Geothermal fluid and reservoir properties in the Upper Rhine Graben. Ingrid Stober

Ähnliche Dokumente
The Malm Aquifer in the pre-alpine Molasse Basin Hydrogeology and Temperature Distribution with Indications of Influences by the Alps

A parameterised 3D-Structure-Model for the state of Bremen (Germany)

3D geological information for professionals and the public

Simulating the Idle: A New Load Case for Vehicle Thermal Management

Numerical Modelling of CO 2 Storage in Geological Formations with MUFTE-UG

Minimierung des Fündigkeitsrisikos mit Hilfe von 2D- und 3D-Seismik

Hydrothermale Reservoire im Oberrheingraben

Stahl-Zentrum. Koksqualität und Hochofenleistung - Theorie und Praxis. Düsseldorf, 05. Dezember Peter Schmöle

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

Newest Generation of the BS2 Corrosion/Warning and Measurement System

Effiziente und sichere Nutzung der Geothermie Was kann das GeoLaB dafür leisten?

Universität Stuttgart. Institute of Hydraulic Engineering, Department of Hydromechanics and Modeling of Hydrosystems

FIVNAT-CH. Annual report 2002

Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. Mr. Sauerbier. Lukas Hydraulik GmbH Weinstraße 39 D Erlangen

A geological 3D-information system for subsurface planning in urban areas - case study Darmstadt (Hesse, Germany)

2 Grad globale Erwärmung: Was bedeutet das für unser Klima?

Oil / Air cooler ASA-TT 11 12V/24V DC Öl /Luftkühler ASA-TT 11 12V/24V DC

Vulnerability: sensitivity of groundwater quality to contaminant load

Pilot area B: Zeeland (B + NL) Pilot area C: Terschelling and Northern Fryslan (NL) Pilot area D: Borkum (D)

Prüfung von Rotorblättern für Windkraftanlagen

Numerical Analysis of a Radiant Syngas Cooler

Primärspannungsmessungen mit der. CSIRO Triaxialzelle

Hydrothermale Reservoire im Oberrheingraben

GIS-based Mapping Tool for Urban Energy Demand

Gas discharges. For low temperature plasmas:electric fields are important (stationary (DC) or alternating current (AC)) E - -

Zehnder ComfoWell 320

Cycling. and / or Trams

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

Technical Thermodynamics

Ion beam sputtering of Ag: Properties of sputtered and scattered particles

Hybrid model approach for designing fish ways - example fish lift system at Baldeney/Ruhr and fish way at Geesthacht /Elbe

Bedienungsanleitung Opera ng Manual

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Dynamic Hybrid Simulation

NUMERICAL SIMULATION OF CO 2 SEQUESTRATION CONSIDERING THE EXAMPLE OF CO 2 SINK

Probabilistic LCF - investigation of a steam turbine rotor under transient thermal loads

Test report. Bericht Nr.: PH001/10. Gruppe Physik Seite 1 von 6. Liquisol Mr. Tom Huymans Lindberg Oelegem BELGIUM. Client: Order No.

Pilot Project Biogas-powered Micro-gas-turbine

Shock pulse measurement principle

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!!

Conceptual multiphase modelling of an LNAPL contaminated site

Zehnder ComfoWell 220

Hazards and measures against hazards by implementation of safe pneumatic circuits

The Solar Revolution New Ways for Climate Protection with Solar Electricity

Dienstleistungsmanagement Übung 5

Qun Wang (Autor) Coupled Hydro-Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN

LV Geo.235 Geologisch Exkursionen I (Fritz) und LV Geo.245 Petrologische Exkursionen I (Hoinkes)

Westenberg Wind Tunnels

Master Thesis 2011/2012 Maiann Suhner. Supervision Pilar Junier. Bore core A1. Foto: Samuel Bucher. Journées Grands témoins, Besançon,

Asynchronous Generators

Chemical heat storage using Na-leach

Die Bedeutung neurowissenschaftlicher Erkenntnisse für die Werbung (German Edition)

Overview thermostat/ temperature controller

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered

The Single Point Entry Computer for the Dry End

Kölner Straße 167, Troisdorf, NRW

City West between Modern Age and History: How Does the Balancing Act. between Traditional Retail Structures and International

TECHNICAL DATA SHEET Member of Uponor Group

Delta 2.4 W-LAN EINBAUANLEITUNG MOUNTINGINSTRUCTIONS

Attenuator and Distribution System Zehnder ComfoWell 220

Dr. - Ing. Martin Buchholz, Technische Universität Berlin, Watergy GmbH Berlin Closed Greenhouse Systems - A Source of Water, Energy and Food

Country fact sheet. Noise in Europe overview of policy-related data. Germany

Workshop on Copernicus and the CAP. A technology vision for IACS

Wakefield computation of PETRAIII taper section Laura Lünzer

technische universität dortmund Fakultät Bio- & Chemieingenieurwesen Mechanische Verfahrenstechnik

Cycling Roads in Braunschweig

2011 European HyperWorks Technology Conference

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

Risk Analysis of Direct and Indirect Climate effects on deep Austrian Lake Ecosystems (RADICAL)

Geothermal power generation by GEOCAL

Harry gefangen in der Zeit Begleitmaterialien

WERKSKALIBRIERSCHEIN FACTORY CALIBRATION CERTIFICATE

FEM Isoparametric Concept

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Bosch Thermotechnik. Thermotechnology

The scientific approach of scale-up of a fluid bed

DAS ZUFRIEDENE GEHIRN: FREI VON DEPRESSIONEN, TRAUMATA, ADHS, SUCHT UND ANGST. MIT DER BRAIN-STATE-TECHNOLOGIE DAS LEBEN AUSBALANCIEREN (GE

Where are we now? The administration building M 3. Voransicht

SCHLAUE LÖSUNGEN FÜR IHRE ANWENDUNGEN SMART SOLUTIONS FOR YOUR APPLICATIONS

in Dano, Burkina Faso

Gas Sampling, Measurement and Analysis on the bioliq -EFG

Umschaltventile Magnete

a) Name and draw three typical input signals used in control technique.

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Junction of a Blended Wing Body Aircraft

Materialien zu unseren Lehrwerken

Possible Contributions to Subtask B Quality Procedure

Modelling CO 2 and trace gas exchange between landsurface

Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health)

Wie man heute die Liebe fürs Leben findet

Economics of Climate Adaptation (ECA) Shaping climate resilient development

KRUPP Produktübersicht / Product Range

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Cycling and (or?) Trams

C-TEC Systemtechnik und Serviceleistung für die Werkstoffprüfung GmbH

Gern beraten wir auch Sie. Sprechen Sie uns an!

Unravelling the systematics in ion beam sputter deposition of SiO 2. M. Mateev, T. Lautenschläger, D. Spemann, C. Bundesmann

Cooperation Project Sao Paulo - Bavaria. Licensing of Waste to Energy Plants (WEP/URE)

Transkript:

Geothermal fluid and reservoir properties in the Upper Rhine Graben Ingrid Stober Institut für Angewandte Geowissenschaften Strasbourg, 5. Februar 2015 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Geological situation of the Upper Rhine Graben During Early Cenozoic and Late Eocene: Subsidence of Upper Rhine Graben Uplift of Black Forest and Vosges mountains as Rift flanks Uplift (several km) caused erosion on both flanks of the Graben, exhuming gneisses and granites. The former sedimentary cover is conserved within the Graben. The deeply burried sediments include several aquifers containing hot water. Additionally there are thick Tertiary and Quaternary sediments, formed during the subsidence of the Graben. 2

Complex hydrogeological situation in the Graben Broken layers, partly with hydraulic connection, partly without Alternation between depression areas & elevated regions (horst graben structure) Hydraulic behavior of faults unknown There are extensional as well as compressive faults Main faults show vertical displacements of several 1,000 meters Thickness of the individual layers not constant. 3

Hydrogeology Thickness of the individual layers not constant Hauptrogenstein decreases from S to N, 120 m to 0 m (Strasbourg) Upper Muschelkalk (60-85 m) Buntsandstein increases from S to N, 60 m to 550 m Temperature is very high in depression zones, like the Heidelberg area, and quite low in more elevated regions There are 4 major thermal aquifers within the Upper Rhine Rift, primary targets of potential geothermal reservoirs: Hauptrogenstein (Dogger) limestone (S) Upper Muschelkalk (middle Triassic) - limestone Buntsandstein (lower Triassic) sandstone Cenocoic sediments (Tertiary) sandstone (N) 4

Hauptrogenstein Upper Muschelkalk Examples Buntsandstein 5

Cross sections through the eastern part of the Upper Rhine Graben, showing the 3 main thermal aquifers Northern Graben Vertical Displacement: 3,700 m Southern Graben Buntsandstein (lower Triassic) Upper Muschelkalk (middle Triassic) Heidelberg Hauptrogenstein (Dogger) Breisach Vertical Displacement: 3,000 m 6

Temperature in the Upper Rhine Graben 7

Location of hydraulic test data from deep wells deep wells of the oil- / gas-industry wells of spas geothermal wells 8

Frequency distribution of hydraulic conductivity (T/H) in the thermal aquifers T transmissivity (m 2 /s) H test length (m) fractured sandstone, karstified limestone aquifers 9

Hydraulic conductivity: dependence of depth (?) 10

Box-Whisker-Plot: Comparison of drill core and well test derived data example: Upper Muschelkalk-aquifer K wt = Hydraulic conductivity (T/H) [m/s] derived from well tests K dc = Hydraulic conductivity [m/s] derived from permeability (κ) [m 2 ] measurements on drill cores Hydraulic conductivity log K wt [m/s] Hydraulic conductivity log K dc [m/s] Hydraulic conductivity K dc [m/s] in fractured or karstified aquifers derived from permeability κ measurements on drill cores, is always orders of magnitude lower than hydraulic conductivity K wt (T/H) [m/s] derived from of hydraulic tests. Thus T/H data should be used for characterization of fluid flow in these aquifers. 11

12

Quality of the hydrochemical samples from deep wells Most water-samples are old (from archives). A lot of the samples originate from production tests of the oil-industry in the 1970 th to 1990 th ; these boreholes are closed now. The few new collected samples are from thermal spas and geothermal wells. Different laboratories analyzed the watersamples. So, first of all the analyses had to be controlled and checked on plausibility. On a total, the quality of the samples should not be overestimated. Nevertheless the data seem to be very valuable, if scheduling a geothermal project or planning deep wells for other purposes like CO 2 -sequestration, thermal spas,. 13 Collection of hot, gas-rich, strongly mineralized waters

Location of chemical water analyses from deep wells Hydraulic testing with water sampling 14

Hydrochemical properties of deep seated hot waters Deep thermal waters are always strongly mineralized. No weakly mineralized deep waters. Highest TDS in Hauptrogenstein (Dogger) aquifer with several 100 g/kg. All waters below halite saturation. KCl and CaCl 2 saturation is about 0.5 log units higher than halite saturation. TDS = Total Dissolved Solids 15

Hydrochemical properties of deep seated hot waters (> 500 m) t: TDS: < 240 g/kg depth: 1,700 m Water-type at shallow depth: Ca-HCO 3 Water-type at great depth: Na-Cl bjhr: TDS: < 300 g/kg depth: 2,100 m Water-type at shallow depth: Ca-HCO 3 Water-type at great depth: Na-Cl mo: TDS: 79 g/kg depth: 2,500 m Water-type at shallow depth: Ca-SO 4 -HCO 3 Water-type at great depth: Na-Cl s: TDS: 127 g/kg depth: 3,200 m Water-type at shallow depth: Ca-HCO 3 Water-type at great depth: Na-Cl 16

Waters at shallow depth (500 800 m): Middle & Lower Cenocoic: Ca-HCO 3 waters, in sediments with carbonate components, SO4 locally enriched due to occurrence of gypsum/anhydrite. Hauptrogenstein: Ca-HCO 3 waters, in fractured and karstified limestone Upper Muschelkalk: Ca-SO 4 -HCO 3 waters, in fractured and karstified limestone, containing gypsum/anhydrite-rich layers. Buntsandstein: Ca-HCO 3 waters with elevated SO 4 -concentration, in fractured sandstone. The fracture surfaces are usually covered with calcite. The sandstone contains relics of gypsum lenses. Waters at greater depth (> 800 m): Middle & Lower Cenocoic: Na-Cl waters. Gradually changing water type with TDS and depth. Hauptrogenstein: Na-Cl waters. Ca continuously increases with TDS. Gradually changing water type with TDS and depth. Upper Muschelkalk: Na-Cl waters. Abrupt change of water type from lower to higher concentrations. Buntsandstein: Na-Cl waters. ± Continuous transition from lower to higher concentrations. Deep waters are Na-Cl-rich, independent of nature of aquifer-rock. 17

Origin of deep Na-Cl-rich thermal waters Latest seawater transgression in the Upper Rhine Graben during Eocene- Oligocene. Evaporite deposits with halite and sylvite formed from Upper Eocene to the Lower Oligocene. Halite-rich strata also locally within Middle Muschelkalk. Quartz saturation temperatures from SiO 2 - geothermometers are typically higher than measured aquifer-temperatures, indicating upwelling thermal waters. Cl/Br- and (Na+K)/Cl-ratios show: The high salinity in the Buntsandstein aquifer originates from upwelling saline waters from the crystalline basement, The salinity in the Upper Muschelkalk derives from halite in the underlying Middle Muschelkalk, The salinity in the Hauptrogenstein aquifer originates from halite in Tertiary strata. To some extend there exists additionally a NaCl component from fossil sea water. 18

Flow Model in the Upper Rhine Graben 19

Technical consequences Deep thermal waters in the Upper Rhine Graben are highly mineralized (Na-(Ca)-Cl) and rich in dissolved gasses (CO 2, ) During production of hot water (reduction of pressure) calcite is precipitating during degassing of CO 2 precipitation of calcite, very rapidly During contact with atmospheric oxygen (O 2 ) precipitation of iron and/or manganese oxide scales. Therefore the produced waters must be circulated in a closed system under pressure (10-25 bar) to prevent degassing and contact with surface conditions. Bruchsal: pipe for degassing with scale Baden-Baden: Aragonite in tubing 20 Ingrid Stober - Rhine rift valley Bruchsal: coating in pipe

Vielen herzlichen Dank Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU; FKZ: 0327615, 0327615, 0325136) und der Deutschen Forschungsgemeinschaft DFG für die Bereitstellung der Projektmittel. Dem Service Géologique Régional Alsace des BRGM, dem RP Freiburg, LGRB, sowie den Firmen ExxonMobil, Gaz de France SUEZ, RWE Dea, Wintershall Holding GmbH für die Bereitstellung von Informationen über den Untergrund, sowie dem WEG für die Unterstützung und die Möglichkeit diese Daten auswerten und publizieren zu können. Und Ihnen fürs Zuhören Stober, I. & Bucher, K. (2014): Hydraulic and hydrochemical properties of deep sedimentary aquifers of the Upper Rhine Graben, Europe.- Geofluids (doi: 10.1111/gfl.12122). Stober, I. & Bucher, K. (2006): Hydraulic properties of the crystalline basement.- Hydrogeology Journal, 15, p. 213-224. Stober, I., Jodocy, M., Hintersberger, B. (2012): Vergleich von Durchlässigkeiten aus unterschiedlichen Verfahren - Am Beispiel des tief liegenden Oberen Muschelkalk-Aquifers im Oberrheingraben und westl. Molassebecken.- Z. geol. Wiss., 40 (1), S. 1-18, Berlin. 21 Institut für Angewandte Geowissenschaften