min n=100.000 1/min n=90.000 1/min 32

4 Results of sensitivity analysis Local analysis Comparison reference design vs. design 19 33

4 Results of sensitivity analysis 1D and 3D flow computation Metamodell Measurement confidence interval 1D CFturbo prediction Metamodell 3D CFD What's the accuracy of every Modell? 34 o

4 Results of sensitivity analysis 1D and 3D flow computation 35

Content 1 Introduction of ANSYS optislang 2 Aim of the project 3 Method of analyzing performance maps 4 Results of sensitivity analysis 5 Conclusion and outlook 36

5 Conclusion and outlook Methodology of adaptive analysis of perfomance maps: In Sensitivity successful applied for 90% of the designs Important Parameters for 1D and 3D analysis agree well Not universal applicable for all turbomachines improves method for performance maps in 3D-CFD 37

5 Conclusion and outlook 38

5 Conclusion and outlook Result validation through experiments Geometry (CFturbo): Access to all parameters (speed, pressure ratio, mass flow) and systematic analysis of deviations in the performance map 3D CFD (CFX): Full model and numerical prediction of surge line Apply methodology to other turbo machines (turbine, pump) Stochastic evaluation (optislang) Calculate speed lines and designs in parallel Optimization of performance maps Answering some question will rise up many new questions. 39

Thank you for your attention! For more information please visit our homepage: www.dynardo.com 40